Newly Identified Tree Shrew Cytochrome P450 2A13 (CYP2A13) is Expressed in Liver and Lung and Encodes a Functional Drug-Metabolizing Enzyme Similar to Dog CYP2A13 and Pig CYP2A19

Genki Ushirozakoa, Yutaro Nodab, Norie Murayamab, Hiroaki Kawaguchic, Kyoko Tsukiyama-Koharad,e, and Hiroshi Yamazakib,*, and Yasuhiro Unoa,*

a Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
b Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
c School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
d Transboundary Animal Diseases Center and e Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
Running title: New Tupaia, Dog, and Pig P450 2A Enzymes

* All correspondence should be sent to:

1) Yasuhiro Uno, D.V.M., Ph.D.
Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
Phone/Fax: +81-99-285-8715. E-mail address: unoxx001@vet.kagoshima-u.ac.jp

or

2) Hiroshi Yamazaki, Ph.D.
Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
Phone/Fax: +81-42-721-1406. E-mail address: hyamazak@ac.shoyaku.ac.jp

Abbreviations

CYP2A, cytochromes P450 2A; P450, cytochrome P450; PCR, polymerase chain reaction; RT, reverse transcription; SRS, substrate recognition site.

Number of text pages: 25
Number of tables: 3
Number of figures: 7
Number of references: 33
Number of words in abstract: 225 words
Number of words in significance statement: 80 words
Number of words in introduction: 367 words
Number of words in discussion: 1153 words
Abstract

The tree shrew, a non-rodent primate-like species, is used in various fields of biomedical research, including hepatitis virus infection, myopia, depression, and toxicology. Recent genome analysis found that the numbers of cytochromes P450 (P450 or CYP) genes are similar in tree shrews and humans and their sequence identities are high. Although the P450s are a family of important drug-metabolizing enzymes, they have not yet been fully investigated in tree shrews. In the current study, tree shrew CYP2A13 cDNA was isolated from liver, and its characteristics were compared with those of pig, dog, and human CYP2As. Tree shrew CYP2A13 amino acid sequences were highly identical (87–92%) to the human CYP2As and contained sequence motifs characteristic of P450s. Phylogenetic analysis revealed that tree shrew CYP2A13 was more closely related to human CYP2As than to rat CYP2As, similar to dog and pig CYP2As. Among the tissue types analyzed, tree shrew CYP2A13 mRNA was preferentially expressed in liver and lung, similar to dog CYP2A13 mRNA, whereas dog CYP2A25 and pig CYP2A19 mRNAs were predominantly expressed in liver. Tree shrew liver microsomes and tree shrew CYP2A13 proteins heterologously expressed in Escherichia coli catalyzed coumarin 7-hydroxylation and phenacetin O-deethylation, just as human, dog, and pig CYP2A proteins and liver microsomes do. These results demonstrate that tree shrew CYP2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme.
Significance Statement

Novel tree shrew cytochrome P450 2A13 (CYP2A13) was identified and characterized in comparison with human, dog, and pig CYP2As. Tree shrew CYP2A13 isolated from liver had high sequence identities and close phylogenetic relationships to its human homologs and was abundantly expressed in liver and lung at the mRNA level. Tree shrew CYP2A13 metabolized coumarin and phenacetin, human selective CYP2A6 and CYP2A13 substrates, respectively, similar to dog and pig CYP2As, and is a functional drug-metabolizing enzyme likely responsible for drug clearances.
Introduction

Tree shrews (Tupaia belangeri) are members of the genus Tupaia that inhabit South and Southeast Asia. Tree shrews are important model animals for hepatitis B virus and hepatitis C virus research because, other than chimpanzees and humans, the tree shrew is the only animal species susceptible to these viruses (Cao et al., 2003; Tsukiyama-Kohara and Kohara, 2014). Because of their phylogenetic closeness to primates, short reproductive cycle, small body size, ease of handling, low maintenance cost, tree shrews are also used in biomedical research in fields such as depression, myopia, and learning behavior (Cao et al., 2003; Fan et al., 2013; Tsukiyama-Kohara and Kohara, 2014).

The cytochrome P450 (P450 or CYP) family comprises heme–thiolate enzymes that catalyze the oxidation or reduction reactions of various endogenous and exogenous substrates. In humans, the CYP family consists of 57 functional genes and 58 pseudogenes (Nelson et al., 2004), with the CYP2A subfamily being composed of CYP2A6/7/13 (Nelson et al., 2004). Human CYP2A6 is expressed in liver (Koskela et al., 1999), whereas human CYP2A13 is expressed in the respiratory tract (Su et al., 2000). Although human CYP2A7 mRNA is expressed in liver, no resulting activity has been observed (Yamano et al., 1990; Ding et al., 1995). Human CYP2A6 and CYP2A13 mediate coumarin 7-hydroxylation, and CYP2A6 is largely responsible for this reaction in liver.

Recent genome analysis revealed a relatively closer affinity of tree shrews to primate species as compared with mice or rats, including similarities in the numbers of P450s (Fan et al., 2013); however, P450s have not yet been characterized in tree shrews. We recently identified tree shrews CYP1 and CYP2B enzymes (Uno et al., 2022a; Uno et al., 2022c). The purpose of this study was to investigate if CYP2A enzyme(s) would play functional roles as drug-metabolizing enzymes in tree shrews. In this study, to elucidate the properties of tree shrew CYP2A in comparison with dog, pig, and human CYP2As, tree shrew CYP2A13 cDNA was identified and characterized by sequence analysis, phylogeny, tissue expression patterns, genome organization, gene structure, protein expression, and drug-metabolizing functional assays. Herein, we report that novel CYP2A13 of tree shrews is highly identical to human CYP2A6/13 and plays a functional role as a drug-metabolizing enzyme.
Materials and Methods

Materials

Synthesized oligonucleotides were obtained from Integrated DNA Technologies (Coralville, IA). Coumarin, phenacetin, 7-hydroxycoumarin, and acetaminophen were obtained from Fujifilm Wako Pure Chemicals (Osaka, Japan). Pooled liver microsomes of humans (75 males and 75 females), 3 male and 3 female dogs, and 3 male and 3 female minipigs were purchased from Corning Life Sciences (Woburn, MA). Liver microsomes were prepared from two tree shrews as described previously (Yamazaki et al., 2014; Uno et al., 2022a; Uno et al., 2022c). Recombinant human CYP2A6 and CYP2A13 in bacterial membranes were prepared using the bicistronic protein expression system with human NADPH-P450 reductase as described previously (Shimada et al., 1997; Uehara et al., 2015; Uno et al., 2006; Uno et al., 2022a; Uno et al., 2022c). All other reagents were purchased from Sigma-Aldrich or Fujifilm Wako Pure Chemicals, unless otherwise specified.

Tissue Samples and RNA Preparation

A variety of tissue samples was collected from a beagle dog (male, 2 years of age, weight ~10 kg) at Shin Nippon Biomedical Laboratories (Kainan, Japan) and from a pig (Microminipig, female, 10 years of age, weight ~13 kg) at Kagoshima University (Kagoshima, Japan). Similarly, tissue samples were collected from, one of two tree shrews (a male, 3 months of age, #2; and a female, 5 years of age, #1) at Kagoshima University. This study was reviewed and approved by the Institutional Animal Care and Use Committee at Kagoshima University. From the collected samples, total RNAs were extracted for molecular cloning and real-time polymerase chain reaction (PCR) using an RNeasy Mini Kit (Qiagen, Valencia, CA) as described previously (Uno et al., 2022a; Uno et al., 2022b; Uno et al., 2022c). The liver total RNA previously prepared (Yamazaki et al., 2014) was used for isolation of pig CYP2A19 cDNA.
Isolation of CYP2A cDNAs

Reverse transcription (RT)-PCR was performed using liver total RNAs as described previously (Uno et al., 2006; Uno et al., 2022a; Uno et al., 2022c) with the following modifications. Briefly, RT reaction was incubated at 42°C for 1 h with total RNA (1 µg), oligo (dT), and ReverTra Ace (TOYOBO, Osaka, Japan), followed by PCR performed using Q5 Hot Start High-Fidelity DNA Polymerase (New England BioLabs, Ipswich, MA) in a T100 thermal cycler (Bio-Rad Laboratories, Hercules, CA). The primers used are listed in Table 1. PCR conditions were an initial denaturation at 98°C for 30 s; 35 cycles at 98°C for 10 s, 65°C for 20 s, and 72°C for 40 s; followed by a final extension at 72°C for 2 min. The amplicons were cloned into pMiniT2.0 vectors using a PCR Cloning Kit (New England BioLabs). The inserts were verified by sequencing using an ABI PRISM BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied Biosystems, Foster City, CA), followed by electrophoresis with an ABI PRISM 3500xl Genetic Analyzer (Applied Biosystems).

Bioinformatic Analysis of Gene, cDNA, and Amino Acid Sequences

The Genetyx system (Software Development, Tokyo, Japan) was used for multiple alignment with the ClustalW program and for creating a phylogenetic tree with the neighbor-joining method. Sequence similarity was determined using the BLAST program (National Center for Biotechnology Information). Analysis of the genome data was done by BLAT (UCSC Genome Bioinformatics) and Sequence Viewer (National Center for Biotechnology Information). The amino acid and cDNA sequences used were from GenBank or the present study.

Quantification of mRNA Expression

Expression level of each mRNA was measured by real-time RT-PCR performed as described previously (Uno et al., 2006; Uno et al., 2022a; Uno et al., 2022c) in dogs (adrenal gland, brain, heart, ileum, jejunum, kidney, liver, lung, and testis), pigs (adrenal gland, brain, heart, ileum, jejunum, kidney, liver, lung, ovary, and uterus), and tree shrews (heart, small intestine, kidney, liver, lung, spleen, and uterus). Briefly, RT reactions were performed using a ReverTra Ace qPCR RT kit
(TOYOBO), followed by PCR that was conducted using a THUNDERBIRD SYBR qPCR Mix Kit (TOYOBO) with a StepOnePlus Real-Time PCR System (Applied Biosystems). The primers (Table 1) were used at final concentrations of 300 nM. The thermal cycler conditions were 30 s at 95°C, followed by 40 cycles at 95°C for 5 s and at 60°C for 10 s. Standard curves were generated by serial tenfold dilutions of a plasmid for the corresponding cDNA. Based on three independent amplifications, relative expression levels were determined by normalizing the raw data to 18S ribosomal RNA levels, for which TaqMan Gene Expression Assays (Assay ID: Hs99999901_s1, Applied Biosystems) were used for measurement with THUNDERBIRD Probe qPCR Mix (TOYOBO).

Preparation of CYP2A Proteins

Expression plasmids of CYP2As were prepared for dogs, pigs, and tree shrews, and proteins were expressed in Escherichia coli membranes as described previously (Iwata et al., 1998; Uno et al., 2006; Uno et al., 2022a; Uno et al., 2022c). Modification of the N-terminus was carried out by PCR; the coding region of each CYP2A cDNA was amplified using Phusion Hot Start Flex DNA Polymerase (New England BioLabs) and the primers (Table 1) with an initial denaturation at 98°C for 30 s; 35 cycles of denaturation at 98°C for 10 s, annealing at 65°C for 20 s, and elongation at 72°C for 40 s; and a final extension was at 72°C for 5 min. To facilitate subcloning into the pCW vector, the forward and reverse primers respectively, contained the NdeI and XbaI sites. This vector contained human NADPH-P450 reductase cDNA. E. coli membranes were prepared, and the P450 protein and reductase contents in bacterial membrane preparations were measured as described previously (Iwata et al., 1998; Uno et al., 2006).

Enzymatic Characterization of CYP2As

The recombinant human, dog, pig, and tree shrew CYP2A proteins were analyzed for coumarin 7-hydroxylation and phenacetin O-deethylation, as described previously (Uehara et al., 2015). Briefly, typical reaction mixtures (0.20 mL) contained recombinant P450 protein (5.0–10 pmol equivalents) or
liver microsomes (0.25–0.50 mg protein/mL), an NADPH-generating system (0.25 mM NADP⁺, 2.5 mM glucose 6-phosphate, and 0.25 unit/ml glucose 6-phosphate dehydrogenase), and substrate (10 μM or 100 μM coumarin or phenacetin, unless otherwise specified) in 100 mM potassium phosphate buffer (pH 7.4). Reactions were incubated at 37°C for 10 min (coumarin) and 20 min (phenacetin) in triplicate and then terminated by adding 10 μL of 60% HClO₄ (w/v). Incubates were centrifuged at 900 × g for 5 min, and supernatants were analyzed by high-performance liquid chromatography with a fluorescence (at the excitation wavelength of 338 nm and the emission wavelength of 458 nm for coumarin) or UV (at 245 nm for phenacetin) detector and a reverse phase analytical column (C₁₈; 5 μm, 4.6 x 250 mm) as described previously (Uehara et al., 2015). The eluents consisted of 45% acetonitrile (v/v) containing 20 mM NaClO₄ (pH 2.5) for coumarin and 20% acetonitrile (v/v) containing 50 mM K₃PO₄ (pH 4.9). Metabolite formation intensities increased linearly up to 15 min (coumarin) or 30 min (phenacetine) incubation and to 20 pmol P450 equivalents in our preliminary experiments. Kinetic parameters were calculated by nonlinear regression (mean ± standard error, n = 13 substrate concentrations, in triplicate) based on the Michaelis–Menten equation using Prism 9 (GraphPad Software, La Jolla, CA). The goodness of fit of the empirical model was appropriately evaluated using the coefficient (r) squared of the determination magnitude.
Results

Cloning of CYP2A cDNAs

CYP2A13 cDNA was newly identified in tree shrews and the cDNAs previously identified in dogs (CYP2A13 and CYP2A25) and pigs (CYP2A19) were successfully isolated by RT-PCR. Amino acid sequences translated from these CYP2A cDNAs contained 495 amino acid residues with sequence motifs characteristic of P450s, i.e., putative substrate recognition sites (Gotoh, 1992) and a heme-binding region (Fig. 1). In a phylogenetic tree of CYP2A amino acid sequences, tree shrews were more closely related to humans than to rats, just as dog and pig CYP2As are (Fig. 2). The CYP2A cDNAs identified in the present study were deposited in GenBank, i.e., dog CYP2A13 (ON164789) and CYP2A25 (ON164788), pig CYP2A19 (ON164797), and tree shrew CYP2A13 (ON164809).

Genomic and Exon–Intron Structure of CYP2A Genes

The genomic locations of the CYP2A genes were analyzed in the human, dog, pig, and tree shrew genomes using BLAT and Sequence Viewer. The CYP2A gene(s) were found in the large CYP2ABFGST gene cluster formed with CYP2B, CYP2F, CYP2G, CYP2S, and CYP2T genes, and this gene cluster was located at the corresponding region of the genome in humans, dogs, pigs, and tree shrews; however, the number, direction, and location of the genes within each gene cluster did not correspond perfectly (Fig. 3). The analysis also showed that CYP2A genes contain nine exons in dogs, pigs, tree shrews, and humans (Fig. 4). Among these species, the sizes of the coding exons were well conserved among all the CYP2A genes: in particular, exons 2–8 contained 163, 150, 161, 177, 142, 188, and 142 bp, respectively. All the CYP2A introns analyzed began with GU and ended with AG, conserved with the consensus intron border sequences in eukaryotic genes. Therefore, CYP2A gene structures were highly conserved among humans, dogs, pigs, and tree shrews.
Tissue Distribution of mRNA Expression

The expression levels of tree shrew CYP2A13 mRNA and dog and pig CYP2A mRNAs were quantified by real-time RT-PCR in adrenal gland, brain, heart, ileum, jejunum, kidney, liver, lung, ovary, spleen, testis, and/or uterus. Tree shrew CYP2A13 mRNA was predominantly expressed in lung and liver, similar to dog CYP2A13 mRNA (Fig. 5). Dog CYP2A25 mRNA was also expressed in liver at a comparable level to that of CYP2A13 mRNA (Fig. 5). Pig CYP2A19 mRNA was most abundantly expressed in liver, followed by kidney (Fig. 5).

Drug-Metabolizing Activities of CYP2As

Coumarin 7-hydroxylation activities by human liver microsomes were high (Fig. 6A) under the present conditions. Pooled liver microsomes from male and female dogs, female pigs, and one tree shrew also exhibited coumarin 7-hydroxylation activities but at lower levels than for pooled human liver microsomes. In contrast, high phenacetin O-deethylation activities were seen in liver microsomes from male and female dogs, male and female pigs, and tree shrews. The mean yield of new recombinant tree shrew CYP2A13 was 8.7 nmols per litter cultures; the ratios of NADPH-P450 reductase/P450 was and 1.6. Tree shrew CYP2A13 metabolized coumarin and phenacetin, typical substrates of human CYP2A6 and CYP2A13, respectively, indicating that tree shrew CYP2A13 is a functional drug-metabolizing enzyme. Dog CYP2A13, pig CYP2A19, and tree shrew CYP2A13 had similar patterns of coumarin 7-hydroxylation and phenacetin O-deethylation activities, whereas recombinant human CYP2A6 and CYP2A13 more specifically mediated coumarin 7-hydroxylation and phenacetin O-deethylation, respectively (Fig. 6B). Dog CYP2A25 exhibited no activity toward coumarin 7-hydroxylation or phenacetin O-deethylation (data not shown).

In vitro kinetic analyses found that the apparent K_m values for coumarin 7-hydroxylation by recombinant P450 2A proteins were in the range of \sim0.5–12 μM (Table 3), whereas the estimated intrinsic clearance (V_{max}/K_m) values were in the range of \sim0.4–3.2 μM$^{-1}$min$^{-1}$ (Fig. 7). In contrast, the apparent K_m values for phenacetin O-deethylation by recombinant P450 2A proteins were in the range...
of ~7–54 μM (except for >300 for human 2A6) (Table 3), whereas the estimated intrinsic clearance (V_{max}/K_m) values were in the range of ~0.7–3.8 μM$^{-1}$min$^{-1}$ (Fig. 7). The goodness of fit for both coumarin 7-hydroxylation and phenacetin O-deethylation activities by five recombinant CYP2A enzymes tested under the current conditions was confirmed by the coefficient squared. Overall, these results suggest that dog CYP2A13 exhibited similar catalytic activities toward typical human CYP2A6 probe substrate coumarin and human CYP2A13 substrate phenacetin (Fig. 7); in contrast, pig CYP2A19 and tree shrew CYP2A13 had higher catalytic function toward phenacetin than toward coumarin. The V_{max}/K_m values for coumarin 7-hydroxylation and phenacetin O-deethylation by the recombinant CYP2A proteins tested were apparently inversely correlated (Fig. 7), with the exception of the data point of human CYP2A13.
Discussion

Tree shrews are new experimental animal models in biomedical research; however, their usefulness in drug metabolism studies has not been fully investigated. In this study, we identified and characterized tree shrew CYP2A13 and found it to be highly identical to human CYP2A6, CYP2A7, and CYP2A13 (Table 2); moreover, it contained sequence structures characteristic of P450s (Fig. 1). In phylogenetic tree, tree shrew CYP2A13 was found to be more closely related to human CYP2As than to rat CYP2As, just as dog and pig CYP2As are (Fig. 2).

Similar to the human, dog, and pig CYP2A genes, tree shrew CYP2A13 contained nine coding exons and formed a large CYP2ABFGST gene cluster with CYP2B, CYP2F, CYP2G, CYP2S, and CYP2T genes, located between EGLN2 and AXL in the genome, (Figs. 3 and 4). The location of the CYP2ABFGST gene cluster corresponded well among humans, dogs, pigs, and tree shrews, but the numbers of the subfamily genes and their locations within the gene cluster differed. During evolution, the CYP2ABFGST gene cluster evidently diverged among species through gene duplication, inversion, and insertion of genomic segments (Hu et al., 2008). Consequently, it is sometimes difficult to determine orthologous relationships to humans even for related primate species such as cynomolgus macaques (Uno et al., 2011).

Tree shrew CYP2A13 mRNA showed abundant expression in liver and lung, similar to the expression pattern in dog CYP2A13 mRNA (Fig. 5). Dog CYP2A25 mRNA was also abundantly expressed in liver at a comparable level to that of CYP2A13 mRNA (Fig. 5); however, dog CYP2A25 generally shows minimal metabolic activity toward typical P450 substrates (Zhou et al., 2010), indicating that CYP2A13 is likely the major CYP2A in dog liver. In humans, CYP2A6 mRNA is abundantly expressed liver for (Koskela et al., 1999), whereas CYP2A13 mRNA is expressed in the respiratory tract including lung (Su et al., 2000). Therefore, tree shrew and dog CYP2A13 might play roles in liver and lung, similar to those of human CYP2A6 and CYP2A13, respectively. In contrast, pig CYP2A19 mRNA was preferentially expressed in liver and kidney (Fig. 5). These different tissue expression patterns are accounted for by their divergent transcriptional mechanism(s). Constitutive
androstane receptor is involved in transactivation of human CYP2A6 and pig CYP2A19 (Maglich et al., 2003; Gillberg et al., 2006). It would be of interest to investigate the transcriptional mechanism(s) of tree shrew CYP2A13.

Tree shrew CYP2A13 showed coumarin 7-hydroxylation and phenacetin O-deethylation activities, similar to dog CYP2A13 and pig CYP2A19, and liver microsomes of humans, dogs, pigs, and tree shrews (Fig. 6). Coumarin and phenacetin were metabolized by dog CYP2A13 (Fig. 6), but not by dog CYP2A25, similar to the results of a previous study (Zhou et al., 2010). In dogs, CYP1A2 catalyzes phenacetin O-deethylation with comparably activity to CYP2A13 (Zhou et al., 2010), but the abundance of CYP1A2 protein is much higher than that of CYP2A13 (Martinez et al., 2013), suggesting a contribution of CYP1A2 to phenacetin O-deethylation in dogs, similar to the situation in humans. In tree shrews, CYP1A2 mRNA is expressed and is a functional enzyme (Uno et al., 2022a). It would be of interest to assess the contribution of tree shrew CYP1A2 to phenacetin O-deethylation to see if phenacetin is a typical substrate of CYP1A2 in tree shrews, just as it is in humans.

Pig CYP2A19 also metabolized coumarin (Fig. 6), which is consistent with the results of previous studies (Skaanild and Friis, 1999; Matal et al., 2009). We previously reported occasional differences in terms of undetected low CYP2A-dependent coumarin 7-hydroxylation in minipigs at 8-months-old (Murayama et al., 2009). Interestingly, coumarin 7-hydroxylation activity in liver is different between males and females in Göttingen minipigs, but not in conventional pigs (Skaanild and Friis, 1999). Indeed, the present study also found sex differences in coumarin 7-hydroxylation in minipig liver (Fig. 6). Similarly, the abundance of dog CYP2A13 and CYP2A25 proteins in liver varies significantly between males and females, albeit to a relatively small extent, i.e., 35% and 22%, respectively (Martinez et al., 2013). Tree shrews showed substantial differences in coumarin 7-hydroxylation between two individuals, a male and a female (Fig. 6). It would be of interest to investigate sex differences of CYP2A activity in tree shrews, as was suggested to exist in a preliminary in vitro study (Litterst et al., 1976).

A single substituted amino acid is reportedly sufficient to convert the specificity of P450 2A
enzymes to different substrates (Lindberg and Negishi, 1989). There was an apparent inverse relationship between V_{max}/K_m values for coumarin 7-hydroxylation and phenacetin O-deethylation (Table 3) by the currently studied recombinant CYP2A proteins (Fig. 7), implying similar but different substrate specificities of these structurally related CYP2A proteins. In human CYP2A13, the amino acid substitutions Ser208Ile, Ala213Ser, Phe300Ile, Ala301Gly, Met365Val, and Gly369Ser account for decreased phenacetin affinity, resulting in different phenacetin metabolism between human CYP2A6 and 2A13 (DeVore et al., 2008). Tree shrew CYP2A13, along with dog CYP2A13 and pig CYP2A19, contained the same amino acid residues in these positions as human CYP2A13 (Fig. 1), thereby explaining their metabolic activities toward phenacetin O-deethylation. In contrast, tree shrew CYP2A13, along with pig CYP2A19 and dog CYP2A13, showed lower coumarin 7-hydroxylation activities than human CYP2A6 (Fig. 6). In human CYP2A6, substitutions of the 117th and 372nd residues to those of CYP2A13, i.e., V117A and R372H, reduce coumarin 7-hydroxylation activity, and the equivalent reciprocal substitutions, A117V and H372R in CYP2A13, increase the enzyme activity (He et al., 2004), indicating the importance of 117V and 372R for coumarin 7-hydroxylation. Tree shrew CYP2A13, pig CYP2A19, and dog CYP2A13 contain 117A (Fig. 1), partly explaining their lower coumarin 7-hydroxylation activities, although they contained the same 372R as human CYP2A6.

Human $P450$ genes are known to be polymorphic; for example, in some individuals, the entire CYP2A6 and CYP2D6 genes are lost, or their protein functions are inactivated, by nonsense mutations (see https://www.pharmvar.org/htdocs/archive/index_original.htm). In humans, defective CYP2A6 alleles, such as 2A6*2 and 2A6*4 found in smokers of Caucasian and Asian populations are associated with a reduced risk of lung cancer (Fujieda et al., 2004; Rotunno et al., 2009). In minipig CYP2A19, three different polymorphisms have been identified, but did not account for the differences of CYP2A19 activity, for which a different transcriptional regulation was suggested to be involved (Skaanild and Friis, 2005). The differences found in coumarin and phenacetin metabolism in the two tree shrews (Fig. 6) could be interindividual differences caused by genetic polymorphisms, similar to those in humans. It would be of use to investigate genetic polymorphisms of tree shrew CYP2A13.
In conclusion, we identified novel tree shrew CYP2A13 highly identical to functional human CYP2A6 and CYP2A13. Tree shrew CYP2A13 mRNA was predominantly expressed in liver and lung, similar to human CYP2A6 and CYP2A13, respectively. Tree shrew CYP2A13 metabolized coumarin and phenacetin, which are typical substrates of human CYP2A6 and CYP2A13, respectively. These results indicate that tree shrew CYP2A13 is a functional drug-metabolizing enzyme and possibly plays roles similar to those of human CYP2As in liver and lung.
Acknowledgments

We thank Shotaro Uehara, Saho Morikuni, Yuki Fujiki, Asuka Oguchi, Kazuma Kiyotani, Koichiro Adachi, and Makiko Shimizu for their support of this work, and David Smallbones for copyediting a draft of this article.
Authorship Contributions

Participated in research design: Uno, Yamazaki.

Conducted experiments: Ushirozako, Noda, Murayama, Uno.

Contributed new reagents or analytic tools: Kawaguchi, Tsukiyama-Kohara, Uno.

Performed data analysis: Uno, Yamazaki.

Wrote or contributed to the writing of the manuscript: Ushirozako, Uno, Yamazaki.
References

Uno Y, Noda Y, Murayama N, Tsukiyama-Kohara K, and Yamazaki H (2022a) Novel cytochrome
P450 1 (CYP1) genes in tree shrews are expressed and encode functional drug-metabolizing enzymes *Comp Biochem Physiol C*, in press.

Footnotes

Funding

This work was supported in part by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research 20K06434.

Declaration of Interest

The authors have no competing interests to declare.
Figure legends

Fig. 1. Multiple alignment of CYP2A amino acid sequences. Amino acid sequences of dog (d), pig (p), tree shrew (ts), and human (h) CYP2A cDNAs were aligned using ClustalW. Solid and broken lines, respectively, indicate the putative substrate recognition sites (SRSs) and heme-binding region. Asterisks and dots under the sequences, respectively, indicate identical and conservatively changed amino acids.

Fig. 2. Phylogeny of tree shrew CYP2A13. The phylogenetic tree was created by the neighbor-joining method using CYP2A amino acid sequences of humans (h), cynomolgus macaques (mf), dogs (d), pigs (p), tree shrews (ts), and rats (r). Cynomolgus CYP2G2 was used as the outgroup. The scale bar represents 0.1 amino acid substitutions per site.

Fig. 3. Genomic organization of CYP2A genes. BLAT and Sequence Viewer were used to analyze the human, dog, pig, and tree shrew genomes. CYP2A genes were located in the CYP2ABFGST gene cluster in the human, dog, pig, and tree shrew genomes. The gene sizes and the distances between them are not proportional to actual values.

Fig. 4. Gene structures of CYP2A genes. The coding region of each cDNA sequence was aligned with the genome using BLAT or Sequence Viewer for human (h), dog (d), pig (p), and tree shrew (ts) CYP2A genes.

Fig. 5. Tissue expression of CYP2A mRNAs. Expression of CYP2A mRNAs was quantified by real-time RT-PCR in dog, pig, and tree shrew tissues. The expression level of each mRNA was normalized to the 18S rRNA level, and values represent the average ± SD from three independent amplifications. The most abundant expression was arbitrarily set to 1, and all other expression levels were adjusted accordingly.

Fig. 6. Oxidation activities by liver microsomes and recombinant CYP2A proteins in humans, dogs, pigs, and tree shrews. Drug oxidation activities were determined in liver microsomes (A) and...
recombinant proteins (B) using coumarin (pink bars) and phenacetin (gray bars) at substrate concentrations of 10 µM (pale bars) and 100 µM (normal bars) in triplicate. Data with bars represent mean and standard deviation values, respectively. Dog CYP2A25 activity was under detection limit (< 0.001 nmol/min/nmol P450) and is not shown.

Fig. 7. Apparent inverse relationship between $V_{\text{max}}/K_{\text{m}}$ values for coumarin 7-hydroxylation and phenacetin O-deethylation by recombinant CYP2A proteins. The numbers in parentheses are the results after excluding the data point for human CYP2A13. Solid and dashed lines represent the regression line and 95% confidential intervals, respectively.
Table 1

Primer sequences.

<table>
<thead>
<tr>
<th></th>
<th>Sequence (5’ → 3’)</th>
<th>RT-PCR</th>
<th>Exp</th>
<th>qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A13</td>
<td>F</td>
<td>dCYP2A13 (5rt1)</td>
<td>GGAATTCCCATATGGCTCTGTATTAGCAGTTTTTT-GTGGAACCTGC</td>
<td>GCAATTTCTGAGACACACCTGAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dCYP2A13 (3rt1)</td>
<td>GCTCTGCTGTCTGAGCCCTGAT</td>
<td>GAGTAGTCACTACTGCTTAAGCTCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A25</td>
<td>F</td>
<td>dCYP2A7 (5rt1)</td>
<td>GGAATTCCCATATGGCTCTGTATTAGCAGTTTTTT-GTGGAACCTGC</td>
<td>GCAATTTCTGAGACACACCTGAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dCYP2A7 (3rt1)</td>
<td>GCTCTGCTGTCTGAGCCCTGAT</td>
<td>GAGTAGTCACTACTGCTTAAGCTCA</td>
</tr>
<tr>
<td>Pig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A19</td>
<td>F</td>
<td>pCYP2A19 (5rt1)</td>
<td>GGAATTCCCATATGGCTCTGTATTAGCAGTTTTTT-GTGGAACCTGC</td>
<td>GCAATTTCTGAGACACACCTGAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pCYP2A19 (3rt1)</td>
<td>GCTCTGCTGTCTGAGCCCTGAT</td>
<td>GAGTAGTCACTACTGCTTAAGCTCA</td>
</tr>
<tr>
<td>Tree shrew</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A13</td>
<td>F</td>
<td>tsCYP2A13 (5rt1)</td>
<td>GGAATTCCCATATGGCTCTGTATTAGCAGTTTTTT-GTGGAACCTGC</td>
<td>GCAATTTCTGAGACACACCTGAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tsCYP2A13 (3rt1)</td>
<td>GCTCTGCTGTCTGAGCCCTGAT</td>
<td>GAGTAGTCACTACTGCTTAAGCTCA</td>
</tr>
</tbody>
</table>

F, forward primer; R, reverse primer; RT-PCR, reverse transcription polymerase chain reaction; Exp, expression; qPCR, quantitative polymerase chain reaction.
Table 2

Sequence identities of dog, pig, and tree shrew CYP2As compared with human CYP2As in amino acids.

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYP2A6</td>
<td>CYP2A7</td>
<td>CYP2A13</td>
</tr>
<tr>
<td>Dog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A13</td>
<td>89</td>
<td>87</td>
<td>92</td>
</tr>
<tr>
<td>CYP2A25</td>
<td>86</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>Pig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2A19</td>
<td>88</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Tree shrew</td>
<td>CYP2A13</td>
<td>88</td>
<td>87</td>
</tr>
</tbody>
</table>

Each CYP2A amino acid sequence was compared with human CYP2A sequences using BLAST.

Data show sequence identities as percentages.
Table 3

In vitro kinetic parameters for coumarin 7-hydroxylation and phenacetin *O*-deethylation by recombinant CYP2A enzymes

<table>
<thead>
<tr>
<th>P450</th>
<th>Coumarin 7-hydroxylation</th>
<th>Phenacetin O-deethylation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_m, μM</td>
<td>V_{max}, min$^{-1}$</td>
</tr>
<tr>
<td>Human 2A6</td>
<td>3.1 ± 0.3</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>Human 2A13</td>
<td>0.47 ± 0.02</td>
<td>0.29 ± 0.01</td>
</tr>
<tr>
<td>Dog 2A13</td>
<td>1.1 ± 0.1</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>Pig 2A19</td>
<td>11 ± 2.0</td>
<td>6.0 ± 0.4</td>
</tr>
<tr>
<td>Tree shrew 2A13</td>
<td>12 ± 3.0</td>
<td>5.0 ± 0.3</td>
</tr>
</tbody>
</table>

Coumarin and phenacetin (0.36–300 μM) were incubated with recombinant CYP2A enzymes (25–50 pmol equivalent/mL) at 37°C for 10–20 min. Kinetic parameters were calculated by nonlinear regression (mean ± standard error, n = 13 substrate concentrations, in triplicate). The goodness of fit for coumarin 7-hydroxylation and phenacetin *O*-deethylation activities by five recombinant CYP2A enzymes was confirmed by coefficient squared (r^2, 0.96-0.99).
<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCYP2A6</td>
<td>MLASGMLLVA LLVCLTVMVL MSVWQQRKSK GKLPPGPTPL PFIGNYLQLN TEQMYNSLMK ISERYGPVFT IHLGPRRVVV LCGHDAVREA LVDQAEEFSG</td>
</tr>
<tr>
<td>hCYP2A7</td>
<td>MLASGMLLVA LLVCLTVMVL MSVWQQRKSR GKLPPGPTPL PFIGNYLQLN TEHICDSIMK FSECYGPVFT IHLGPRRVVV LCGHDAVREA LVDQAEEFSG</td>
</tr>
<tr>
<td>hCYP2A13</td>
<td>MLASGMLLVT LLACLTVLVL MSVWQQRKSR GKLPPGPTPL PFIGNYLQLN TEQMYNSLMK ISERYGPVFT IHLGPRRVVV LCGHDAVREA LVDQAEEFSG</td>
</tr>
<tr>
<td>dCYP2A25</td>
<td>MVASGILLVA LLTCLTVMVL MSVRRQWKLL EKLPPGPTPL PFIGNYLQLN IQQMSDSFMK ISKRYGPVFT IHLGPRRVVV LCGYEAVKEA LVDQAEEFSG</td>
</tr>
<tr>
<td>dCYP2A13</td>
<td>MLASGMLLVA LLACLTVLVL MSVWKQRKLG GKLPPGPTPL PFIGNYLQLN TEQMYNSLMK ISERYGPVFT IHLGPRPVVV LCGHEAVKEA LVDQAEEFSG</td>
</tr>
<tr>
<td>pCYP2A19</td>
<td>MLASGMLLVA LLACLTVLVL MSVWKQRKLG GKLPPGPTPL PFIGNYLQLN TEQMYNSLMK ISERYGPVFT IHLGPRPVVV LCGHEAVKEA LVDQAEEFSG</td>
</tr>
<tr>
<td>tsCYP2A13</td>
<td>MLVSGLLLVA LLATLTVLVL MSVWKQRKLW GKLPPGPTPL PFIGNYLQLN TEQMYNSLMK IGESYGSVFT IHLGPRPVVV LCGHEAVKEA LVDQAEEFSG</td>
</tr>
<tr>
<td>hCYP2A6</td>
<td>RGEQATFDWV FKGYGVVFSN GERAKQLRRF SIATLRDFGV GKRGIEERIQ EEAGFLIDAL RGTGGANIDP TFFLSRTVSN VISSIVFGDR FDYKDKEFLS</td>
</tr>
<tr>
<td>hCYP2A7</td>
<td>RGEQATFDWV FKGYGVAFSN GERAKQLLRF AIATLRDFGV GKRGIEERIQ EESGFLIEAI RSTHGANIDP TFFLSRTVSN VISSIVFGDR FDYEDKEFLS</td>
</tr>
<tr>
<td>hCYP2A13</td>
<td>RGEQATFDWL FKGYGVAFSN GERAKQLRRF SIATLRGFGV GKRGIEERIQ EEAGFLIDAL RGTHGANIDP TFFLSRTVSN VISSIVFGDR FDYEDKEFLS</td>
</tr>
<tr>
<td>dCYP2A25</td>
<td>RGAQATFDTL FKGYGVTFSN GERAKQLRRF SITTLRDFGV GKRGIEERIQ EEAGFLIEAL QGTRGAFIDP TFFLSRTVSN VISSIVFGDR FDYEDKEFLS</td>
</tr>
<tr>
<td>dCYP2A13</td>
<td>RGEQATFDWL FKGYGVAFSN GERAKQLRRF SITTLRDFGV GKRGIEERIQ EEAGFLIEAL RGTRGAFIDP TFFLSRTVSN VISSIVFGDR FDYEDKEFLS</td>
</tr>
<tr>
<td>pCYP2A19</td>
<td>RGEQATFDWL FKGYGVAFSN GERAKQLRRF SITTLRDFGV GKRGIEERIQ EEAGHLIEAF RGTRGAFIDP TYFLSRTVSN VISSIVFGDR FDYEDKEFLA</td>
</tr>
<tr>
<td>tsCYP2A13</td>
<td>RGEQATFDWL FKGYGVAFSN GERAKQLRRF SITTLRDFGV GKRGIEERIM EEAGFLIEAF KETRGAIIDP TFFLSRTVSN VISSIVFGDR FDYEDKEFLS</td>
</tr>
<tr>
<td>hCYP2A6</td>
<td>LLRMMLGIFQ FTSTSTGQLY EMFSSVMKHL PGPQQQAFQL LQGLEDFIAK KVEHNQRTLD PNSPRDFIDS FLIRMQEEEK NPNTEFYLKN LVMTTLNLFI</td>
</tr>
<tr>
<td>hCYP2A7</td>
<td>LLSMMLGIFQ FTSTSTGQLY EMFSSVMKHL PGPQQQAFKL LQGLEDFIAK KVEHNQRTLD PNSPQDFIDS FLIHMQEEEK NPNTEFYLKN LMMSTLNLFI</td>
</tr>
<tr>
<td>hCYP2A13</td>
<td>LLRMMLGSFQ FTATSTGQLY EMFSSVMKHL PGPQQQAFKE LQGLEDFIAK KVEHNQRTLD PNSPRDFIDS FLIRMQEEEK NPNTEFYLKN LVMTTLNLFF</td>
</tr>
<tr>
<td>dCYP2A25</td>
<td>LLRMMLGSFQ FTATSMGQLC EMFHSVIKYL PGPQQQAIKE LQGLEDFITK KVEQNQRTLD PNSPRDFIDS FLIRMQEEEQ NPNTEFHLKN LVLTTLNLFF</td>
</tr>
<tr>
<td>dCYP2A13</td>
<td>LLRMMLGSFQ FTATSMGQLY EMFYSVMKHL PGPQQQAFKE LQGLEDFITK KVEQNQRTLD PNSPRDFIDS FLIRMQEEQQ NPNTEFHLKN LVLTTLNLFF</td>
</tr>
<tr>
<td>pCYP2A19</td>
<td>LLRMMLGSFQ FTATSMGQLY EMFYSVMKHL PGPQQQAFKD LQGLEDFITK KVEQNQRTLD PNSPRDFIDS FLIRMQEEQK NPDTEFYWKN LVLTTLNLFF</td>
</tr>
<tr>
<td>tsCYP2A13</td>
<td>LLSMMLGSFQ FTATSTGQLY EMFYSVMKHL PGPQQQAFKE LQGLEDFVAK KVEQNQRTLD PNSPRDFIDS FLIRMKEEQK NPNTEFMKHN LVLTTLNLFF</td>
</tr>
<tr>
<td>hCYP2A6</td>
<td>DPSFFSNPQD FNPQHFLNEK GQFKKSDAFV PFSIGKRNCF GEGLARMELF LFFTTVMQNF RLKSSQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>hCYP2A7</td>
<td>DPSFFSNPQD FNPQHFLDDK GQFKKSDAFV PFSIGKRNCF GEGLARMELF LFFTTIMQNF RFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>hCYP2A13</td>
<td>DPSFFSNPQD FNPQHFLDDK GQFKKSDAFV PFSIGKRNTF GEGLARMELF LFFTTIMQNF RFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>dCYP2A25</td>
<td>DAKFFSNPQD FHPQHFLDEK GQFKKSDAFV PFSIGKRNTF GEGLARMELF LFFTTLIMQNF RFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>dCYP2A13</td>
<td>DAKFFSNPQD FHPQHFLDDK GQFKKSDAFV PFSIGKRNTF GEGLARMELF LFFTTLIMQNF RFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>pCYP2A19</td>
<td>DPKFFSNPQD FNPQHFLDEN GQFKKNDAFV PFSIGKRNTF GEGLARMELF LFFTTLIMQNF HFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
<tr>
<td>tsCYP2A13</td>
<td>DPKFFSNPQD FNPQHFLDEN GQFKKNDAFV PFSIGKRNTF GEGLARMELF LFFTTLIMQNF HFKSPQSPKD IDVSPKHVGG ATIPPNTMTM FQPR*</td>
</tr>
</tbody>
</table>

SRS-1

SRS-2

SRS-3

SRS-4

SRS-5

SRS-6

This article has not been copyedited and formatted. The final version may differ from this version.

DMD Fast Forward. Published on January 20, 2023 as DOI: 10.1124/dmd.122.001152

at ASPET Journals on March 9, 2024 dmd.aspetjournals.org Downloaded from
Fig. 2

The diagram shows a phylogenetic tree with various CYP2A isoforms, including:
- mfCYP2G2
- mfCYP2A23
- hCYP2A13
- mfCYP2A26
- hCYP2A7
- mfCYP2A24
- mfCYP2A23
- hCYP2A13
- tsCYP2A13
- pCYP2A19
- dCYP2A25
- dCYP2A25
- rCYP2A1
- rCYP2A2
- rCYP2A3
- mfCYP2A19
Fig. 3

Human chromosome 6

Dog chromosome 1

Pig chromosome 6

Tree shrew (NW_006159476, NW_006203712)
Fig. 6

(A) Liver microsomes

(B) Recombinant P450 protein

Coomarin 7-hydroxylation and phenacetin O-deethylation, nmol/min/mg protein

Human, male, female
Dog, male, female
Pig, male, female
Tree shrew, #1, #2

Human 2A6, 2A13
Dog 2A13
Pig 2A19
Tree shrew 2A13
Fig. 7

This article has not been copyedited and formatted. The final version may differ from this version.