Antibiotics-induced disruption of gut microbiota increases systemic exposure of clopidogrel active metabolite in type 2 diabetic rats

Xue Chen\(^a\), Yingrui Liu\(^b\), Hongwei Yao\(^a\), Wenfang Song\(^a\), Yu Song\(^d\), Jingkai Gu\(^b\), Yingjie Guo\(^a,c\)*

\(^a\)School of Life Sciences, Jilin University, Changchun, China

\(^b\)Research Center for Drug Metabolism, School of Life Science, Jilin University, Changchun, China.

\(^c\)National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China.

\(^d\)Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China,
Running title: Antibiotics increase Clop-AM generation in T2DM rats

*Corresponding author

*Yingjie Guo, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. Tel: +86-431-85155316; Fax: +86-431-85155316; E-mail: guoyingjie@jlu.edu.cn

The number of text pages: 35
The number of tables: 2
The number of figures: 7
The number of references: 40
The number of words in the Abstract: 230
The number of words in the Introduction: 511
The number of words in the Discussion: 1471

ABBREVIATIONS: ABX, Antibiotic mixture; ACS, acute coronary syndrome; AMP, ampicillin; Clop, clopidogrel; Clop-acid, clopidogrel acid; Clop-AM, clopidogrel active metabolite; KF, potassium fluoride; MTZ, metronidazole; NEO, neomycin; PCI, percutaneous coronary interventions; PNPA, para-nitrophenylacetate; STZ, streptozotocin; VAN, vancomycin.
ABSTRACT

Gut microbiota play an important role in the pathophysiology of type 2 diabetic mellitus (T2DM) and biodisposition of drugs. Our previous study demonstrated that T2DM rats had the decreased plasma exposure of clopidogrel active metabolite (Clop-AM) due to upregulation of P-glycoprotein (P-gp). However, whether the change to clopidogrel (Clop) disposition under T2DM condition is associated with gut microbiota needs to be elucidated. In the study, we used an antibiotic cocktail consisting of ampicillin, vancomycin, metronidazole, and neomycin to disrupt gut microbiota and observed their influence on pharmacokinetic profiles of Clop-AM. Antibiotic administration markedly alleviated T2DM rats’ phenotype including hyperglycemia, insulin resistance, oxidative stress, inflammation, hyperlipidemia, and liver dysfunction. Meanwhile, treatment with antibiotics significantly reversed the reduced systemic exposure of Clop-AM in T2DM rats relative to control rats, which was associated with the decreased intestinal P-gp level that might promote Clop absorption, resulting in more Clop transformation to Clop-AM. Fecal microbiome analysis exhibited a serious disruption of gut microbiota after antibiotic treatment with the sharply reduced microbial load and the altered microbial composition. Interestingly, an in vitro study showed that antibiotics had no influence on P-gp mRNA level in SW480 cells, suggesting the microbiome disruption, not the direct role of antibiotics on P-gp expression, contributes to the altered P-gp level and Clop disposition in T2DM rats. The
findings add new insights into the potential impact of gut microbiota on Clop biodisposition.

Keywords: Antibiotics, Gut microbiota, Clopidogrel, Type 2 diabetes mellitus, Active metabolite

Significance statement

Antibiotics increase systemic exposure of Clop-AM in T2DM rats, which is associated with the downregulation of P-gp level. Antibiotics-induced disruption of gut microbiota, not direct effect of antibiotics on P-gp and CYPs expression, contributes to the altered Clop disposition. Antibiotics also alleviate T2DM phenotype including hyperglycemia, hyperlipidemia, insulin resistance, liver dysfunction and inflammation.
Introduction

Clopidogrel (Clop), the first-line antiplatelet drug combined with aspirin has become a gold standard for preventing atherothrombosis in patients with acute coronary syndrome (ACS) or undergoing percutaneous coronary interventions (PCI) (Nawarskas and Montoya, 2018). However, variable inter-individual response to Clop represents a significant clinical limitation. Accumulated evidence indicates that ACS patients with diabetes mellitus have a high risk of Clop resistance, referred to have a poor or no response to Clop, which causes the increased incidence of recurrence of cardiovascular events and mortality compared with non-diabetic patients (Angiolillo et al., 2005; Serebruany et al., 2008; Shuldiner et al., 2009; Samos et al., 2016).

Clop is an oral pro-drug that requires an intestinal absorption and complex liver metabolism process to generate its active metabolite, Clop-AM (Savi et al., 2000). Clop is known as a substrate of P-gp, which affects the oral absorption and bioavailability of Clop (Taubert et al., 2006). Once delivered to the liver, 85% of Clop is hydrolyzed by carboxylesterase (CES)1 to clopidogrel acid (Clop-acid), an inactive metabolite, while the remaining is two-step oxidized to Clop-AM by cytochrome P450 (CYP) 2C19, 1A2, 2B6, 2C9 and 3A4 (Kazui et al., 2010). Recent two clinical studies demonstrates that Clop resistance in diabetic patients is mainly attributed to the decreased Clop-AM generation (Erlinge et al., 2008; Angiolillo et al., 2014). Similarly, our previous study found that T2DM rats had lower systemic exposure of Clop-AM than control rats, due
to P-gp upregulation-caused reduction of Clop absorption (Yao et al., 2020). Further, the underlying mechanism needs to be understood.

Growing evidence suggests that gut microbiota are closely associated with the onset and development of T2DM (Blandino et al., 2016). Diabetic and non-diabetic persons had obvious differences in the amount and composition of gut microbiota (Larsen et al., 2010). Patients with T2DM exhibited gut microbial dysbiosis with the decreased butyrate-producing bacteria and the increased opportunistic pathogens (Qin et al., 2012), which can cause or aggravate T2DM phenotype. In addition, gut microbiota play an important role in pharmacokinetic process of drugs by regulating the expression of drug-metabolizing enzymes and transporters, consequently affecting individual response to drug treatment (Collins and Patterson, 2020). Based on the double effects of gut microbiota on T2DM development and drug disposition, it is worthwhile to explore whether gut microbiota contribute to the reduced Clop-AM plasma exposure in T2DM rats.

It is widely demonstrated that antibiotics reduce the total bacterial amount, as well as cause gut microbiota disturbance (Mu and Zhu, 2019). Antibiotic treatment is an effective method to study microbiota-host interaction in animal models. Due to the broad-spectrum antibacterial characteristics and a poor intestinal absorption after oral administration, an antibiotic cocktail consisting of ampicillin, neomycin, metronidazole, and vancomycin has been demonstrated to be powerful at disrupting or depleting gut microbiota
(Rodrigues et al., 2017). Here, to explore the association between gut microbiota and Clop disposition, we selected the same antibiotic cocktail to disrupt gut microbiota, and observed their role in pharmacokinetic profiles of Clop and its metabolites, Clop biotransformation in liver microsomes, and Clop-metabolizing enzymes and transporter expression in T2DM rats.

Materials and methods

Chemicals and reagents

Clopidogrel, Clop-acid, and the stable 3’-methoxyacetophenone derivative of Clop-AM were obtained from the Beijing Institute of Pharmacology (Beijing, China). CYP probe substrate and its metabolic product: CYP1A2, phenacetin and acetaminophen; CYP2B, bupropion and hydroxybupropion; CYP2C9-related protein, tolbutamide and 4-hydroxytolbutamide; CYP2C19-related protein, (S)-mephenytoin and 4-hydroxymephenytoin; CYP3A, midazolam and α-hydroxymidazolam were purchased from Canspec Scientific&Technology Co. Ltd. G (Shanghai, China). Ampicillin (AMP) was purchased from Suzhou Meilun Biotechnology Co., Ltd (Suzhou, China). Neomycin (NEO), metronidazole (MTZ), and vancomycin (VAN) were purchased from Beijing Coolaber Biotechnology Co., Ltd (Beijing, China). Antibodies to rat P-gp, pregnane X receptor (PXR), β-actin, and Histone H3 were purchased from Abcam (Cambridge, MA, USA).
Animals and treatment

Male Sprague-Dawley rats at 8 weeks of age were purchased from Liaoning Changsheng Biotechnology (Benxi, China). All rats were housed at 20-25°C and 50-60% relative humidity with a light to dark cycle every 12-hour. T2DM rats were induced by the combination of high-fat diet feeding and low-dose streptozotocin injection according to the method described previously (Reed et al., 2000). Control and T2DM rats were orally administered with either vehicle or an antibiotic cocktail consisting of ampicillin (100 mg/kg), neomycin (100 mg/kg), metronidazole (100 mg/kg), and vancomycin (50 mg/kg) for 5 consecutive days. After the last administration, some rats were fasted overnight and orally gavaged with Clop at a dose of 30 mg/kg for pharmacokinetic study, the others were sacrificed, and the serum, liver, small intestine or feces were collected for further analysis. All animal experiments were approved by the Ethics Committee of Jilin University, and were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals of Jilin University.

Cell culture

LO2 (human normal hepatocyte) was purchased from Procell Life Science and Technology Co., Ltd (Wuhan, China). SW480 (human colon cancer cell line) was purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). The two cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand Island, NY, USA) supplemented with
10% fetal bovine serum, 100 units/mL penicillin and 100 μg/mL streptomycin at 37°C in a humidified atmosphere containing 5% CO₂/95% air.

Bacterial culture

Rat feces were collected and suspended in thioglycolic acid medium. The suspension was plated on a non-selective LB agar plate (EMD Millipore) and cultured at 37°C for 24 h to assess the amount of bacterial load (Lowe et al., 2018).

Biochemical analysis

Fasting blood glucose levels were measured from the tail vein using blood glucose meter (Sinocare, Changsha, China). The levels of alanine aminotransferase (ALT) or aspartate aminotransferase (AST), triglycerides, and cholesterol in serum, liver or small intestine were analyzed by commercial assay kits (Jiancheng Bioengineering Institute, Nanjing, China). The serum insulin level was analyzed by a Rat Insulin ELISA Kit (North Institute of Biotech Co., Ltd, China). The levels of malondialdehyde (MDA) and glutathione (GSH) in liver and small intestine were analyzed by a commercial assay kit (Solarbio, Beijing, China). The lipopolysaccharide (LPS) level in serum, liver and small intestine was analyzed by a Rat LPS Elisa Kit (Shanghai FANKEL Industrial Co., Ltd, China). All results in tissues were normalized by the total protein concentration in each sample.

Quantitative reverse transcription-PCR (qRT-PCR) analysis

Total RNA was extracted from tissues or cell lines using a Total RNA Kit
(OMEGA, Japan), and converted to complementary DNA (cDNA) using the PrimeScriptTM reverse transcription reagent kit (TaKaRa Biotech, Japan), according to the manufacturer’s instructions. Quantitative real-time PCR was carried out with a LightCycler®480 System (Roche, Switzerland) using cDNA template, SYBR green PCR Master Mix (TAKARA, Beijing, China), and gene-specific primers. The sequences of primers for rat CYP1A2, CYP2B1/2, CYP2C11, CYP2C22, CYP3A2, Ces1, P-gp, PXR and GAPDH were described previously (Yao et al., 2019). Forward and reverse primers for rat IL-1β, TNF-α, IL-6 or human CES1, CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP3A4, P-gp, PXR and GAPDH were listed in Supplementary Table 1. The relative mRNA expression was calculated using the comparative Ct (ΔΔCt) method, with GAPDH as an internal control for normalization.

CES or CYPs activity assays in liver microsomes

The enzymatic activities of CES and all studied CYPs in rat liver microsomes were measured as described previously (Yao et al., 2019).

Clop metabolism in liver microsomes

Clop biotransformation to Clop-AM and Clop-acid in rat liver microsomes in the absence or presence of potassium fluoride (KF) was investigated as described previously (Yao et al., 2020). The levels of Clop-AM and Clop-acid were analyzed by LC-MS/MS.

Western blot analysis

The protein levels of membrane P-gp and nuclear PXR in the whole small
intestine were evaluated as described previously (Yao et al., 2020).

Pharmacokinetic (PK) study

The PK study of Clop, Clop-AM or Clop-acid was performed in T2DM rats and control rats with or without antibiotic treatment. As described previously (Yao et al., 2019), rats were fasted overnight, and then serial blood samples were collected at 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 2.5, 3.5, 6, 10 and 24 hours after an oral dose of Clop 30 mg/kg. Plasma was treated with diazepam and 3'-methoxyphenacyl bromide for determination of Clop-AM, or with acetonitrile and diazepam for determination of Clop and Clop-acid by LC-MS/MS method. Noncompartmental pharmacokinetic parameters were estimated using software DAS3.0 (Drug and Statistics Software, Mathematical Pharmacology Professional Committee of China, Shanghai, China).

LC-MS/MS analysis

The levels of plasma Clop, Clop-AM and Clop-acid were analyzed by LC-MS/MS, as described previously (Yao et al., 2019). Also, the five metabolites of CYPs probe drugs were simultaneously determined by LC-MS/MS, as described previously (Yao et al., 2019).

16S rRNA sequence analysis.

DNA was extracted from fecal samples using a stool DNA isolation Kit (TianGen, China). The V3-V4 variable regions of the bacterial 16S rRNA genes was amplified with universal primers 343F and 789R (343F, 5'-TACGGRAGGCAGCAG-3'; 789R, 5'-AGGGTATVTAATCCT-3'). After
purified with AMPure XP beads (Agencourt), amplicons were pooled for sequencing on an Illumina MiSeq platform at Shanghai OE Biotech. Co., Ltd. The normalized operational taxonomic unit (OTU) tables were used for diversity and statistical analyses through multiple-step process of the raw sequencing data. The microbial alpha-diversity or beta-diversity was calculated with Chao 1 and Shannon indexes or weighted UniFrac, respectively. The microbial distances were used for principal coordinate analysis (PCoA). The relative abundance of microbiota at the phylum, family and genus levels was visualized by the taxonomic summary bar plots.

Statistical analysis

Data are displayed as mean±standard deviations (SD). Statistical analysis between two groups was done using the Student’s t test. Comparisons with *P* value of less than 0.05 were considered statistically significant. All analyses were performed using SPSS 20.0 (IBM SPSS, Chicago, IL, USA).

Results

Antibiotic effects on biochemical parameters in T2DM rats

T2DM rats were established by a combination of high fat diet and low dose of streptozotocin treatment, as described previously (Yao et al., 2020). The biochemical parameters in serum, liver and small intestine were monitored in T2DM and control rats treated with an antibiotic cocktail or not. As expected, T2DM rats exhibited a significant increase in the level of serum fasting blood glucose, insulin, triglycerides, cholesterol, ALT, AST or LPS as compared to
control rats (Fig. 1a–g). Interestingly, treatment with antibiotics significantly restored these changes in T2DM rats. Likewise, the increased triglycerides, cholesterol, MDA, IL-1β, IL-6, TNF-α and LPS levels or the decreased GSH level in both liver and small intestine of T2DM rats were also significantly attenuated after 5 days of antibiotic exposure (Fig.1h–w). These data confirm that antibiotic treatment markedly alleviates T2DM phenotype such as hyperglycemia, insulin resistance, oxidative stress, inflammation, hyperlipidemia, and liver dysfunction.

Antibiotic effects on pharmacokinetics of Clop and its metabolites in T2DM rats

Next, antibiotic effects on PK profiles of Clop and its two metabolites were evaluated in T2DM rats (Fig. 2). The PK parameters were listed in Table 1. T2DM rats had lower plasma exposure of Clop, Clop-AM and Clop-acid than control rats, consistent with our previous report (Yao et al., 2020). Surprisingly, after continuous treatment with antibiotics, the AUC and Cmax of Clop, Clop-AM or Clop-acid were significantly elevated in T2DM rats, with AUC0-t increased by 9-, 3.1- or 4.7-fold and Cmax increased by 4-, 7.8- or 14.4 - fold, respectively.

Antibiotic effects on hepatic CES1 and CYPs levels in T2DM rats

The generation of Clop-AM and Clop-acid is dependent on the relative expression of CYPs and CES1. To investigate the altered systemic exposure of Clop metabolites in T2DM rats pre and pro antibiotic treatment, the mRNA levels of 6 rat-specific Ces1e and CYPs genes were measured in the liver. As
shown in Fig. 3a-f, T2DM rats exhibited the decreased mRNA levels of Ces1e, CYP2B1/2, CYP2C22, and CYP2C11 as compared to control rats, while antibiotic treatment significantly alleviated these changes. In contrast, the mRNA levels of CYP1A2 and CYP3A2 were significantly increased in T2DM rats, but with no obvious change after antibiotic treatment.

Similar trends were also found in enzymatic assay of liver microsomes (Fig.3g-I). T2DM rats had higher activities of CES1, CYP2B, CYP2C9- and CYP2C19-related protein and lower activities of CYP1A2 or CYP3A than control rats. Antibiotic treatment markedly blunted the alteration of CES1, CYP2B, CYP2C9- or CYP2C19-related protein activity ($P < 0.05$), but had no apparent impact on CYP1A2 or CYP3A activity.

Clop metabolism in liver microsomes

Then Clop metabolism in rat liver microsomes was evaluated to verify the impact of CES1 and CYPs on systemic exposure of Clop-acid and Clop-AM. Clop-AM generation was significantly enhanced in T2DM rats microsomes incubated with Clop in the absence and presence of KF, an esterase inhibitor, while the increased Clop-AM level was slightly attenuated in antibiotics-treated T2DM rats microsomes (Fig.4a), in contrast to *in vivo* results. It suggests that Clop hepatic metabolism might not be responsible for the elevated plasma exposure of Clop-AM in T2DM rats after antibiotic treatment.

As for Clop-acid, there was significantly lowered Clop-acid generation in liver microsomes of T2DM rats than in that of control rats, while antibiotic
treatment reversed the change, especially in the presence of KF, consistent with in vivo results. (Fig.4b). It may be explained for antibiotic treatment attenuated the downregulated CES1 levels in T2DM rats. Meanwhile, it suggests that CES1-based Clop hydrolyzation is attributed, at least partly to the change in Clop-acid exposure in T2DM rats pre and pro antibiotic treatment.

Antibiotic effects on intestinal P-gp and PXR levels in T2DM rats

To explore whether intestinal absorption contributes to the alteration of systemic exposure of Clop and its metabolites in antibiotics-treated T2DM rats, the mRNA and protein levels of P-gp and its transcription factor, PXR in small intestine were measured (Fig.5). T2DM significantly elevated the mRNA and protein levels of both P-gp and PXR in small intestine, while antibiotics treatment reversed these changes. According to our previous studies demonstrating that P-gp is the key factor affecting the oral absorption and bioavailability of Clop (Yao et al., 2020), it is considered that antibiotics-caused reduction of P-gp level promotes Clop absorption, causing more Clop biotransformation to Clop-AM.

Antibiotic effects on the expression of CES1, CYPs, P-gp or PXR in cell lines

Although it is widely demonstrated that the selected four antibiotics have a poor or no absorption after oral administration (Reikvam et al., 2011; Zarrinpar et al., 2018), the direct role of antibiotic on Clop-metabolizing
enzyme and transporter levels cannot be ignored. Next, we explored the impact of antibiotics on the expression of CES1, CYPs, P-gp or PXR in cell lines. The four antibiotics each at concentration of less than 100 μM or their combination (Antibiotic mixture, ABX) at 1:8 or 1:16 dilution had no significant effects on cell viabilities in both LO2 and SW480 cells using MTT assay (Supplementary Fig.1). However, there was a significant decrease in the mRNA level of CYP1A2, CYP2B6 or CYP2C19 after treatment with four antibiotics either alone or their combination at different concentrations (Fig.6b, c, e). Also, the CYP2C9 level was reduced by MTZ at both concentrations or ABX at 1:8 dilution (Fig.6d). In contrast, the CYP3A4 expression was enhanced by NEO (100 μM), VAN (25 μM) and ABX at 1:16 dilution (Fig.6f). Of interest, antibiotic mixture at both dilutions did not affect the mRNA level of CES1, as well as P-gp and PXR, although the P-gp level was increased by VAN at both concentrations and the PXR level was decreased by MTZ at 100 μM (Fig.6 a, g, h).

Then effects of antibiotics on mRNA, protein or enzymatic level of Clop-metabolizing enzymes and transporter were compared between in vivo and in vitro, as shown in Table 2. There were different patterns of change in the mRNA and protein levels of P-gp and PXR between T2DM rats and SW480 cells after antibiotic treatment. Also, inconsistent change was observed in the mRNA or enzymatic levels of Clop-metabolizing enzymes between T2DM rats and LO2 cells. It suggests that antibiotics-caused change of P-gp and CYPs
levels in vivo might not be the results of the direct role of antibiotics on P-gp and CYPs expression.

Antibiotic effects on community structure and diversity of gut microbiota

To investigate the influence of the antibiotic cocktail on gut microbiota, feces samples were collected and cultured in aerobic conditions after the last administration. There was no apparent difference in the number of fecal aerobic bacteria population in both rats, whereas antibiotic treatment achieved a decrease of 99.1% or 96.5% in T2DM rats or control rats, respectively (Fig. 7a), indicating a serious disruption or depletion of gut microbiota.

Then 16S rRNA sequencing analysis was performed to determine the bacterial composition in fecal sample of different groups. As indicated by Chao1 and Shannon indices, T2DM rats had lower richness and diversity of gut microbiota than control rats, while antibiotic treatment caused their significant decrease in both rats (Fig. 7b-c). The principal component analysis (PCA) plot showed the clear separation of microbiota composition among T2DM rats, control rats or antibiotics-treated rats (Fig.7d).

Further, the structure and composition of gut microbiota at phylum, family or genus level were shown in Fig.7e-g. The microbial structure in T2DM rats was obviously different from that in control rats. T2DM rats showed considerably elevated proportions of Bacteroidetes or Proteobacteria and reduced proportions of Firmicutes at phylum level compared to control rats (Fig.7e). Likewise, the decreased relative abundance of Muribaculaceae,
Lachnospiracea and Ruminococcaceae and the increased relative abundance of Enterobacteriaceae and Prevotellaceae at family level were also observed in T2DM rats (Fig. 7f). At genus level, there was a predominant increase in the relative abundance of Klebsiella, Prevotella-9, and Lachnospiracea_NK4A136_group and a decrease in the relative abundance of Ruminococcaceae_UCG-014, Ruminococcus_1 and Ruminococcaceae_UCG-005 in T2DM rats (Fig. 7g). To our attention, antibiotics had a profound effect on microbiota composition, with Proteobacteria, Enterobacteriaceae or Klebsiella being the dominant phylum, family or genus, respectively (> 90%) in T2DM rats and control rats.

DISCUSSION

Antibiotic-caused disruption of gut microbiota has been widely used to study microbiota-host interaction in pathological conditions (Rakoff-Nahoum et al., 2004; Shen et al., 2015; Sampson et al., 2016). The current study explored the influence and underlying mechanism of an antibiotic cocktail on Clop disposition in T2DM rats. The results showed that antibiotic administration significantly increased the systemic exposure of Clop, Clop-AM and Clop-acid in T2DM rats, which was associated with the downregulation of P-gp in small intestine.

Increasing evidence indicates a complex relationship between gut microbiota and T2DM (Sikalidis and Maykish, 2020). In the present study, T2DM rats exhibited gut microbial disturbance with the decreased abundance
of Firmicutes, the increased abundance of Bacteroidetes or Proteobacteria, and the increased ratio of Bacteroidetes to Firmicutes, all of which have also been observed in diabetic patients (Qiao et al., 2013). Interestingly, we found that these microbial changes could be associated with some T2DM phenotypes as follows. First, a previous study found that the ratio of Bacteroidetes to Firmicutes was associated positively with blood glucose levels (Larsen et al., 2010), consistent with our study. Second, it was demonstrated that the decreased prevalence of Firmicutes in T2DM rats produced a low level of butyrate (Macfarlane and Macfarlane, 2003). Importantly, sodium butyrate treatment markedly ameliorated diabetic inflammation in db/db mice (Xu et al., 2018). It is considered that the decreased abundance of Firmicutes and its two family Lachnospiraceae and Ruminococcaceae in T2DM rats might be associated with the enhanced levels of LPS and proinflammatory factor in our study. Third, Proteobacteria is shown to play an important role in promoting the occurrence of low-grade inflammation in diabetic patients (Larsen et al., 2010), suggesting that the increased prevalence of Proteobacteria in the study contributes, at least in part to the inflammation status in T2DM rats. Finally, our results also showed that T2DM rats had a predominant increase in the abundance of Prevotella-9 genus, which has been demonstrated to have a close association with insulin resistance (Pedersen et al., 2016).
Antibiotics alone or in combination has been widely used to investigate the role of gut microbiota in vivo (Mu and Zhu, 2019). Here we selected an antibiotic cocktail to disrupt gut microbiota, and observed their role in T2DM phenotype and Clop disposition. The results showed that 5 days of antibiotic treatment sharply reduced the microbial amount (>95%), and dramatically altered the microbial structure and composition with Proteobacteria, Enterobacteriaceae or Klebsiella being the dominant phylum, family or genus, respectively (each >90%), indicating a serious disruption of gut microbiota. Interestingly, antibiotics-caused microbial disruption restored T2DM phenotype. Similar results were also observed in the other two T2DM animal models. One study showed that removing gut microbiota with norfloxacin and ampicillin significantly decreased plasma glucose, insulin, LPS and triglycerides levels in ob/ob mice (Chou et al., 2008). The other study showed that after two weeks treatment with ceftazidime, ZDF rats showed markedly lower plasma glucose levels than control rats (Rajpal et al., 2015). Similarly, Zhou et al found that treatment with antibiotic mixture (ampicillin, metronidazole and neomycin) for 7 days exerted glucose-lowering action in HFD-fed mice as metformin did. Then metformin in combination with antibiotics had a stronger role in improving glucose intolerance than metformin or antibiotics alone (Zhou et al., 2016), implying that antibiotics could reduce the dosage of metformin during glucose-lowering therapy. However, whether the phenomenon also occurs in diabetic or hyperlipemia patients has not been reported. It seems that translating this
strategy to humans is not the best option, because long term use of antibiotics in clinic has some drawbacks such as antibiotic resistance, gut microbiota dysbiosis and body weight gain. Noteworthy, we also found that antibiotic treatment had a similar disruption of gut microbiota in control rats, but had no apparent role in serum glucose, insulin, triglycerides, cholesterol, ALT, AST and LPS levels, which has also been observed in healthy human males and chow-fed C57BL6 mice (Pang et al., 2013; Mikkelsen et al., 2016), but not in healthy Swiss Webster mice or normal C57BL/6 mice (Rodrigues et al., 2017; Zarrinpar et al., 2018). The debatable results might be due to differences in antibiotic ingredients, dosage and duration. Taken together, these results suggest that antibiotic-induced microbiome depletion alleviates metabolic disorders in pathological conditions, but have debatable effects on normal physiology.

Although antibiotics are well-known to cause alteration in gut microbiota, there is a lack of understanding about their effects on Clop disposition. Our results first found that antibiotic treatment significantly reversed the reduced plasma exposure of Clop, Clop-AM or Clop-acid in T2DM rats relative to control rats. Further, to elucidate the underlying mechanisms, we analyzed the hepatic Clop-metabolizing enzymes levels and fulfilled the Clop biotransformation in liver microsomes. As for T2DM rats, antibiotic treatment significantly restored the decreased expression or activity of CES, CYP2B, CYP2C9- or 2C19-related protein, but had no effects on the change of
CYP1A2 and CYP3A. Meanwhile, liver microsome metabolism assay showed that antibiotic treatment reversed the reduced Clop-acid generation in T2DM rats compared to control rats, consistent with the in vivo results, suggesting that CES1-based Clop hydrolyzation is attributed, at least partly to the change in plasma Clop-acid exposure in T2DM rats pre and pro antibiotic treatment. Noteworthy, antibiotic treatment only slightly inhibited the enhanced Clop-AM generation in T2DM rat microsomes with or without KF, in contrast to the in vivo results, suggesting that Clop hepatic metabolism might not contribute to the altered plasma Clop-AM level in T2DM rats treated with antibiotic or not.

Further, to reveal the potential influence of absorption on the altered Clop disposition in T2DM rats pre and pro antibiotic treatment, the intestinal P-gp and PXR levels were measured. T2DM rats had higher mRNA and protein levels of P-gp and nuclear PXR than control rats, while antibiotic treatment significantly reversed these changes. In combination with our previous study demonstrating that T2DM rats had the decreased Clop-AM exposure due to the upregulation of P-gp (Yao et al., 2020), we suppose that the decreased P-gp level after antibiotic treatment promotes Clop absorption, then enhances the systemic exposure of Clop and its two metabolites.

Noteworthy, we observed the effect of the microbinal depletion on the altered P-gp level. However, the current data have some limitations in providing more information to find specific bacteria that play a direct role in P-gp regulation, which would be performed by fecal microbiota transplantation.
experiment in combination with metagenomic analysis and metabolomic analysis. Interestingly, the decreased prevalence of butyrate-producing Firmicutes phylum was observed in the feces of T2DM rats. Meanwhile, 16s rRNA-amplicon-based prediction of microbiome function showed the reduced biosynthesis of secondary bile acid (data not shown). It has been reported that the two classes of microbiota-derived metabolites affect P-gp expression and function \textit{in vitro} and \textit{in vivo} (Foley et al., 2021). We suppose that some butyrate- or secondary bile acid-producing bacteria might be associated with the altered P-gp level and Clop-AM exposure in T2DM rats, which needs to be demonstrated in the future.

It has been demonstrated that ampicillin, vancomycin, neomycin and metronidazol are broad-spectrum antibiotics that have a poor or no absorption in the gut, and thus with no obvious systemic effects (Reikvam et al., 2011; Zarrinpar et al., 2018). Thus, it is considered that the orally administered antibiotics have little or no direct effect on CYPs and P-gp expression \textit{in vivo}. Especially, there were different patterns of change in the mRNA levels or catalytic activities of Clop-metabolizing enzymes and transporter between T2DM rats and LO\textsubscript{2}/SW480 cells after antibiotic treatment. It suggests the changes of CYPs and P-gp level in antibiotics-treated T2DM rats might not be associated with the direct role of antibiotics. Noteworthy, due to their lower level and activity of CYPs, hepatic cell lines have some limitations to surrogate primary hepatocyte for CYP induction and inhibition study (Guo et al., 2011).
Thus, the results in LO₂ cells should be verified in primary hepatocytes in the future.

In addition, diabetes has been shown to alter the expression of CYPs and P-gp via some factors such as glucose, insulin, nitric oxide, cytokines, gut microbiota and its metabolites (Lam et al., 2010; Kobori et al., 2013; Chen et al., 2018). We found that antibiotic treatment disrupted gut microbiota accompanied with the attenuation of T2DM phenotype. Especially, there were synchronous changes in P-gp and glucose/insulin/LPS/cytokines levels in T2DM rats pre and pro antibiotic treatment, implying that besides gut microbiota disruption, T2DM phenotype attenuation might also be responsible for the reduced P-gp level and the enhanced Clop-AM exposure after antibiotic administration. Thus it is considered that there is a close relationship between gut microbiota, T2DM phenotype and Clop disposition.

In conclusion, the results demonstrated that antibiotics-induced disruption of gut microbiota increased systemic exposure of Clop-AM and alleviated diabetic phenotype in T2DM rats. Gut microbiota modulation might be an effective therapeutic strategy to increase Clop-AM generation under T2DM conditions.

Acknowledgments

We thank Yantong Sun and Yingze Liu for technical assistance with LC-MS/MS analysis.
Authorship Contributions

Participated in research design: Guo, Gu.

Conducted experiments: Chen, Liu, Yao.

Contributed new reagents or analytic tools: Liu, Yao.

Performed data analysis: Chen, W. Song.

Wrote or contributed to the writing of the manuscript: Guo, Y. Song, Chen.

References

Qiao Y, Sun J, Ding Y, Le G, and Shi Y (2013) Alterations of the gut microbiota in high-fat diet...
mice is strongly linked to oxidative stress. *Applied microbiology and biotechnology* 97:1689-1697.

Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, Dmccott CM,

Footnotes.

This work was supported by National Major Science and Technology Projects of China (Grant 2018ZX09721002007); Hainan Provincial Natural Science Foundation of China (Grant 2019RC244); and Scientific Research Foundation of Hainan Tropical Ocean University (Grant RHDXB201801).

There are no financial conflicts of interest to disclose.
Figure legends

Fig.1 The physical and biochemical parameters in CON, T2DM, CON+ABX, and T2DM+ABX rats. (a) Glucose, (b) Insulin, (c) Cholesterol, (d) Triglycerides, (e) ALT, (f) AST and (g) LPS levels in serum. (h) Cholesterol, (i) Triglycerides, (j) GSH, (k) MDA, (l) IL-1β mRNA, (m) IL-6 mRNA, (n) TNF-α mRNA, and (o) LPS levels in liver. (p) Cholesterol, (q) Triglycerides, (r) GSH, (s) MDA, (t) IL-1β mRNA, (u) IL-6 mRNA, (v) TNF-α mRNA, and (w) LPS levels in small intestine. *P < 0.05, **P < 0.01, ***P < 0.001 (T2DM versus CON group); #P < 0.05 (CON+ABX versus CON group); $P < 0.05, $$P < 0.01, $$$P < 0.001 (T2DM+ABX versus T2DM group); &P < 0.05, &&P < 0.01, &&&P < 0.001 (T2DM+ABX versus CON+ABX group). CON: control group; T2DM: T2DM group; CON+ABX: antibiotics-treated control group; T2DM+ABX: antibiotics-treated T2DM group.

Fig.2 Plasma concentration–time curves of (a) Clop-AM (b) Clop-acid and (c) Clop in CON, T2DM, CON+ABX, and T2DM+ABX rats after single oral 30mg/kg doses of Clop. CON: control group; T2DM: T2DM group; CON+ABX: antibiotics-treated control group; T2DM+ABX: antibiotics-treated T2DM group.

Fig.3 Hepatic mRNA levels of (a) Ces1, (b) CYP1A2, (c) CYP2B1/2, (d) CYP2C11, (e) CYP2C22, and (f) CYP3A2 in CON, T2DM, CON+ABX, and T2DM+ABX rats. Hepatic microsomal activities of (g) CES, (h) CYP1A2, (i)
CYP2B, (j) CYP2C9-related protein, (k) CYP2C19-related protein, and (l) CYP3A in CON, T2DM, CON+ABX, and T2DM+ABX rats. CON: control group; T2DM: T2DM group; CON+ABX: antibiotic-treated control group; T2DM+ABX: antibiotic-treated T2DM group. *P < 0.05, **P < 0.01, ***P < 0.001 (T2DM versus CON group); #P < 0.05, ##P < 0.05 (CON+ABX versus CON group); $P < 0.05, $$$P < 0.001 (T2DM+ABX versus T2DM group); &P < 0.05, &&P < 0.01, &&&P < 0.001 (T2DM+ABX versus CON+ABX group).

Fig.4 (a) Clop-AM and (b) Clop-acid levels in liver microsomes of CON, T2DM, CON+ABX, and T2DM+ABX rats incubated with Clop at concentration of 10μM for 100 min in the presence or absence of 10 mM KF. *P < 0.05, **P < 0.01, ***P < 0.001 (T2DM versus CON group); ##P < 0.05 (CON+ABX versus CON group); $P < 0.05 (T2DM+ABX versus T2DM group); &P < 0.05 (T2DM+ABX versus CON+ABX group).

Fig.5 Intestinal mRNA and protein levels of P-gp and PXR in CON, T2DM, CON+ABX, and T2DM+ABX rats. (a) P-gp and (b) PXR mRNA levels in small intestines; (c) P-gp and (d) PXR protein levels in small intestines. *P < 0.05,
**P < 0.01 (T2DM versus CON group); #P < 0.05, $P < 0.05, $$$P < 0.01, $$\$P < 0.001 (T2DM+ABX versus T2DM group); \&\&P < 0.01 (T2DM+ABX versus CON+ABX group). CON: control group; T2DM: T2DM group; CON+ABX: antibiotics-treated control group; T2DM+ABX: antibiotics-treated T2DM group.

Fig.6 The mRNA levels of Clop-metabolizing enzymes and transporter *in vitro*.

Cells were treated with vehicle, Ampicillin (AMP), Metronidazole (MTZ), Neomycin (NEO) or Vancomycin (VAN) alone and their combination including AMP (100 mM), MTZ (100 mM), NEO (100 mM), and VAN (50 mM) at different concentrations or dilutions for 24h. (a) CES1, (b) CYP1A2, (c) CYP2B6, (d) CYP2C9, (e) CYP2C19, and (f) CYP3A4 mRNA levels in LO2 cells; (g) P-gp and (h) PXR mRNA levels in SW480 cells. *P < 0.05, **P < 0.01 compared to the control groups.

Fig.7 (a) Colony-forming units (CFUs) were quantified from stool of CON, T2DM, CON+ABX and T2DM+ABX rats. 16S rRNA sequencing analysis of isolated fecal DNA across the different groups (b) Shannon index; (c) Chao1 index; (d) principal co-ordinates analysis (PCoA); Taxonomic plots showing mean bacterial abundance at the (e) phylum, (f) family, and (g) genus levels. **P < 0.01 (T2DM versus CON group), ###P < 0.05, ####P < 0.001 (CON+ABX versus CON group); $$P < 0.01 (T2DM+ABX versus T2DM group). CON: control group; T2DM: T2DM group; CON+ABX: antibiotics-treated control...
group; T2DM+ABX: antibiotics-treated T2DM group.
<table>
<thead>
<tr>
<th>Parameter unit</th>
<th>AUC<sub>0-t</sub> (mg/L*h)</th>
<th>AUC<sub>0-∞</sub> (mg/L*h)</th>
<th>C<sub>max</sub> (mg/L)</th>
<th>T<sub>max</sub> (h)</th>
<th>t<sub>1/2</sub> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clop-AM CON</td>
<td>0.86±0.37</td>
<td>0.93±0.4</td>
<td>0.25±0.08</td>
<td>0.75±0.1</td>
<td>8.1±7.2</td>
</tr>
<tr>
<td>Clop-AM CON+ABX</td>
<td>0.62±0.11</td>
<td>0.72±0.12</td>
<td>0.21±0.08</td>
<td>0.5±0.1</td>
<td>9.6±8.5</td>
</tr>
<tr>
<td>Clop-AM T2DM</td>
<td>0.30±0.13 *</td>
<td>0.49±0.21 *</td>
<td>0.05±0.02 *</td>
<td>0.75±0.1</td>
<td>18.2±14.3 **</td>
</tr>
<tr>
<td>Clop-AM T2DM+ABX</td>
<td>1.23±0.5 $&&$</td>
<td>1.33±0.6 $&&$</td>
<td>0.44±0.12 $&&$</td>
<td>1.0±0.1</td>
<td>7.0±5.9 $&$</td>
</tr>
<tr>
<td>Clop-acid CON</td>
<td>1653.6±486.1</td>
<td>1727.8±654.1</td>
<td>101.2±35.1</td>
<td>0.75±0.1</td>
<td>22.3±15.3</td>
</tr>
<tr>
<td>Clop-acid CON+ABX</td>
<td>2024.2±732.8</td>
<td>1945.7±654.3</td>
<td>98.4±33.1</td>
<td>10±5.1</td>
<td>41.7±18.3 *</td>
</tr>
<tr>
<td>Clop-acid T2DM</td>
<td>72.6±392.7 **</td>
<td>187.2±110.9 **</td>
<td>3.9±1.8 **</td>
<td>10±4.2</td>
<td>38.1±19.2 *</td>
</tr>
<tr>
<td>Clop-acid T2DM+ABX</td>
<td>414.7±197.3 $&&$</td>
<td>459.1±218.4 $&&$</td>
<td>60.2±18.8 $&$</td>
<td>2.0±1.2</td>
<td>7.7±7.1 $&&$</td>
</tr>
<tr>
<td>Clop CON</td>
<td>0.15±0.02</td>
<td>0.14±0.02</td>
<td>0.02±0.01</td>
<td>0.5±0.1</td>
<td>41.8±16.4</td>
</tr>
<tr>
<td>Clop CON+ABX</td>
<td>0.1±0.02</td>
<td>0.1±0.07</td>
<td>0.02±0.01</td>
<td>0.5±0.1</td>
<td>46.6±14.2</td>
</tr>
<tr>
<td>Clop T2DM</td>
<td>0.02±0.01 **</td>
<td>0.04±0.03 **</td>
<td>0.01±0.01</td>
<td>0.33±0.1</td>
<td>27.5±18.2 *</td>
</tr>
<tr>
<td>Clop T2DM+ABX</td>
<td>0.2±0.08 $&$</td>
<td>0.4±0.02 $&$</td>
<td>0.05±0.01</td>
<td>0.5±0.1</td>
<td>26.3±21.2 $&$</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01 (T2DM versus CON group); *P < 0.05, **P < 0.01 (T2DM+ABX versus T2DM group); *P < 0.05, **P < 0.01 (T2DM+ABX versus CON+ABX group)
Table 2. Effect of antibiotics on Clop-metabolizing enzymes and transporter level *in vitro* and *in vivo*

<table>
<thead>
<tr>
<th></th>
<th>ABX in T2DM rats</th>
<th>ABX in LO₂ or SW480 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA/Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CES1/CES</td>
<td>↑</td>
<td>CES1</td>
</tr>
<tr>
<td>CYP1A2/CYP1A2</td>
<td>—</td>
<td>CYP1A2</td>
</tr>
<tr>
<td>CYP2B1/2/CYP2B6</td>
<td>↑</td>
<td>CYP2B6</td>
</tr>
<tr>
<td>CYP2C11/CYP2C9</td>
<td>↑</td>
<td>CYP2C9</td>
</tr>
<tr>
<td>CYP2C22/CYP2C19</td>
<td>↑</td>
<td>CYP2C19</td>
</tr>
<tr>
<td>CYP3A2/CYP3A4</td>
<td>—</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>mRNA/protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-gp/P-gp</td>
<td>↓</td>
<td>P-gp</td>
</tr>
<tr>
<td>PXR/nuclear PXR</td>
<td>↓</td>
<td>PXR</td>
</tr>
</tbody>
</table>

ABX: an antibiotic cocktail including ampicillin, metronidazole, neomycin and vancomycin
Fig. 1
Fig. 2
Fig. 4

(a) Bar chart showing Clop (10 μM) concentration in Vehicle and 10 mM KF for CON, CON+ABX, T2DM, and T2DM+ABX groups.

(b) Bar chart showing Clop-acid concentration in Vehicle and 10 mM KF for CON, CON+ABX, T2DM, and T2DM+ABX groups.
Fig. 5
Fig. 6
Fig. 7