Transporters in Regulatory Science: Notable Contributions from Dr. Giacomini in the Past Two Decades

Lei Zhang¹, Qi Liu², Shiew-Mei Huang², and Robert Lionberger¹

¹ Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, USA

² Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, USA
Running Title: Transporters in Regulatory Science

Corresponding Author:
Lei Zhang, Ph.D.
10903 New Hampshire Ave.
Silver Spring, MD 20993, USA
Tel. 301-796-1635
Email: leik.zhang@fda.hhs.gov

Total number of manuscript page: 35
Total number of Figures/Tables: 0/1
Total word count of abstract: 163
Total word count of introduction 346
Total word of discussion: 0 (this is a review paper with no discussion section)
Total word count of the paper: 5059

Recommended section assignment: Metabolism, Transport, and Pharmacogenomics
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

Abbreviation List:

ABC, ATP-binding cassette; ASBT, apical sodium–bile acid transporter; BCRP, breast cancer resistance protein; BCS, biopharmaceutics classification system; BE, bioequivalence; CERSI, Center of Excellence in Regulatory Science and Innovation; CKD, chronic kidney disease; DDI, drug-drug interaction; EMA, European Medicines Agency; FDA, Food and Drug Administration; GLUT, glucose transporter; MRP, multidrug resistance protein; MATE, multidrug and toxin extrusion protein; MCM: medical countermeasure; NME, new molecular entity; OATP, organic anion transporting polypeptide; OAT, organic anion transporter; OCT, organic cation transporter; PBPK, physiologically based pharmacokinetic; PD, pharmacodynamics; P-gp, P-glycoprotein; PK, pharmacokinetics; PMDA, Japan’s Pharmaceuticals and Medical Devices Agency; PI, principal investigator; RI, renal impairment; RLD, reference listed drug; SGLT, sodium/glucose co-transporter; SLC, solute carrier; URAT, urate transporter.
Abstract

Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism, and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. Dr. Kathy Giacomini from the University of California, San Francisco is one of the world leaders in transporters and pharmacogenetics with key contributions to transporter science. Her contributions to transporter science are noteworthy. This review paper will summarize Dr. Giacomini’s key contributions and influence on transporters in regulatory science in the past two decades. Regulatory science research highlighted in this review covers various aspects of transporter science including understanding the effect of renal impairment on transporters, transporter ontogeny, biomarkers for transporters, and interactions of excipients with transporters affecting drug absorption.

Significant Statement

This review paper highlights Dr. Giacomini’s key contributions and influence on transporters in regulatory science in the past two decades. She has been at the cutting edge of science pertaining to drug transport, drug disposition, and regulatory science, leading to new era of translational sciences pertaining to drug disposition and transporter biology. Her research has and will continue to bring enormous impact on gaining new knowledge in guiding drug development and inspire scientists from all sectors in the field.
Introduction

Membrane transporters are expressed in various tissues throughout the human body, controlling the movement of endogenous and exogenous substances in and out of cells at various sites in the body. More than 450 human transporters have been identified, and approximately 30 transporters are known to play a role in drug transport (Giacomini et al. 2010; Giacomini 2017). Transporters can affect a drug’s pharmacokinetics by controlling absorption, distribution, and elimination processes. They can also affect a drug’s pharmacodynamics by influencing its access to the site of action (Giacomini 2017). Transporters have become important as drug targets, for example, urate transporter (URAT1, SLC22A12) inhibitors as treatment for gout and sodium/glucose co-transporter-2 (SGLT2, SLC5A2) inhibitors for treating type 2 diabetes. More recently, the FDA approved maralixibat, an ileal bile acid transporter (ASBT, SLC10A2) inhibitor, for the treatment of cholestatic pruritus in patients with Alagille syndrome starting at one year of age, a rare disease (Shirley 2022a, 2022b). Over the past 20 years, research activities have generated a vast amount of data on transporters.

Dr. Kathy Giacomini is one of the world leaders in transporters and pharmacogenetics. Her contributions to transporter research are remarkable and instrumental. She champions knowledge of transporters in drug development, regulatory science, and pharmacotherapy, with a clinical focus. One author of this paper, Dr. Lei Zhang, was a graduate student in Dr. Giacomini’s laboratory from 1994-1998 who has worked at the U.S. Food and Drug Administration (FDA) since 2002. She continued to collaborate with Dr. Giacomini on various regulatory science projects on transporters. She witnessed Dr. Giacomini’s continued impact in
the transporter science field, not only in the academic institutions at the “bench”, but also on the translational side to the “bedside”.

This review paper will summarize Dr. Giacomini’s scientific contributions that have been major leaps to influence the field of transporters in regulatory science in the past two decades through collaborations with the FDA scientists. FDA defines regulatory science as “the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of FDA-regulated products” (“FDA Advancing Regulatory Science" 2021).

Formation of the International Transporter Consortium (ITC) and ITC’s Impact on Transporter Science

Drug interaction potential is recognized as an important consideration in the evaluation of a new molecular entity (NME). Evaluation of drug interactions is an integral part of drug development and regulatory review prior to market approval (Yoshida et al. 2017; Rekic et al. 2017; Huang et al. 2007; Huang et al. 2008; Zhang, Zhang, and Huang 2009; Zhang et al. 2009). In the 1990s, the FDA guidance documents on drug-drug interactions (DDIs) only discussed interactions mediated via drug metabolizing enzymes. Since early 2000, the importance of transporters in DDIs has been increasingly recognized. Many significant DDIs have been attributed to transporters. For example, the withdrawal of cerivastatin in early 2000 (Charatan 2001) was due to significant DDIs caused by the inhibition of a hepatic transporter, Organic Anion Transporting Polypeptide (OATP)1B1 (SLCO1B1), that led to increased cerivastatin drug levels (Shitara et al. 2004). FDA started to include recommendations for transporter studies in
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

2006 with a particular focus on P-gp, the most studied transporter at the time. However, knowledge on other transporters was limited at that time.

There was a need to build a community consensus on transporters that play an important role in DDIs and drug safety and efficacy. In 2007, the International Transporter Consortium (ITC) was established (https://www.itc-transporter.org/) (Huang, Zhang, and Giacomini 2010). Dr. Giacomini was one of the co-founders and serves as the co-chair of the ITC Steering Committee for more than a decade since 2007. The mission of this Consortium is “to encourage dialog in all sectors of transporter research to solidify our present understanding, challenge our current thinking, and position ourselves to better address the complex and critical issues related to transporters in drug development” (Huang, Zhang, and Giacomini 2010). As a co-chair of the ITC Steering Committee, she has led the scientific programming for numerous transporter workshops and symposia, including four ITC Workshops in 2008, 2012, 2017, and 2021. Dr. Giacomini effectively brings together experts from academia, industry and regulatory agencies to gain different perspectives on transporter science and applications in clinical pharmacology. Her advocacy in assembling expert working groups to generate white papers that review current knowledge and identify key gaps in our understanding has moved the field forward and markedly influenced regulatory guidances related to transporter-mediated drug interactions. She is the lead author on the most highly cited review on membrane transporters in drug development (~3,000 citations) published following the first ITC Transporter Workshop (Giacomini et al. 2010).

Dr. Giacomini also co-edited “Human Transporters” and “Advances in Transporters” themed issues of Clinical Pharmacology and Therapeutics (July 2013 and November 2018, respectively) following the second and third ITC Workshops in 2012 and 2017 (Giacomini and Huang 2013; Giacomini, Galetin, and Huang 2018), respectively, that included approximately 20
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

whitepapers generated from these successful workshops. These whitepapers have addressed several key questions for drug development, including which transporters are clinically important in drug absorption, action, and disposition, which transporters are having emerging roles, and which in vitro methods are suitable for studying drug interactions involving these transporters with recommendations and decision frameworks to help guide clinical drug interaction studies (Giacomini et al. 2013; Hillgren et al. 2013; Zamek-Gliszczynski et al. 2013; Kalvass et al. 2013; Brouwer et al. 2013; Tweedie et al. 2013; Chu et al. 2013; Zamek-Gliszczynski, Chu, et al. 2018; Chu, Liao, et al. 2018; Chu, Galetin, et al. 2018; Yee et al. 2018; Schlessinger et al. 2018; Guo et al. 2018; Zamek-Gliszczynski, Taub, et al. 2018; Evers et al. 2018; Kenna et al. 2018; Lee et al. 2014; Brouwer et al. 2015). New research in transporters was also highlighted. Work derived from ITC in the past decade has impacted regulatory agencies worldwide on their guidance development. For example, five whitepapers were cited in FDA’s in vitro drug interaction guidance ("FDA Guidance for Industry: In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions" 2020).

Following the ITC Workshops and the first ITC whitepaper, the list of transporters has expanded over time as data on clinically important transporter-mediated DDIs accumulated. The FDA’s draft guidance, as released in 2012, included seven transporters for routine evaluations (i.e., efflux transporters, P-gp \(ABCB1\) and BCRP \(ABCG2\) (ATP-binding cassette (ABC) superfamily) and uptake transporters, OATP1B1 \(SLCO1B1\), OATP1B3 \(SLCO1B3\), OAT1 \(SLC22A6\), OAT3 \(SLC22A8\) and OCT2 \(SLC22A2\) (solute carrier (SLC) Superfamily)). These transporters were selected following careful considerations of the recommendations of the ITC (Giacomini et al. 2010; Huang and Woodcock 2010), the FDA Advisory Committee meetings ("FDA Advisory Committee for Pharmaceutical Science: Clinical Pharmacology Subcommittee
Meeting Slides, October 18-19, 2006" 2006; "FDA Advisory Committee for Pharmaceutical Science and Clinical Pharmacology Subcommittee Meeting Slides, March 17, 2010" 2010), and scientific exchanges with experts in other regulatory agencies, including European Medicines Agency (EMA) and Japan’s Pharmaceuticals and Medical Devices Agency (PMDA). With regard to tissue localization, important transporters are located in the intestine (P-gp and BCRP), liver (OATP1B1, OATP1B3, P-gp, and BCRP), and the kidneys (OAT1, OAT3, OCT2, P-gp, and BCRP). Following subsequent ITC workshops, based on new development in the transporter research, renal efflux transporters, i.e., multidrug and toxin extrusion protein MATE1 (SLC47A1) and MATE2-K (SLC47A2), were also recommended for routine evaluation as part of DDI assessments in drug development by regulatory agencies (Hillgren et al. 2013; Dong et al. 2016; "EMA Guideline on the Investigation of Drug Interactions" 2012; "Japanese MHLW (PMDA) Guidance on Drug Interaction for Drug Development and Appropriate Provision of Information" 2018; "FDA Guidance for Industry: In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions" 2020; "FDA Guidance for Industry: Clinical Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions" 2020).

A review paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

Comparison of FDA, EMA & PMDA regulatory guidance for in vitro drug-drug interaction (DDI) assessments" 2020; "EMA Guideline on the Investigation of Drug Interactions" 2012). In 2022, additional transporter whitepapers will be published following the 4th ITC Transporter Workshop held in April 2021. A Clinical Pharmacology and Therapeutics “Transporters” themed issue will be published in September of 2022 for which Dr. Giacomini serves as the co-editor (https://www.ascpt.org/Resources/ASCPT-News/View/ArticleId/27447/Call-for-Papers-Transporters).

In current drug development, information on metabolism, transport, and drug interactions is important for the benefit/risk assessment of drug products. The international harmonization efforts on DDI evaluation are being pursued at the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). An ICH M12 guideline on “Drug Interaction Studies” is being developed to provide a consistent approach in designing, conducting, and interpreting DDI studies during the development of a therapeutic product (https://www.ich.org/page/multidisciplinary-guidelines).

FDA Critical Path Initiatives

In addition to collaborating with the FDA to hold the first ITC Transporter Workshop in 2008 supported by the FDA Critical Path Initiative (Huang and Woodcock 2009; "FDA Critical Path Initiative" 2004), Dr. Giacomini further developed a research project to build a transporter database, where such a database was rare at the time and contained non-systematic information (Table 1).
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

UCSF-FDA TransPortal

More than 10 years ago, although a large body of data pertaining to drug transporters was available in the literature, there were few databases that informed drug developers, regulatory agencies, and academic scientists about transporters that are important in drug absorption, action, and disposition. Recognizing the importance of a database on transporters to disseminate information timely and widely, Dr. Giacomini collaborated with the FDA to build a transporter database, the UCSF-FDA TransPortal, in 2012 (Morrissey et al. 2012). It is a useful repository of information on transporters important in the drug discovery process supported by the U.S. FDA-led Critical Path Initiative ("FDA Critical Path Initiative" 2004). Information in the database includes transporter expression, localization, substrates, inhibitors, and drug-drug interactions.

Since 2012, the database has been updated periodically with additional support from the National Institutes of Environmental Health and Safety (NIEHS) and National Institute of Health (NIH) involving additional principal investigators (PIs). Currently, the database has a new name of “UCSF-FDA TransPortal + UCSD/UCD-NIEHS TICBase” (https://transportal.compbio.ucsf.edu/). The database continues to serve as a valuable online resource for research and drug development.

FDA’s Centers of Excellence in Regulatory Science and Innovation (CERSIs)
Dr. Giacomini has also collaborated with the U.S. FDA to advance regulatory science by applying findings from academic research to support both new drug and generic drug development and regulation (Table 1).

In 2011, the U.S. FDA established the Centers of Excellence in Regulatory Science and Innovation (CERSIs) to help achieve FDA’s mission to protect and promote public health ("Centers of Excellence in Regulatory Science and Innovation (CERSI) ---Program Evaluation: A Report to the FDA Science Board from the CERSI program Evaluation Subcommittee" 2016). The CERSI program has since grown from two to four Centers, which now includes six universities and/or academic medical centers ("Centers of Excellence in Regulatory Science and Innovation (CERSIs)"). The CERSI program is one of the best ways for biomedical community and the public to interact with the FDA (Weichold 2019; Altman et al. 2015). Dr. Giacomini has been an inspiring leader to promote and facilitate collaborations between academic institutions and regulatory agencies to improve the development and regulation of safe and effective therapies. Through Dr. Giacomini’s leadership as the co-principal investigator, the UCSF-Stanford CERSI was established in 2014 as the first CERSI located outside of the Washington-Baltimore metropolitan area, and actively works with FDA to advance regulatory science through innovative research, training, and scientific exchange (https://pharm.ucsf.edu/cersi/about).

The recent paper by Giacomini, et al. has highlighted some of the research projects and outcomes of the UCSF-Stanford CERSI program (Giacomini, Lin, and Altman 2019). The FDA Visiting Scientist Program under the UCSF-Stanford CERSI has brought over 140 FDA scientists to UCSF and Stanford University to engage with the scientific community on the West
Coast and meet with UCSF/Stanford faculty members to explore opportunities for collaborative research projects (https://pharm.ucsf.edu/cersi/vsp). These research projects address FDA’s specific needs and align with the Agency’s stated research priority areas ("FDA Center/Office Regulatory Science Research Priority Areas for CERSI Program"). To date, the UCSF-Stanford CERSI program has supported 65 collaborative research projects with FDA, which has resulted in at least 60 scientific publications and influenced numerous FDA guidance documents. UCSF-Stanford CERSI frequently collaborates with FDA Centers and Offices and has co-sponsored scientific workshops and events; these are usually open to the public and listed on the UCSF-Stanford CERSI website (www.ucsfstanfordcersi.org). The UCSF-Stanford CERSI program also conducts training programs in regulatory science for graduate students and postdoctoral fellows at both universities; these fellows are key to some of the collaborative research projects highlighted below.

Below are a few highlights of research projects that we collaborate with Dr. Giacomini and other PI collaborators as part of UCSF-Stanford CERSI. Her research through CERSI is not only innovative but also practical to address drug development challenges or regulatory questions.

Effect of Renal Impairment on Transporters

Chronic kidney disease (CKD) or renal impairment (RI) can affect the pharmacokinetics (PK) of many drugs, especially these drugs that are mainly cleared by the kidneys, leading to higher drug levels and potentially increased toxicities. Whereas reduced renal elimination as a result of reduced glomerular filtration rate (GFR) is expected in CKD, the effect of RI on active secretion of a drug is poorly understood. One of the characteristics of CKD is the accumulation...
of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in PK of drugs in patients with CKD. A collaborative project was funded by CERSI in which Dr. Giacomini served as the PI to study the effect of renal impairment on transporters. In this study, how uremic solutes may affect major renal transporters, OAT1 and OAT3, was studied. Through *in vitro* screening in Dr. Giacomini’s laboratory on 72 uremic solutes, 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively (Hsueh et al. 2016). The intact nephron hypothesis (INH) predicts that glomerular filtration and tubular secretion would decline in parallel. However, review of clinical studies for 18 drugs that are known substrates of OAT1/OAT3 showed that the active secretion of most OAT1/OAT3 drugs deteriorated faster than the renal filtration in CKD. These data suggest that uremic solutes contribute to the decline in renal drug clearance in patients with CKD through inhibition of OAT1 and OAT3 (Hsueh et al. 2016). We assumed a factor Fx for the decrease in CL_{sec} in addition to change related to kidney physiology (measured by R_{GFR}) for each CKD stage. Fx would be 1 if decrease in CL_{sec} is in parallel to decrease in GFR. It was found that the median Fx values decreased as renal function declines between CKD Stage 2 and CKD Stage 4. The median values of calculated Fx were 0.73 (0.31–1.33) and 0.41 (0.02–1.00) for CKD Stages 3 (moderate) and 4 (severe), respectively. The data suggested that reductions of glomerular filtration rate (GFR) and the secretory clearance (CL_{sec}, via tubular secretion) for these drugs were disproportional, particularly in severe CKD subjects. The reduction in CL_{sec} appeared to be greater than that of GFR in moderate and severe CKD.

The research project continued by developing physiologically based pharmacokinetic (PBPK) models for seven renally eliminated drugs that are known OAT1/OAT3 substrates: adefovir, avibactam, entecavir, famotidine, ganciclovir, oseltamivir carboxylate, and sitagliptin.
Drug models verified using PK data from healthy subjects (HS) were coupled with physiological models representing CKD that incorporated prior knowledge of effects of CKD on hepatic and renal elimination. For mild CKD, the use of INH, which assumes proportional reduction of GFR and CL_{sec}, appears sufficient. For moderate CKD, reduction in CL_{nr} should be considered besides the INH. In addition to these two adjustments (INH and reduced CL_{nr}), a further reduction in CLOATs is required for predicting PK in severe CKD. The models reasonably described clinically observed PK changes in subjects with CKD and can be useful in quantitatively predicting secretory clearance of OAT1/OAT3 substrate drugs in CKD patients and supporting dosing recommendations for these renally cleared drugs in CKD. The prediction factor and PBPK modeling were adopted by others to predict PK in renally impaired patients for OAT1/OAT3 substrates (Wang et al. 2021).

Similarly, Dr. Giacomini’s laboratory evaluated the effect of uremic solutes on the organic cation transporter, OCT2, which plays a key role in the renal secretion of many basic drugs (Cheung et al. 2017). Of 72 uremic solutes screened, 7 were identified as OCT2 inhibitors: creatinine, dimethylamine, malondialdehyde, trimethylamine, homocysteine, indoxyl-β-d-glucuronide, and glutathione disulfide. All, except creatinine, were novel OCT2 inhibitors, and three were considered potentially clinically relevant (creatinine, dimethylamine, and indoxyl-β-d-glucuronide). However, for six drugs (dexpramipexole, lamivudine, metformin, pilsicainide, sepantronium bromide, and tiotropium) that are known OCT2 substrates, both secretory clearance and glomerular filtration rate declined in parallel with the progression of CKD from Stage 2 to 4, suggesting that selective effects of uremic solutes on net tubular secretion of organic cations do not occur. This was as opposed to what was observed for drugs that are OAT substrates described above (Hsueh et al. 2016).
This research shed lights on understanding how renal impairment may impact drugs that are eliminated by major renal transporters (OATs and OCT2).

Currently, the project entered a new phase of research to determine whether drug administration reduces the clearance of waste solutes, resulting in their accumulation in the body and unintended side effects. The hypothesis is that the administration of drugs cleared by the kidney impairs the clearance of endogenous uremic solutes and thereby has the potential to increase plasma levels of these solutes and worsen uremic symptoms.

Ontogeny of Transporters

Medical countermeasures (MCMs) are FDA-regulated drugs, biologics, and devices that may be used in the event of a potential public health emergency from terrorism or emerging disease. The MCM initiative (MCMi) is an FDA-wide initiative to coordinate MCM development, preparedness, and response ("FDA Medical Countermeasures Initiative (MCMi)"). Medical countermeasures may require dosing pediatric patients, including neonates and infants, with antimicrobial agents; however, much is unknown about appropriate dosing in pediatrics. Many antimicrobial agents are substrates of transporters. PK differences between children and adults could be attributed to differences in the expression and activity of transporters between children and adults but little is known about drug transporter activity in children. It was shown that developmental patterns in humans for individual transporters are different (Brouwer et al. 2015). Understanding the ontogeny of various transporters can help support the dosing of antimicrobial agents, such as oseltamivir, in children.

In collaboration with the FDA, Dr. Giacomini first characterized the developmental changes in the expression levels of renal transporters by determining transporter mRNA levels of
11 renal transporters and protein abundance of 9 transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring (Cheung, van Groen, Spaans, et al. 2019). Human postmortem frozen renal cortical tissues (preterm newborns to adults) were used for the study. This was the first study to comprehensively determine the ontogeny of human renal transporters via mRNA expression analysis and quantitative proteomics in tissues representing a large span of ages. The collaborative study revealed that the expression of most of the transporters characterized in the study increased with age during the earliest developmental periods (<2 years old), and maturation pattern was transporter-dependent. Namely, P-gp, URAT1, OAT1, OAT3, and OCT2 protein abundance levels were significantly lower in term newborn and infants than in the older age groups, while no difference in protein abundance levels was found among age groups for BCRP, MATE1, MATE2-K, and GLUT2. The finding that renal drug transporters exhibited different rates and patterns of maturation, suggesting that renal handling of substrates may change with age (Cheung, van Groen, Spaans, et al. 2019).

The development of physiologically based pharmacokinetic models to optimally predict doses of antimicrobials to use in pediatric patients is continuing with data obtained from the transporter ontogeny study. This collaborative work has greatly improved the understanding of the interplay between developmental physiology and drug disposition. Such efforts will help to address the remaining knowledge gaps to enhance the application of PBPK modeling in drug development for children (Cheung, van Groen, Burckart, et al. 2019).

The project has recently been expanded to collect data on the developmental changes in the protein expression levels of drug transporters in the blood brain barrier to provide information for predicting drug dosing in children, especially drugs with targets in the brain (ongoing work).
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

All of these projects are critical for optimizing clinical study design and the success of the development of drugs that are used as medical countermeasures for children, which are inherently challenging because of ethical and logistical issues. The results generated could help build the FDA’s preparedness for rapid response to health emergencies as well as adopt this data into medical use to help guide dosing for the pediatric population.

Biomarkers for Breast Cancer Resistance Protein (BCRP)

Endogenous biomarkers for transporters may be used as probes to study transporter functions in clinical studies. The knowledge on transporter biomarkers is emerging (Chu, Liao, et al. 2018). Biomarkers such as coproporphyrin I (CP I) and CP III for OATP1B1/1B3, creatinine, N1-methylnicotinamide (NMN), or N(1)-methyladenosine (m(1) A) for OCT2 and MATEs were identified and being evaluated for DDI assessment in drug development (Mochizuki et al. 2021; Chu, Liao, et al. 2018; Muller et al. 2018; Lai et al. 2016; Miyake et al. 2019; Miyake et al. 2021). Biomarkers for assessing the inhibition of P-gp or BCRP have not been identified, likely due to the limited involvement of intestinal P-gp and BCRP in the oral absorption of endogenous compounds. In addition, it is difficult to dissect the relative contributions of intestinal, hepatic, and renal P-gp and BCRP to altered systemic exposure of endogenous biomarkers (Chu, Liao, et al. 2018).

BCRP is an important membrane transporter that plays an important role in DDIs (Chen et al. 2020; Lee et al. 2015). During drug development, clinical studies to evaluate potential transporter-mediated DDIs are often recommended. Usually, these clinical studies are triggered based on in vitro inhibition studies (Giacomini 2017; "FDA Guidance for Industry: In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions"
Generally speaking, in vitro cellular studies are reasonable predictors for clinical DDIs, however they can still result in false-positive and false-negative predictions. Biomarkers could supplement in vitro cellular studies, reducing false positive and false negative predictions, as well as the resources needed for clinical studies. There is currently no validated biomarker for BCRP. Dr. Giacomini proposed research to identity BCRP biomarkers using metabolomic data and to validate biomarkers in a clinical study. She serves as the PI for an ongoing project titled “Identification and Validation of Biomarkers for Breast Cancer Resistance Protein (BCRP)” supported by CERSI. Dr. Giacomini’s group identified metabolites discovered from genome-wide association studies as novel substrates of BCRP (ongoing work). The current CERSI project is aimed to validate these metabolic biomarkers for BCRP both in vitro in cellular assays (e.g., inside-out membrane vesicles) and in vivo, through a focused clinical study in healthy subjects (ClinicalTrials.gov, NCT04542382). If a biomarker(s) can be validated by this study, it will meet an unmet need for improving the BCRP-related DDI evaluation.

The COVID-19 pandemic has disrupted the conduct of the planned clinical study. Dr. Giacomini is driven by science, wanting to contribute her transporter biology knowledge to COVID-19 drugs. Her laboratory determined the potencies of the known drugs used during COVID-19 pandemic to assess the potential of these drugs to inhibit eleven important drug transporters (Yee et al. 2021). They discovered that one of the drugs, sildenafil, for the treatment of associated pulmonary hypertension in patients with COVID-19, met the cutoff criteria based on in vitro inhibition data to inhibit BCRP in vivo. Her team then used real-world data from electronic health records (EHR) and showed that patients on sildenafil significantly showed
higher levels of uric acid, a well-known substrate of BCRP and readily reported in EHR (Yee et al. 2021).

Effect of Excipients on Transporters

In addition to transporter research in regulatory science to support new drug development for a better dosing recommendation in specific patient populations (e.g., renal impairment patients or pediatrics), Dr. Giacomini also collaborates with the FDA to aid the development of generic drugs to enhance competition and drug access. Transporters in the intestine play an important role in drug absorption and thus affect drug bioavailability. Her transporter research on how excipients interact with intestinal transporters can help expand biopharmaceutics classification system (BCS)-based waivers and understand what factors may impact bioequivalence (BE) of different formulations.

Oral drug products contain both the active ingredient and excipients. Excipients or “inactive ingredients”, which are often considered inert, are added to drug products to increase their stability and cohesiveness of the dosage form. Excipients can serve multiple purposes. For generic drug approval, the generic drug must be shown to be bioequivalent to the innovator’s brand name product (or reference listed drug). Oral generic drug products generally can contain different excipients or different quantities of excipients from the innovator product. The formulation design considering excipient effect is very important for generic drug development to ensure BE and therapeutic equivalence of a generic product and its brand name counterpart.

Several CERSI research projects were conducted by Dr. Giacomini’s laboratory to understand how excipients may affect the efficacy and safety of the drug product, including the inhibition of intestinal transporters. They determined whether excipients could inhibit intestinal
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

uptake (OATP2B1) (Zou, Spanogiannopoulos, et al. 2020) or efflux (P-gp and BCRP) transporters (Bajaj et al. 2021; Zou, Pottel, et al. 2020) and the relevant potencies of inhibition through in vitro screening. This research aimed to understand which excipients may potentially interfere with intestinal drug transporters and which may not, an area that has not been studied before. Through in vitro inhibition studies, it was found that some excipients can inhibit these transporters at clinically relevant concentrations, indicating that certain excipients may impact oral drug absorption via intestinal transporters (Bajaj et al. 2021; Zou, Pottel, et al. 2020; Zou, Spanogiannopoulos, et al. 2020). Taking OATP2B1, a key intestinal influx transporter, as an example, out of 136 unique oral excipients screened for inhibition of OATP2B1, 24 potent OATP2B1 inhibitors were identified. These inhibitors were characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. Among OATP2B1 inhibitors, several of them were dyes, including 8 azo (R-N=N-R’) dyes (Zou, Spanogiannopoulos, et al. 2020; "FY 2020 GDUFA Science and Research Report: Oral Absorption Models and Bioequivalence" 2021). They further conducted PK studies in mice and confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, potentially through inhibition of OATP2B1 in vivo (Zou, Spanogiannopoulos, et al. 2020). Another interesting finding from the study was that gut microbiomes can metabolize these azo dyes to metabolites that are less potent to OATP2B1, thus reversing the inhibition effect (Zou, Spanogiannopoulos, et al. 2020).

The BCS-based biowaiver approach is intended to reduce the need for in vivo BE studies ("FDA Guidance for Industry: M9 Biopharmaceutics Classification System-Based Biowaivers (2021)" 2021). It can provide a surrogate for in vivo BE if an assumption of equivalence in in vivo performance can be justified by satisfactory in vitro data (e.g., solubility intestinal...
permeability, dissolution). The scientific data collected from this research by understanding what excipients may impact drug absorption by interacting with transporters would help inform guidances on recommending a BCS-based biowaiver approach for developing generic drugs. This work will help provide a solid scientific foundation for expansion of BCS Class III (high solubility, low permeability) waivers for generic drugs beyond products that are formulated to be Q1/Q2 to the reference listed drug (RLD) (i.e., qualitatively (Q1) the same and quantitatively (Q2) similar to the corresponding RLD product) ("FY 2018 GDUFA Science and Research Report: Oral Absorption Models and Bioequivalence" 2019).

Additionally, through CERSI research, Dr. Brian Shoichet, a co-PI in UCSF, created an open access online excipients database on approved excipient, a CERSI Excipient Browser (http://excipients.ucsf.bkslab.org/), with over 3,100 excipients, 639 of which have specific molecular structure (curated) and using chemoinformatic in silico methods to screen excipients against over 20,000 possible molecular targets (Irwin et al. 2017; Pottel et al. 2020). This Excipient Browser provides chemical information on molecular excipients along with comprehensive information detailing their uses in medical products. There was an enormous need for such a resource and the database is highly used by formulation scientists. Through computational and in vitro testing, they identified that some excipients may bind to biological targets in vitro, although majority remain “inert” (Pottel et al. 2020). The in vivo implication of this finding remains to be understood.

The Effect of Excipients on the Oral Absorption of Fexofenadine in Humans

Following in vitro studies to screen possible excipients that may inhibit the intestinal influx transporter OATP2B1, a clinical study is planned to understand if excipients may interfere
A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

with drug absorption after oral administration via interactions with OATP2B1, thereby, reducing drug levels in human body ("FY 2021 GDUFA Science and Research Report: Oral Absorption Models and Bioequivalence" 2022). Fexofenadine, a BCS Class III drug and an OATP2B1 substrate, is being used as a model drug in this proof-of-concept study (ClinicalTrials.gov, NCT04534153). Sodium lauryl sulfate (SLS), an excipient found to be a clinically relevant OATP2B1 inhibitor (inhibition constant, $K_i = 1.98 \mu$M), will be studied at two different levels. The results will identify what range of SLS may be used without likely inhibition of OATP2B1-mediated absorption of BCS Class III drugs. The research outcomes will shed a light on formulation design to optimally formulate drugs without including excipients that may interfere with drug absorption.

Summary

In summary, Dr. Giacomini has been at the cutting edge of science pertaining to drug transport, drug disposition, and regulatory science, leading to new era of drug disposition and membrane transporter biology and function and translational sciences. Her research has and will continue to bring enormous impact on the safe and effective use of drugs, and in guiding drug development.

Disclaimer

The article reflects the views of the authors and should not be construed to represent the views or policies of the FDA.
Acknowledgements

We would like to thank all the students, post-doc fellows from Dr. Giacomini’s laboratory, and her collaborators who have collaborated with the FDA on these research projects described in this review. We also thank Drs. Sook Wah Yee and Lawrence Lin for their critical review and comments on this paper.

Author Contribution:

Wrote or contributed to the writing of the manuscript: Zhang, Liu, Huang and Lionberger.
References

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on "New Era of Transporter Science"

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

Shirley, M. 2022a. 'Correction to: Maralixibat: First Approval', Drugs, 82: 77.
— — —. 2022b. 'Maralixibat: First Approval', Drugs, 82: 71-76.

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

A Review Paper for the Drug Metabolism and Disposition (DMD) Special Section Clusters on “New Era of Transporter Science”

Footnotes

This work received no external funding.

Conflict of Interest:

There is no conflict of interest identified.

Corresponding Author:

Lei Zhang, Ph.D., 10903 New Hampshire Ave., Silver Spring, MD 20993, USA; Tel. 301-796-1635; Email: Leik.Zhang@fda.hhs.gov
Table 1. Regulatory Science Research on Transporters: Collaboration Between Dr. Giacomini and U.S. FDA.

<table>
<thead>
<tr>
<th>Research</th>
<th>Objectives</th>
<th>Status</th>
<th>Publications and Online Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSF-FDA TransPortal</td>
<td>To build a publicly accessible database on transporters to disseminate information on transporters (including transporter expression, localization, substrates, inhibitors, and drug-drug interactions) timely and widely</td>
<td>Completed</td>
<td>(Morrissey et al. 2012) https://transportal.compbio.ucsf.edu/</td>
</tr>
<tr>
<td>Effect of Renal Impairment on Transporters</td>
<td>Phase I: To understand the effect of uremic solutes on renal transporter activity (OATs and OCT2) and how renal impairment may affect renal transporter activity to help PBPK modeling for prediction Phase II: To determine whether drug administration reduces the clearance of waste solutes, resulting in their</td>
<td>Phase I: Completed</td>
<td>(Hsueh et al. 2016; Hsueh et al. 2018; Cheung et al. 2017)</td>
</tr>
<tr>
<td>Project</td>
<td>Description</td>
<td>Status</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Ontogeny of Transporters</td>
<td>To understand the ontogeny of various transporters by studying expression of transporters in children and adults from kidney and brain tissues and use PBPK modeling to support the dosing of antimicrobial agents in children</td>
<td>On-going</td>
<td>(Cheung, van Groen, Spaans, et al. 2019; Cheung, van Groen, Burckart, et al. 2019)</td>
</tr>
<tr>
<td>Identification and Validation of Biomarkers for Breast Cancer Resistance Protein (BCRP)</td>
<td>To validate metabolic biomarkers for BCRP both in vitro in cellular assays and in vivo, through a clinical study in healthy subjects</td>
<td>On-going</td>
<td>https://clinicaltrials.gov/ct2/show/NCT04542382</td>
</tr>
<tr>
<td>Excipient Database</td>
<td>To build a database on oral excipients used in approved drug products</td>
<td>Completed</td>
<td>(Irwin et al. 2017; Pottel et al. 2020)</td>
</tr>
<tr>
<td>In Vitro Inhibition of Excipients on Transporters</td>
<td>To study vitro inhibition of excipients on intestinal transporters (OATP2B1, P-gp)</td>
<td>Completed</td>
<td>(Bajaj et al. 2021; Zou, Pottel, et al. 2020; Zou, Spanogiannopoulos, et al. 2020)</td>
</tr>
<tr>
<td>The Effect of Excipients on the Oral Absorption of Fexofenadine in Humans</td>
<td>To assess the effect of one excipient on the bioavailability of a model drug</td>
<td>On-going</td>
<td>https://clinicaltrials.gov/ct2/show/NCT04534153</td>
</tr>
</tbody>
</table>