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List of abbreviations 

ADME, absorption, distribution, metabolism, and excretion  

AUC, area under the concentration-time curve  

AUC0-48, area under the plasma concentration−time curve from time 0 to 48 hours 

AUC0-inf,  area under the plasma concentration−time curve extrapolated to infinity 

BCRP, breast cancer resistance protein 

CYP, cytochrome P450 

CLR, renal clearance 

Cmax, maximum plasma concentration 

DDI, drug-drug interaction  

DME, drug-metabolizing enzyme  

ER, efflux ratio  

FDA, U.S. Food and Drug Administration 

F, bioavailability 

fm, fraction metabolized 

FMO, flavin-containing monooxygenase 

hADME, human ADME 

HH, human hepatocytes  

HLM, human liver microsomes 

HV, healthy volunteer 

KI, inhibitory constant 

kinact, rate of enzyme inactivation 

MATE1, multidrug and toxin extrusion protein 1 

MDR1, multidrug resistance mutation 

MIST, metabolites in safety testing 

OCT2, organic cation transporter 2 

PBPK, physiologically based pharmacokinetic 

PK, pharmacokinetic 

SAD, single ascending dose 

SMA, spinal muscular atrophy 

SMN, survival of motor neuron 
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TDI, time-dependent inhibition 

Tmax, time to reach the maximum concentration 
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Abstract  

Small molecules that present complex absorption, distribution, metabolism, and elimination (ADME) 

properties can be challenging to investigate as potential therapeutics. Acquiring data through standard 

methods can yield results that are insufficient to describe the in vivo situation, which can affect 

downstream development decisions. Implementing in vitro - in vivo - in silico strategies throughout the 

drug development process is effective in identifying and mitigating risks while speeding up their 

development. Risdiplam (EVRYSDI®) - an orally bioavailable, small molecule approved by the U.S. 

Food and Drug Administration and more recently by the European Medicines Agency for the treatment of 

patients ≥2 months of age with spinal muscular atrophy (SMA), is presented here as a case study. 

Risdiplam is a low turnover compound whose metabolism is mediated through a non-cytochrome P450 

enzymatic pathway. Four main challenges of risdiplam are discussed: predicting in vivo hepatic clearance, 

determining in vitro metabolites with regard to metabolites in safety testing guidelines, elucidating 

enzymes responsible for clearance, and estimating potential drug-drug interactions. A combination of in 

vitro and in vivo results was successfully extrapolated and used to develop a robust physiologically based 

pharmacokinetic model of risdiplam. These results were verified through early clinical studies, further 

strengthening the understanding of the ADME properties of risdiplam in humans. These approaches can 

be applied to other compounds with similar ADME profiles, which may be difficult to investigate using 

standard methods. 
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Significance statement  

Risdiplam is the first approved, small molecule, survival of motor neuron 2 mRNA splicing modifier for 

the treatment of spinal muscular atrophy. The approach taken to characterize the absorption, distribution, 

metabolism and excretion (ADME) properties of risdiplam during clinical development incorporated in 

vitro-in vivo-in silico techniques, which may be applicable to other small molecules with challenging 

ADME. These strategies may be useful in improving the speed at which future drug molecules can be 

developed.    
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Introduction 

The preclinical investigation of drug candidates is an important step in the drug development process that 

enables the selection of the most promising molecule and predicts their likely pharmacokinetics in human. 

This stage provides valuable information on the likely safety and tolerability of a drug candidate before 

entering clinical trials. Assessing the PK properties, polymorphism risks and drug-drug interaction (DDI) 

potential of a new drug requires a considerable number of in vitro and in vivo preclinical studies over an 

extended time. However, for compounds with challenging absorption, distribution, metabolism and 

excretion (ADME) properties (e.g. low turnover, metabolism by enzymes which are not well understood, 

and/or generation of a complex profile of metabolites), the extrapolation of in vitro data to humans cannot 

be performed with high confidence. This is especially the case when traditional in vitro systems (e.g. 

human liver microsomes [HLM], human hepatocyte suspensions [HH]) may not be sufficiently sensitive 

for prediction of PK parameters such as clearance. In such situations, a combination of in vitro 

experimentation, model-based prediction and in vivo confirmation is needed to build up a combined 

description of drug metabolism and PK (Cleary et al., 2018). 

Modeling and simulation-based approaches are now included in all areas of preclinical drug development 

programs, particularly physiologically-based pharmacokinetic (PBPK) modeling (Jones and Rowland-

Yeo, 2013). Through a ‘bottom up’ approach, PBPK models input data from in vitro assays with human 

cells and preclinical animal studies to understand the mechanism of a drug’s absorption and disposition. 

When in vitro data coupled with in silico data are sufficiently reliable, PBPK-derived simulations can 

speed up molecule development by assisting in designing the most informative clinical studies and 

providing model-based predictions in lieu of others (Fowler et al., 2017). Moreover, PBPK models can 

extrapolate PK across different populations and disease states which are used to inform clinical trials, 

dose escalation studies, and possible DDIs (Jones and Rowland-Yeo, 2013). More notably, PBPK models 

have been used to develop prescribing labels (e.g. DDIs) and are now accepted as part of the clinical 
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pharmacology regulatory applications submitted to the U.S. Food and Drug Administration (FDA) 

(Zhang et al., 2020).  

Risdiplam (EVRYSDI®), a recently approved drug with a challenging ADME profile (Food and Drug 

Administration, 2020c; European Medicines Agency, 2021), serves as a case study for an ADME strategy 

used to inform clinical development. Risdiplam is an orally available small molecule for the treatment of 

spinal muscular atrophy (SMA). SMA is an autosomal recessive neuromuscular disease caused by 

deletions and/or mutations of the survival of motor neuron 1 (SMN1) gene, resulting in reduced levels of 

functional SMN protein. A second SMN gene, SMN2, produces only low levels of functional SMN 

protein that are insufficient to fully compensate for the lack of the SMN1 gene (Lorson et al., 1999). This 

results in a progressive loss of spinal motor neurons leading to muscle atrophy and disease-related 

complications affecting the whole body (Yeo and Darras, 2020) and may be diagnosed in infancy, 

childhood (Types 1–3) or adulthood (Type 4) (Mercuri et al., 2020). Risdiplam acts by modifying SMN2 

mRNA splicing, ensuring that more full-length transcripts are generated, thus increasing SMN protein 

levels (Ratni et al., 2018). It is to be expected that molecules with new chemical characteristics may be 

required to address such novel drug-targeting mechanisms, and that ADME scientists will need to learn 

about how best to translate the drug properties of these new compounds into in vivo situations.  

Herein we describe some of the challenges met, and advances made whilst translating the ADME 

characteristics of an mRNA splicing modifying drug to the in vivo environment. By doing so we further 

report new data on the safety and PK profile of risdiplam. Comprehensive methodological information 

and additional supporting data are available in the Supplemental materials. Four main areas will be 

examined as shown in Fig. 1: (i) predicting in vivo hepatic clearance from low in vitro turnover, (ii) 

determining in vitro metabolites that are relevant in humans (with regard to metabolites in safety testing 

[MIST] guidelines), (iii) elucidating enzymes responsible for hepatic and extrahepatic clearance, and (iv) 

estimating potential DDIs. The work describes challenges encountered in the modern drug discovery 

setting and highlights strategies that could be adopted to ensure better predictions for future drug 

compounds.   
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1. Metabolic clearance prediction for risdiplam, a low clearance compound  

Predicting clearance of drug candidates as accurately as possible is important in drug optimization as this 

shapes several aspects of PK including the oral bioavailability, half-life and effective dose. Risdiplam was 

optimized towards low intrinsic clearance and avoidance of issues observed in previous drug candidates 

(e.g. high levels of active metabolite (Ratni et al., 2018)) by making use of HH suspension cultures as an 

assay system. HH are the system of choice for optimizing metabolism-based clearance due to their full 

complement of drug metabolizing enzymes (DMEs) (Hutzler et al., 2015) and are available as high-

quality cryopreserved preparations from multiple pooled donors which represent a ‘population average’. 

However, these primary cells lose function over a time span of ~4–6 h (Hutzler et al., 2015), and the 

lower limit of intrinsic clearance measurement is only ~3 µL/min/million cells in suspension culture 

(Docci et al., 2019).  

Recently, considerable effort has been invested by many laboratories into validating novel in vitro 

systems for low clearance measurements. In the case of risdiplam, the parent drug remained largely 

unmetabolized after incubation in HLM (89% remaining after 1 h) and hepatocytes (98% remaining after 

3 h) with an intrinsic clearance <3 µL/min/million cells. A more advanced in vitro system was therefore 

needed for accurate intrinsic clearance determination. HepatoPac® was chosen as it offered pooled donor 

hepatocyte cultures, high reproducibility of intrinsic clearance determinations between experiments and 

thorough in-house validation (Kratochwil et al., 2017; Docci et al., 2020; Umehara et al., 2020) where it 

improved the accuracy and precision of hepatic intrinsic metabolic clearance predictions compared with 

hepatocytes in monoculture. HepatoPac® is a well-established long-term HH co-culture system, which 

can maintain viability and functional expression of DMEs for up to seven days (Khetani and Bhatia, 

2008; Underhill and Khetani, 2018). In addition, reduced error in the in vivo intrinsic clearance prediction 

was observed using the HepatoPac® system when compared with hepatocytes in suspension culture 

(Umehara et al., 2020). The HepatoPac® long-term incubation system substantially lowers the intrinsic 

clearance quantification limit to 0.1–0.3 µL/min/million cells (Da-Silva et al., 2018; Docci et al., 2019; 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 7, 2021 as DOI: 10.1124/dmd.121.000563

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


10 

 

Umehara et al., 2020), and this improved sensitivity enabled risdiplam CLint of 0.7 µL/min/million cells to 

be determined. These data were then scaled to predict the in vivo clearance, the result of which was in 

excellent agreement (34% higher) with that observed in vivo (Section 4). To our knowledge, risdiplam is 

the first drug to come to the market for which advanced long-term hepatocyte co-cultures were used 

prospectively for intrinsic clearance measurement and scaling to in vivo conditions.  

2. Low in vitro turnover of risdiplam warranted early confirmation of MIST-relevant metabolites in 

human plasma samples  

According to MIST guidance, drug metabolites present at greater than 10% of total drug-related exposure 

at steady state in humans are a potential safety concern (Food and Drug Administration, 2016). Such 

metabolites need to be characterized in greater depth (e.g. ADME parameters or target activity) and need 

to be included into the pharmacology and safety assessment, e.g. via demonstration of exposure coverage 

in animal toxicity studies. Hepatocytes (and other subcellular fractions) provide a view of the principal 

metabolites and metabolic pathways for most compounds. However, due to multiple (and difficult to 

assess) parameters in vivo, determining which metabolite(s) would circulate - and can also reach or 

exceed 10% of the total drug-related material in plasma - is not easily predictable solely with in vitro data 

(Food and Drug Administration, 2016; Schadt et al., 2018).  

Risdiplam showed only low turnover in incubations with HLM (11% in 1 h) and HH (2% after 3 h). 

Consequently, risdiplam produced metabolites at low mass spectrometry signal intensities in liver 

microsomes, and even lower in hepatocytes. Although the N-hydroxyl M1 was the most abundant 

metabolite, the mass spectrum peak intensities were measured in low percentages of total drug-related MS 

signal intensities (1.7% in hepatocytes and 3.8% in microsomes after 3 h; Fig 2a). Other oxidative 

metabolites (M2-M8) were present at even smaller peak intensities or seen at trace levels (M2-M8). 

From a single-ascending-dose (SAD) study (18 mg of risdiplam (Sturm et al., 2018)) in healthy 

volunteers (HVs, NCT02633709), the plasma metabolite profile was assessed using pooled plasma 

samples (cross-subject pools of individual time points) which revealed that the main components were 
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parent drug and the N-hydroxyl metabolite M1 (Fig 2. and Fig. S1). It also found that M1 exceeded 10% 

of the total drug-related MS signal intensities, triggering additional bioanalytical method development for 

M1. Further exploration of M1 showed that it was devoid of any significant primary (SMN2 splicing) or 

secondary (FOXM1 splicing) pharmacological activity at therapeutic doses of risdiplam (Ratni et al., 

2018).  

Following the SAD study, a human radiolabeled ADME (hADME) study (oral administration of 14C-

risdiplam to HVs, NCT03036501) was conducted to identify circulating metabolites in plasma samples 

collected up to 48 h post-dose (Fig 3). Figures 2b and 3 show the plasma time profile for total 

radioactivity, risdiplam and its metabolites confirming that risdiplam was the major drug-related 

component found in circulation, and M1 being a major circulating metabolite exceeding 10% of total 

drug-related material. Four additional low-level metabolites (M2, M7, M9 and M26) from 

biotransformation of the piperazine moiety were observed in plasma. No individual metabolite accounted 

for more than 2.2% relative to the area under the concentration-time curve (AUC) of total drug-related 

material in plasma. All other circulating metabolites were below the limit of detection of the metabolite 

identification radioprofiling method used in the [14C]-hADME study.  

 

The metabolism of risdiplam illustrates the challenges drug metabolism scientists face with predicting the 

relevance of human in vivo metabolites from in vitro incubations of low turnover compounds. The in vitro 

metabolic profile was comprised of numerous low-level metabolites and the quantitative translation from 

in vitro to in vivo was poor. The profile that was finally observed in plasma circulation was mainly 

risdiplam and M1 (with M1 exceeding 10% of total drug-related material). For low turnover compounds 

such as risdiplam, in vitro systems are limited in accurately anticipating the extent to which metabolites 

will circulate in vivo as distribution and excretion of metabolites is not reflected in vitro. However, 

qualitatively the principal metabolic biotransformation pathways were well reflected in vitro and the data 

could be used to inform potential frontloading activities (e.g. structure elucidation by nuclear magnetic 
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resonance for lower level metabolites). Therefore, in vitro profiles were still of key importance to mitigate 

the risk of discovering disproportionate metabolites (according to MIST guidance) late in development, 

despite not being quantitatively predictive.  

Major metabolite (M1) coverage in plasma of nonclinical species 

The major metabolite M1 was detected in mouse, rat, rabbit, and monkey plasma. The nonclinical 

coverage of M1 in pivotal nonclinical studies at the respective no observed adverse effect level (NOAEL) 

for these species is summarized in Table 1. Coverage was assessed based on the median M1/parent ratio 

(0.334) in SMA patients at steady state at pivotal doses. 

Metabolite identification at later time points and implications for regulatory approval of risdiplam  

In plasma samples from the [14C]-hADME study, metabolites were identified using a radioprofiling 

method up to 48 h post-dose because radioactivity levels dropped below the sensitivity of the 

radioprofiling method used. However, some metabolites may have longer plasma half-lives compared 

with the parent compound, which would indicate slower elimination rates limiting their clearance 

(Holmberg et al., 2014). Uncertainties about the levels of metabolites at later time points can be a concern 

due to potential accumulation after repeated doses, and this was raised during a Health Authority 

assessment of risdiplam. The Health Authority assessment questioned whether the truncated area under 

the plasma concentration−time curve from time 0 to 48 hours (AUC0-48h) was representative of area under 

the plasma concentration−time curve extrapolated to infinity (AUC0-inf ) and therefore an investigation 

was conducted to identify any persistent major metabolites.  

An exploratory metabolite identification was performed on selected plasma samples from HVs 

administered with a single dose of 18 mg risdiplam (SAD study) to identify the major circulating drug-

related material. The high-resolution mass spectrometry data acquired from SAD plasma samples of a 

representative individual up to 216 h post-dose was re-interrogated to address this concern. Of the 21 

selected metabolites which met defined relevance criteria, high-resolution mass spectrometry peak areas 

of 16 metabolites could be extracted in the revisited SAD study raw data and were plotted up to 216 hours 

(see Fig. 4).  
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Supplemental Table 3 shows a comparison of the metabolite-to-parent AUC ratios for the most abundant 

metabolites in plasma (M1 and M26) observed in the hADME study, based on 14C and 12C, respectively.  

Both the risdiplam metabolite-to-parent AUC ratios over 48 h for the hADME study and over 216 h for 

the SAD study were considered similar. The exploratory metabolite identification data derived from the 

representative individual over 216 h post-dose in the SAD study increased the confidence that the 

metabolites identified at the truncated AUC0-48 in the hADME study were representative of AUCinf. 

Additionally, a number of unexplained peaks in the radiochromatogram, due to the low analytical 

sensitivity of the radioprofiling method, were assigned to several minor metabolites after reanalyzing 

plasma samples from the SAD study. The analysis of the raw mass spectral data at up to 216 h did not 

indicate any persistent metabolite with a significantly longer half-life than unchanged risdiplam, 

indicating that metabolites did not accumulate after repeated doses of risdiplam and resolving the question 

raised by the Health Authority. Reassessing previously-acquired data therefore revealed extended 

longitudinal results. The opportunity to reanalyze existing post-acquisition data was pivotal in potentially 

preventing a costly follow-up clinical trial which could have delayed the drug approval process.  

3. Investigating the combination of CYP P450 and flavin-containing monooxygenase contributions 

to risdiplam metabolism and implications for victim DDIs  

In vitro metabolite identification showed that risdiplam was metabolized via an N-oxidation and 

oxidation-mediated piperazine ring degradation. As there was no evidence of hydrolysis and conjugation 

biotransformation reactions, attention was focused on the metabolism of risdiplam by CYP and flavin-

containing monooxygenase (FMO) enzymes. Incubation of 10 µM radiolabeled risdiplam by 

recombinantly expressed CYP and FMO enzymes showed risdiplam can be metabolized by FMO1 and 

FMO3 as well as CYPs 1A1, 3A4, and 3A7. Multiple metabolites (including M1) were generated by each 

of these enzymes. When sensitive liquid chromatography with tandem mass spectrometry methods 

became available for risdiplam metabolite detection a further assessment of risdiplam and M1 metabolism 

was made.  
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Fig 5 shows the relative amount of metabolites M1, M2 and M5, which were detected in high abundance, 

formed in incubations using a panel of CYP and FMO enzymes. FMO1 and FMO3 and CYPs 1A1, 2J2, 

3A4 and 3A5 were the most active enzymes. The circulating metabolite M1 was further metabolized by 

many CYP and FMO enzymes (CYPs 1A1, 2C8, 2C19, 2J2, 3A4 and FMO1 and FMO3). Among these 

enzymes, CYP2J2, CYP3A4, FMO1 and FMO3 were most active in M1 metabolism (data not shown). 

Individual enzyme turnover data can be extrapolated to estimate the fraction metabolized (fm) when 

suitable scaling factors are known. However, this was not the case for a number of enzymes active in 

risdiplam metabolism at the time of performing the studies. To calculate intersystem extrapolation factors 

or relative activity factors, drug turnover rates and turnover rates for enzyme-selective substrates for the 

individual enzyme preparations and pooled HLM are required. These approaches have been validated for 

several CYPs, but others may lack established enzyme-selective probe substrates or may not be well 

represented by the pooled HLM test system. For instance, CYP1A1 is known to be expressed in 

extrahepatic tissues and present in liver microsomes from some donors, but is essentially inactive in 

pooled HLM (Lang et al., 2019). CYP2J2 is expressed in several extrahepatic tissues including the heart 

and has an important role to play in the regulation of arachidonic acid derivatives (Solanki et al., 2018). 

Recent studies have reported the discovery of selective CYP2J2 substrates (Zhao et al., 2021) and 

inhibitors (Phuc et al., 2017). The emerging characterization tools, tissue concentration measurements and 

drug examples may enable a more quantitative estimation of the contributions of less well-studied 

enzymes to drug metabolism in future.   

Risdiplam was metabolized by human liver, kidney and intestinal microsomes with 24%, 9% and 2% 

turnover observed, respectively, after 1 hour of incubation (at a higher microsomal protein concentration 

of 1 mg/mL) (Table S5). Under these experimental conditions, midazolam was turned over by >97%, 

<20% and >97% by liver, kidney and intestinal microsomes, respectively. These results indicated a 

differential enzymology of risdiplam with this CYP3A marker drug. The high relative rates of the 

hydroxylamine metabolite M1 formation and that of other metabolites formed by the kidney microsomes 
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highlighted the possible involvement of FMO1 in the metabolism of risdiplam. Methimazole, an inhibitor 

of FMO enzymes (Störmer et al., 2000), reduced kidney microsomal metabolism by >90%.  The data 

suggested that risdiplam was mainly metabolized by FMO1 in the kidney with only minor contributions 

from other enzymes. However, after accounting for the organ weight and blood flow, the scaled whole 

organ clearance of risdiplam in the kidney was ≤3% of hepatic clearance. This indicated that the actual 

contribution of FMO1 enzyme to risdiplam clearance was low even though the in vitro turnover by FMO1 

was high, which showed the importance of translating the raw enzyme activities into likely human 

relevance.  

In vitro studies were also performed to investigate the impact of inhibiting CYP3A and FMO enzymes on 

liver microsomal metabolism. Methimazole reduced human liver microsomal turnover by ~75%, 

consistent with an important role for FMO3 in liver metabolism. As additional analytical methodologies 

became available, it was possible to examine the effect of inhibitors on the formation of the most 

abundant in vitro risdiplam primary metabolites M1, M2 and M5 at a more physiologically relevant 

concentration (1 µM; Table S6). CYP3A inhibition by ketoconazole reduced the formation of these 

metabolites by 23-62% while methimazole inhibited their formation by 17-46%, dependent upon the 

metabolite. This demonstrated that FMO and CYP3A enzymes are important contributors to risdiplam 

metabolism and provided potential fm ranges for planning of a definitive in vivo DDI study. Since the time 

of performing these studies the first demonstrations of chemical inhibitor effectiveness and application to 

fm estimation using long-term hepatocyte cultures have started to emerge (Chan et al., 2020). These 

approaches will give additional opportunities for fm estimation, based upon total drug depletion, when 

such validation is available for a panel of selective inhibitors. 

FMOs are important for the metabolic clearance of benzydamine, itopride, pargyline, ranitidine, 

olopatadine, xanomeline, albendazole, cimetidine and ethionamide, and are minor contributors to the 

metabolism of many other compounds (Krueger and Williams, 2005; Phillips and Shephard, 2020). 

However, there are few examples of clinical DDIs and currently no probe inhibitors for use in clinical 
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DDI studies have been recommended (Food and Drug Administration, 2020b). In a survey of enzymes 

involved in the metabolism of the FDA new drug applications between 2013 and 2016, FMO enzymes 

were listed as contributing to the metabolism of only 3 out of 98 cases (where data were available) and 

investigation with clinical DDI studies was not reported for any of these (Yu et al., 2018). FMOs are 

generally viewed favorably as contributing enzymes to the metabolism of drugs, recently reiterated in the 

case study for ABT-126 which is mainly metabolized by FMOs (Liu et al., 2018). FMO induction is not 

well-known and few drugs which inhibit FMOs have been identified, reducing the likelihood of DDIs 

(Cashman and Zhang, 2006). These positive aspects are also reflected in the smaller body of in vitro and 

clinical data available for FMOs compared with CYPs. At the same time, the paucity of literature 

examples of FMO metabolism impacted preclinical confidence in the accurate extrapolation of risdiplam 

in vitro data.  

Although FMO3 activity can be assessed using benzydamine N-oxidation as a probe reaction (Lang and 

Rettie, 2000; Störmer et al., 2000) the scaling of FMO contributions to overall metabolism has not been 

well established to date. Obstacles here include a lack of clinical comparator data and uncertainties about 

the percentage of FMO3 enzyme activity remaining in HLM preparations due to thermal lability. With 

additional case reports of in vitro fm prediction and in vivo fm confirmation, confidence will be built in the 

estimation of FMO contributions to metabolism. A step in this direction was provided by Jones et al. 

(Jones et al., 2017) who reported on the scaling of intrinsic clearance data for FMO-cleared drugs using 

HLM and HH intrinsic clearance data, which showed human clearance could be reasonably predicted, 

consistent with our risdiplam experience. Risdiplam is therefore an important addition to the list of drugs 

with clinically important contributions from FMO enzymes and demonstrates that clearance scaling for an 

FMO/CYP substrate could be made effectively. This should help in the build-up of validation datasets 

needed for intrinsic clearance and fm predictions for FMO substrate drugs to become better accepted. 

4. Translating in vitro-in vivo-in silico data to first-in-human trials  
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A PBPK model was used to calculate appropriate doses of risdiplam for the entry-into-human study. The 

safety and tolerability of these predicted doses were assessed in the SAD study (Sturm et al., 2018). PK 

data and DDI potential with risdiplam were also obtained to verify in vitro results and in silico 

predictions.  Details regarding the PBPK model can be found in Table 2. 

The PBPK model predicted almost complete absorption after oral administration of 0.6 to 18 mg 

risdiplam as oral solution (fraction absorbed; FA>0.9), and a volume of distribution at steady state of 4.1 

L/kg in adult humans (Table 2). The predicted metabolic clearances in the kidney and intestine based on 

the turnover study were ≤3% of the predicted hepatic CL and therefore not included in the PBPK model. 

Consequently, the risdiplam CL was modeled with the predicted plasma CL of 7.3 L/h, which was based 

upon hepatic metabolism scaled from the CLint determined by the turnover in HepatoPac®. This indicated 

low hepatic extraction (hepatic availability, FH>0.9) and negligible intestinal metabolism (intestinal 

availability, FG>0.9 based on CYP3A metabolism, and unbound fraction in enterocyte, fu,gut=1). Overall, 

high bioavailability (approximately 0.9) was predicted for 0.6 to 18 mg of risdiplam administered as an 

oral solution. In the hADME study, approximately 14% and 17% of 18 mg orally administered [
14

C]-

risdiplam were recovered as unchanged risdiplam in the pooled feces collected over 168 h and 840 h, 

respectively (Fig 2C), which is consistent with the predicted bioavailability. 

In the SAD study in HVs, risdiplam was well tolerated up to the highest dose tested (18 mg) and the PK 

properties were linear over the entire dose range (Sturm et al., 2018). The predicted plasma CL of 7.3 L/h 

was found to be in good agreement with the apparent CL (CL/F) of 5.68 L/h estimated by a population 

PK model developed on the SAD study data (Table S7 and Fig S5), given the predicted high oral 

bioavailability of risdiplam. The total hepatic clearance was adjusted to the population PK model 

estimates and included a renal clearance (CLR) of 0.33 L/h, which corresponded to approximately 5% of 

the total clearance.  

Potential DDI by CYP3A inhibition were investigated by co-administration of risdiplam with itraconazole 

in HVs (Sturm et al., 2018). Based on this data, the PBPK model estimated a fraction of risdiplam 
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metabolized by CYP3A (fmCYP3A) of 20% (Sturm et al., 2018). The remainder of the metabolic clearance 

was assigned to hepatic metabolism through FMO3 enzyme according to the in vitro enzymology study 

for risdiplam (fmFMO3 = 75%). The plasma concentration-time profiles and PK parameters simulated by 

the PBPK model of risdiplam showed good agreement with the observations in all doses investigated in 

the SAD study (Sturm et al., 2018) as shown in Fig 6 and Table 3, respectively. Subsequently, the PBPK 

model was extrapolated to adult and pediatric SMA patients (Cleary et al., 2021c) to support dose 

selection for therapeutic studies and DDI risk assessments (Cleary et al., 2021a).  

 

5. DDIs risk profile – clinical relevance of CYP3A time-dependent inhibition and emerging 

transporters  

DDIs occur when drugs taken in combination with other drugs cause unexpected side effects or efficacy 

due to modified drug exposure; their detection is therefore essential for patients on concomitant 

medications. These effects happen when DMEs such as CYP enzymes or drug transporters are inhibited 

or induced, which affects the PK of the administered drug. This can be conceptualized as ‘victim’ drugs 

(whose PK is directly affected) or ‘perpetrator’ drugs (inhibits or induces enzymes/transporters which 

affects the PK of the victim). The case of terfenadine is one example of the victim-perpetrator DDI effect. 

Terfenadine was withdrawn from the market due its elevated concentrations in plasma that resulted in life 

threatening and/or fatal cardiac arrhythmia in some patients who were co-medicated with ketoconazole 

(Honig et al., 1993). However, in some cases perpetrator drugs have been co-administered as an 

intentional strategy to prolong victim drug plasma concentrations. Such is the case for HIV-protease 

inhibitors, which are primarily metabolized by CYP3A. For example, when co-administrated with 

ritonavir (strong CYP3A inhibitor), plasma exposures of protease inhibitors are boosted. It is now 

recommended, as part of first-line treatment, that low-dose ritonavir is co-dosed with HIV-protease 

inhibitors (Hull and Montaner, 2011).   
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Regulatory bodies require a thorough evaluation of any possible drug interactions against both DME and 

membrane transporters prior to market approval (European Medicines Agency, 2012; Food and Drug 

Administration, 2018; Ishiguro et al., 2020). It has been recommended to use in vitro systems to 

investigate any potential DDIs. In silico studies (e.g. PBPK models) can be used and are accepted in lieu 

of some prospective DDI studies, to predict moderate or weak perpetrator drugs on the exposure of the 

parent drug (Food and Drug Administration, 2020a). As the major metabolite of risdiplam, M1, was 

found to be MIST-relevant, risdiplam and M1 were both examined for CYP induction in HH as well as 

for reversible (direct) and irreversible (time-dependent inhibition [TDI]) inhibition in HLM. There was no 

significant induction of CYP1A2, 2B6, 2C8, 2C9, 2C19 and 3A4 at the mRNA level after incubation of 

risdiplam and M1 in primary HHs. Risdiplam and M1 also did not show direct inhibition of major CYP 

enzymes (1A2, 2B6, 2C8, 2C9, 2C19, and 2D6) except for CYP3A at concentrations of up to 12.5 µM 

and 10 µM, respectively. These concentrations are much higher than the Cmax values (184 ng/mL [0.46 

µM]) after oral administration at the therapeutic dose of risdiplam, indicating no clinically relevant direct 

inhibition on CYP substrates.  

In vitro TDI parameters of risdiplam and M1 on CYP3A were measured and the inhibitory constant (KI ) 

= 13 µM and in vitro inactivation rate constant (kinact) = 0.065 min-1; and KI = 13.7 µM, kinact = 0.063 min-1 

determined, respectively; Table S8. However, there is some uncertainty over these values because the 

TDI effect did not reach saturation at the concentrations of risdiplam tested due to solubility limitations. 

Indeed, the estimated KI was higher than the maximal test substance concentration (12.5 µM) in the study, 

which indicated a level of uncertainty with the fitting performance. This could result in the over-

prediction of the TDI potency in the initial perpetrator DDI risk assessment. Moreover, in vitro TDI data 

measured from standard HLM assays frequently overpredict the magnitude of DDI (Eng et al., 2021) and 

fail to correctly categorize a drug as a weak, moderate, or strong inhibitor in vivo (Mao et al., 2012). A 

model system of human hepatocytes suspended in human plasma has been proposed to be an alternative 

in vitro system to more accurately assess CYP3A mediated TDI-DDI risk. The human hepatocytes 
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suspended in human plasma demonstrated a more reliable clinical DDI prediction for CYP3A TDI (Mao 

et al., 2012; Mao et al., 2016; Food and Drug Administration, 2020a).  

With a positive TDI result of risdiplam in HLM, the PBPK model can be used to predict the magnitude of 

the DDI and to investigate any DDI risk in future clinical studies. The model predicted an approximately 

2-fold increase in AUC for midazolam (prototypical CYP3A substrate) in healthy adults, which was 

considered clinically relevant (FDA threshold; AUC ratio ≥ 1.25 (Food and Drug Administration, 2020b)) 

and warranted further clinical investigations. However, results from the clinical DDI study in healthy 

adults showed that, in the presence of risdiplam, Cmax and AUC of midazolam were increased by 16 and 

11%, respectively (Cleary et al., 2021b). The finding was not clinically relevant and therefore dose 

adjustment for concomitantly used CYP3A substrates is not necessary. 

In vitro-in vivo extrapolation methods to investigate membrane transporter interactions are mostly 

unavailable - with the exception of MDR1 (multidrug resistance mutation 1) - and therefore can present a 

challenge when studying and/or validating potential DDIs (Giacomini et al., 2010; Yoshida et al., 2017).  

Risdiplam and M1 were screened in the relevant drug transporter assay as substrates. Both compounds 

were determined to be highly permeable molecules (>300 nm/s in LLC-PK1 or MCKII cells). Risdiplam 

was not a substrate of human MDR1 and a weak substrate of human breast cancer resistance protein 

(BCRP; efflux ratio [ER] = 3.1) (Ratni et al., 2018). M1 was a weak-to-good substrate of human MDR1 

(ER = 5.5) and a weak substrate of human BCRP (ER = 4.1). The in vitro hepatic uptake of risdiplam in 

HH was not sensitive to an organic anion transporting polypeptide inhibitor (RifSV, 100 μM) and, 

therefore, risdiplam was not considered an organic anion transporting polypeptide substrate. The hepatic 

uptake is likely to be driven predominantly by passive diffusion, which is consistent with its high passive 

permeability. Overall, risdiplam and M1 did not present a clinically significant DDI risk related to drug 

transport proteins as victims. 

When risdiplam and M1 were screened against a panel of relevant transporter proteins as perpetrators, the 

results showed that risdiplam inhibited organic cation transporter 2 (OCT2), MATE1 and MATE2-K 
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while M1 inhibited BCRP and MATE1 (Table 4). In order to assess the clinical relevance of these in 

vitro inhibition risks, regulatory bodies recommend: (1) for intestinal efflux (BCRP): calculating the drug 

level in the gastrointestinal tract as the oral dose divided by 250 mL; (2) for hepatic efflux (BCRP) and 

renal uptake (OCT2, MATE1 and MATE2-K): calculating the ratio of unbound plasma Cmax to the in 

vitro IC50 ([I]/IC50) (European Medicines Agency, 2020; Food and Drug Administration, 2020a) . The 

transporter-related clinical DDI risk can be excluded if the ratio [I]/IC50 is lower than 0.02. 

The approach to assess clinical relevance of BCRP inhibition was not applicable to risdiplam as M1 is a 

circulating metabolite and not detected in the feces of humans. For renal uptake, the static model 

recommended by the regulatory bodies revealed a potential clinically relevant risk only for risdiplam 

inhibition of both MATE1 and MATE2, with a calculated ratio exceeding the recommended 0.02 

threshold (Table 4). However, static models are known to overpredict clinical DDIs (Filppula et al., 

2019). Rather, a PBPK model could be an alternative strategy to further evaluate the DDI risk. MATE 

proteins are often referred to as “emerging” transporters and clinical case examples are rare. To date, as 

MATE-related DDIs are rare, there is no validated PBPK model available to assess MATE-related DDIs, 

which further prevented any quantitative extrapolation (Yoshida et al., 2017). Currently, the most 

validated victim is metformin, and the methodology to extrapolate a possible DDI to other substrates 

remains to be validated due to a lack of clinical comparator data (Food and Drug Administration, 2020b). 

Most of the existing clinical evidence concerning MATE-related DDIs pertain to the inhibition of 

metformin renal clearance by cimetidine, pyrimethamine or dolutegravir (Chu et al., 2018). The highest 

metformin AUC ratio (2.68) has been observed with pyrimethamine. With metformin elimination 

dependent mostly on a renal secretion by an active transporter and pyrimethamine acting as a strong and 

selective MATEs inhibitor, this concrete clinical case can be considered as the worst-case example known 

thus far. Fexofenadine, dofetilide, cephalexin and procainamide are among other rare victim drugs 

affected by MATE-mediated DDIs with clinical data (Hillgren et al., 2013). As these drugs are not a part 

of the standard of care for patients with SMA, the risk of DDI due to MATE was deemed to be minimal. 
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Quantitative extrapolation and clinical significance of in vitro findings for emerging transporters remain a 

challenge. New biomarker-informed strategies, for example assessing early clinical samples for serum 

creatinine levels for MATEs, can serve as an additional filter to minimize false negative and false positive 

predictions, and can enable quantitative DDI predictions (Mathialagan et al., 2020). 

6. Conclusion 

Assessing small molecules with complex ADME properties is not always straightforward. However, new 

technology and advancements to existing methods are allowing scientists to overcome longstanding 

challenges. Moreover, when in vitro studies, PBPK modeling and clinical investigations are successively 

combined, a cohesive picture of the overall PK profile of a drug can be determined. This was exemplified 

here in the development of risdiplam. Despite low turnover, in vitro clearance of risdiplam was 

determined using a long hepatocyte co-culture system. The PBPK model, with a robust description of 

ADME process, helped to define the doses to be assessed in the SAD study. The SAD trial was 

instrumental in assessing the safety and tolerability of risdiplam, but also in verifying metabolic 

clearance, renal secretion and potential DDI risks. The in vivo metabolic profiling of plasma samples from 

the SAD study, which were supplemented by in vitro data, appropriately informed the MIST-relevance of 

metabolites. This prevented potential delays in the program (e.g. bioanalytical method development or 

synthesis of standards etc.), as these could be identified early on in development. The SAD trial data were 

also crucial, several years after its first analysis, for investigating metabolites in plasma for up to 216 h to 

ensure there were no persistent metabolites. Through this in vitro-in vivo-in silico strategy, the clinical 

development of risdiplam was accelerated; multiple PK questions were swiftly answered and regulatory 

requirements for drug filing were fulfilled, all of which led to the FDA approval (Food and Drug 

Administration, 2020c) and recent EC approval (European Medicines Agency, 2021) of risdiplam. We 

hope insights and perspectives can be gained from this case study to help investigators developing small-

molecule drugs with challenging ADME profiles for the clinic.   
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Figure legends  

 

Figure 1. Four main challenges of risdiplam   

Figure 2. Overview of risdiplam disposition metabolism and excretion in man after a single oral 

dose of 18 mg. A) in vitro metabolites identified in incubations of HLM and HH after 60 and 180 

minutes, respectively. B) high performance liquid chromatography and microbeta-scintillation 

count analysis of the metabolite profile of risdiplam in pooled human plasma of six healthy 

individuals at 24 h after oral administration (18 mg) of [
14

C]-risdiplam. C) Overview of risdiplam 

disposition, metabolism and excretion after a single oral dose of 18 mg in six heathy volunteers 

An asterisk on the structure of risdiplam denotes the carbon 14 labeling position in the molecules. Unit 

(plasma, feces and urine): % of total drug-related material (radioactivity) in the given matrix (of AUC0-48 

in plasma and over 0–168 h in excreta). Approximately 14% and 17% of orally administered 18 mg of 

[14C]-risdiplam was recovered as unchanged in the pooled feces collected over 168 h and 840 h, 

respectively. 

* Percent radioactivity recovered after 0–168 h 

† Individual contributions: 0.2–3.5% of drug-related material in feces (cumulated = 9.6% of the dose), 

0.4–4.5% of drug-related material in urine (cumulated = 5.3% of the dose) 

‡ Trace level components each accounting for <0.9% of the dose (feces) or ≤1.0% of the dose (urine) 

§ Recovered dose after 0-840 h  

 

Figure 3. Plasma time profile for total radioactivity, risdiplam and its metabolites M1, M2 and M7, 

M9 and M26 in human plasma after oral administration (18 mg) of [
14

C]-risdiplam.   

LSC, liquid scintillation counting; MSC, microplate scintillation counting. 

 

Figure 4. Post-acquisition, exploratory metabolite identification analysis in plasma levels of 

risdiplam and metabolites following single oral dose of 18 mg risdiplam in 1 healthy volunteer.  
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Figure 5. Generation of specific metabolites on incubation of 1 μM risdiplam with individual CYP 

and FMO enzymes and human liver microsomes 

 

Figure 6. Simulated and observed plasma concentrations of risdiplam after 0.6, 2, 6 or 18 mg as a 

single dose. The observations (open circles), 5th to 95th percentiles (grey shades) and geometric 

means (grey dotted lines) of the simulated concentrations are shown. 
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Table 1. M1 Coverage in nonclinical pivotal toxicity studies at the respective NOAEL 

Species  

Dose at NOAEL 

[mg/kg/day] 

M1 Exposure at NOAEL 

[AUC0-24 in ng·h/mL] 

Animal vs Human  

M1 Exposure Ratio
a
 

M F M F M F 

Monkeys 1.5 1.5 285b 314b 0.43 0.47 

Adult rats 1 3 796b 3195b 1.19 4.78 

Rats (PND31) 1.5 1.5 439 406 0.66 0.61 

RasH2 mice 9 9 1690 1580 2.53 2.37 

Rabbits NA 4 NA 303 NA 0.45 

AUC, area under the curve; F, females; M, males; NA, not applicable; NOAEL, no observed adverse 

effects level; PK, pharmacokinetics; PND, postnatal day 

a The M1 AUC0-24,ss at the mean exposure guidance in SMA patients (2000 ng·h/mL; parent AUC0-24,ss) 

was extrapolated by multiplying the parent AUC0-24,ss with the median M1/parent ratio (0.334) in SMA 

patients at pivotal doses (i.e. M1 AUC0-24h,ss = 2000 ng·h/mL×0.334 = 668 ng·h/mL). The animal 

versus human M1 exposure ratio is the ratio of the animal M1 AUC0-24,ss on the last day of dosing at the 

NOAEL dose divided by the extrapolated M1 AUC0-24,ss at the mean exposure guidance in SMA 

patients (668 ng·h/mL). 

b Plasma samples taken before incorporation of M1-preservation measures into bioanalytical methods. 

The M1 exposure was estimated from a corresponding PK bridging study as follows: M1 AUC0-24 = 

(parent AUC0-24 on the last day of dosing at the NOAEL dose) × (M1/parent ratio from PK bridging 

study). 
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Table 2. Input parameters of risdiplam PBPK model. 

Parameter Value Sources 

Molecular weight 401.5 g/mol  

Compound type diprotic base 

pKa1 = 4.52 

pKa2 = 6.82 

Measured 

LogD* 2.51 (pH=7.4) Measured 

Permeability (Peff) 20.4 ×10-6 cm/s Measured 

B:P ratio 1.3 Measured 

Protein binding 89% Measured 

  Absorption   

     FA >0.9 Predicted by ADAM model 

     fu,gut 1 (Yang et al., 2007) 

 Distribution 4.1 L/kg Full PBPK model with predicted Kp values 

(Rodgers and Rowland, 2006) 

 Metabolism    

  CLint,CYP3A4 (µL/min/pmol) 0.018 According to itraconazole DDI study results  

(Sturm et al., 2018) 

  CLint,FMO3 (µL/min/pmol) 0.364 Calculated based on in vitro and clinical 

study results.    

 Elimination   

  CLR (L/h)  0.33 According to the observations in healthy 

individuals (Sturm et al., 2018) 

*The corresponding LogP is 2.61.  
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Table 3. Comparison of predicted and observed PK parameters of risdiplam 

Dose  Cmax (ng/mL) tmax (h) AUCinf (ng  h/mL) 

0.6 mg    

 Observation 2.82 3.0 86.7 

 Prediction 2.86 2.45 112 

2 mg    

 Observation 8.33 3.0 294 

 Prediction 9.53 2.45 373 

6 mg fasted    

 Observation 24.5 2.0 1080 

 Prediction 28.6 2.45 1120 

18 mg    

 Observation 93.2 2.0 3290 

 Prediction 85.8 2.45 3360 

Geometric means are presented except for tmax (median). 
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Table 4. Human DDI risk assessment for transport proteins inhibition by risdiplam or M1 

Compound 

/ Protein 

IC50  

[µM]
a
 

Total Cmax in SMA patients 

[ng/mL]
a
 

[I] 

[µM]
b
 

[I]/IC50 Threshold
c
 

Risdiplam / 

OCT2 

8.7 Median = 184 (0.2 mg/kg, <2 years) 

Max observed = 364 

0.049 

0.097 

0.006 

0.011 

0.02 

Risdiplam / 

MATE1 

0.15 Median = 184 (0.2 mg/kg, <2 years) 

Max observed = 364 

0.049 

0.097 

0.33 

0.65 

Risdiplam / 

MATE2-K 

0.09 Median = 184 (0.2 mg/kg, <2 years) 

Max observed = 364 

0.049 

0.097 

0.54 

1.08 

M1 / 

MATE1 

14.8 Median = 61 (0.2 mg/kg, <2 years) 

Maximum = 122 

0.011 

0.022 

0.0007 

0.0015 

M1 / BCRP 2.3 Median = 61 (0.2 mg/kg, <2 years) 

Maximum = 122 

0.011 

0.022 

0.0047 

0.0094 

Grey shaded areas indicate values above the [I]/IC50 threshold. 

a Risdiplam and M1 plasma concentrations at steady state at pivotal doses (SUNFISH study 

[NCT02908685]): 0.25 mg/kg (body weight<20 kg) or 5 mg, FIREFISH study (NCT02913482): 0.2 

mg/kg). 

The assessment was based on the median and maximum observed Cmax values in the FIREFISH 

study; Cmax values were lower in older patients in the SUNFISH study. Median M1 percentage vs 

parent of 33.4 = ~30% was assumed for calculating M1 Cmax values. 

b [I] is the unbound plasma concentration (assuming free fraction in human plasma 10.7% for 

risdiplam and 7.4% for M1). 

c Most conservative [I]/IC50 threshold above which the Sponsor should further investigate the DDI 

potential by conducting a clinical DDI study (European Medicines Agency, 2020; Food and Drug 

Administration, 2020a) 
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