THE UTILITY OF MIXED-EFFECTS MODELS IN THE EVALUATION OF COMPLEX GENOMIC TRAITS IN VITRO

Nathan Alade¹, Abhinav Nath², Nina Isoherranen¹ and Kenneth E. Thummel¹

Department of Pharmaceutics¹ and Medicinal Chemistry², School of Pharmacy, University of Washington, Seattle WA,
Corresponding Author:

Name: Nathan Alade, M.S.
Address: University of Washington School of Pharmacy
Department of Pharmaceutics
H-272 Health Sciences Building, Box 357610
Seattle, Washington 98195
Email: alade@uw.edu
Phone: 206-543-9434
Fax: 206-543-3204
<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Title</td>
<td>Mixed-Effects Models for In Vitro Xenobiotic Metabolism</td>
</tr>
<tr>
<td>Number of text pages</td>
<td>35</td>
</tr>
<tr>
<td>Number of tables</td>
<td>1</td>
</tr>
<tr>
<td>Number of figures</td>
<td>5</td>
</tr>
<tr>
<td>Number of words in</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>213</td>
</tr>
<tr>
<td>Introduction</td>
<td>792</td>
</tr>
<tr>
<td>Discussion</td>
<td>1201</td>
</tr>
<tr>
<td>Number of references</td>
<td>30</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-OH-ATX</td>
<td>4-Hydroxy-Atomoxetine</td>
</tr>
<tr>
<td>ATX</td>
<td>Atomoxetine</td>
</tr>
<tr>
<td>BSV</td>
<td>Between Subject Variability</td>
</tr>
<tr>
<td>CL</td>
<td>Clearance</td>
</tr>
<tr>
<td>CL\textsubscript{int}</td>
<td>Intrinsic Clearance</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>DME</td>
<td>Drug Metabolizing Enzyme(s)</td>
</tr>
<tr>
<td>HLM</td>
<td>Human Liver Microsomes</td>
</tr>
<tr>
<td>IIV</td>
<td>Inter-individual Variability</td>
</tr>
<tr>
<td>IVIVE</td>
<td>In vitro to In vivo Extrapolation</td>
</tr>
<tr>
<td>k\textsubscript{cat}</td>
<td>Catalytic Rate Constant</td>
</tr>
<tr>
<td>K\textsubscript{m}</td>
<td>Michaelis-Menten Constant</td>
</tr>
<tr>
<td>NLME</td>
<td>Non-Linear Mixed Effects Model(s)</td>
</tr>
<tr>
<td>PD</td>
<td>Pharmacodynamic(s)</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetic</td>
</tr>
<tr>
<td>PopPK</td>
<td>Population Pharmacokinetic(s)</td>
</tr>
<tr>
<td>V</td>
<td>Volume of Distribution</td>
</tr>
<tr>
<td>V\textsubscript{max}</td>
<td>Maximum Velocity</td>
</tr>
</tbody>
</table>
ABSTRACT

In pharmacogenomic studies, the use of human liver microsomes as a model system to evaluate the impact of complex genomic traits (i.e., linkage-disequilibrium patterns, coding, and non-coding variation, etc.) on efficiency of drug metabolism is challenging. To accurately predict the true effect size of genomic traits requires large richly sampled datasets representative of the study population. Moreover, the acquisition of this data can be labor-intensive if the study design or bioanalytical methods are not high throughput, and it is potentially unfeasible if the abundance of sample needed for experiments is limited. To overcome these challenges, we developed a novel strategic approach using non-linear mixed effects models (NLME) to determine enzyme kinetic parameters for individual liver specimens using sparse data. This method can facilitate evaluation of the impact that complex genomic traits have on the metabolism of xenobiotics in vitro when tissue and other resources are limited. In addition to facilitating the accrual of data, it allows for rigorous testing of covariates as sources of kinetic parameter variability. In this in silico study, we present a practical application of such an approach using previously published in vitro CYP2D6 data and explore the impact of sparse sampling, and experimental error on known kinetic parameter estimates of CYP2D6 mediated formation of 4-hydroxy-atomoxetine in human liver microsomes.
SIGNIFICANCE STATEMENT

This study presents a novel NLME based framework for evaluating the impact of complex genomic traits on saturable processes described by a Michaelis-Menten kinetics \textit{in vitro} using sparse data. The utility of this approach extends beyond gene variant associations, including determination of covariate effects on \textit{in vitro} kinetic parameters, and reduced demand for precious experimental material.
INTRODUCTION

Pharmacogenomic studies remain a key precision medicine tool for evaluating the impact of genetic variability on drug disposition (Huang, Chen, & Giacomini, 2022; Peck, 2018; Reynolds, 2012; Woodcock & Lesko, 2009). Major innovations in DNA sequencing technologies now enable exploration and discovery of previously unidentified polymorphisms and complex genomics traits (Schwarz, Gulilat, & Kim, 2019). Despite these advancements, measuring the effect of often rare and/or coinciding genetic variants on drug disposition remains challenging due to either sample size restrictions and/or the inability to distinguish causal variants from others. This is further complicated by interindividual variability (IIV) in drug-metabolizing enzyme (DME) expression associated with other intrinsic factors (i.e., age, sex, disease state, etc.) and extrinsic factors (i.e., diet, concomitant drug use, and environmental exposures) which are known to impact metabolic activity (Parkinson, Mudra, Johnson, Dwyer, & Carroll, 2004). There are several methods by which human pharmacokinetic (PK) parameters can be predicted from preclinical pharmacokinetic data and/or in vitro (Obach et al., 1997). Of these methods, in vitro to in vivo extrapolation (IVIVE) using human liver microsomes (HLMs) provides a convenient system for evaluating the impact of genetic variants on drug metabolism and in vivo pharmacokinetics.

Variation in genes encoding drug-metabolizing enzymes (DMEs) can produce altered catalytic activity in several ways (Nagar, Argikar, & Tweedie, 2021), including amino-acid substitutions that lead to perturbations in protein structure, stability and/or function, modifications of regulatory elements that control gene transcription, and nucleotide insertions and/or deletions that alter gene translation. The downstream impact that genetic variability has on enzymatic activity can be assessed experimentally by estimating the Michaelis-Menten
parameters K_m, and V_{max} ($k_{\text{cat}} \times [E]$, where E = enzyme abundance) \textit{in vitro} and comparing the intrinsic clearance (V_{max}/K_m) values for tissues from donors exhibiting combinations of reference and variant alleles. However, to accurately predict the true effect size of genetic variation on intrinsic clearance (CL_{int}) at a population level using HLMs often requires large richly sampled datasets representative of the study population in question (LaPierre et al., 2021; Mohatt et al., 2007), and accumulating this data can be labor-intensive and time-consuming if the study design and bioanalytical methods are not high-throughput. An efficient and commonly employed method to address this involves pooling individual HLMs by genotype and comparing the pool's CL_{int} estimates to a reference group by fitting experimental data using a Michaelis-Menten model (Flora & Tracy, 2012; McDonald, Rieder, Nakano, Hsia, & Rettie, 2009; Shirasaka et al., 2016). Although this method provides robust estimates of kinetic parameters, relevant information about the sample population such as between-subject variability (BSV) and its correlation with known intrinsic or extrinsic factors is lost. Alternatively, another commonly used \textit{in vitro} approach approximates individual intrinsic clearances (CL_{int}) by evaluating metabolite formation or parent drug depletion at singular sub-saturating substrate concentrations (Dalton et al., 2020) ($[S] \ll K_m$); this generally allows for a larger number of individuals to be included in the data analysis, and the retention of covariate information. However, this approach does not provide robust estimates of the underlying kinetic parameters (V_{max}, and K_m) that ultimately determine CL_{int}, and as a result, there is a loss in mechanistic understanding of the impact that genetic variation has on DME function.

Population pharmacokinetic models (PopPKPD) are powerful tools that utilize a non-linear-mixed effects modeling approach to study both population and individual-level PK and PD relationships \textit{in vivo} (Bhavatharini, Deepalakshmi, & Arun, 2022; Bonate, 2005; Sheiner & Beal,
1980; Sheiner, Rosenberg, & Marathe, 2015). Additionally, the impact of known covariates (i.e., intrinsic, and extrinsic factors) on PK parameters (e.g., CL, and V) can be incorporated into PopPKPD models and quantified as “fixed-effects,” while known sources of unexplained variability (e.g., individual subjects) can be quantified as “random effects”. One key advantage of PopPKPD models is the ability to estimate individual PK parameters based on a complete profile of the entire population instead of its individuals; thus, sparse data can be used at the individual level to generate meaningful estimates of both fixed and random effects. Although top-down approaches are not designed to provide a mechanistic understanding of factors that impact PK parameters, a population-based approach using non-linear mixed-effects modeling in vitro can answer these questions while maintaining the previously mentioned advantage of sparse sampling at the individual level; its utility in this regard has been demonstrated extensively in the fields of agronomy and ecology (Archontoulis & Miguez, 2015; Oddi, Miguez, Ghermandi, Bianchi, & Garibaldi, 2019). In this article, we further explore the utility of non-linear mixed-effects models and their practical application in the field of pharmacogenomics, for estimating individual level and population-level Michaelis-Menten kinetic parameters (V_{max} and K_{m}) of known CYP2D6 variants using a sparse strategic sampling approach. We also explore the utility of mixed effects models for hypothesis testing and characterization of complex genomic traits.
MATERIALS AND METHODS

Virtual Population Design. A virtual population (n = 9000) consisting of individuals across 9 CYP2D6 genotype groups (*1/*1, *1/*2, *1/*2x2, *1/*4, *2/*2, *2/*3, *2/*4, *4/*41, and *4/*5; 1000 subjects per group) was simulated in silico using R (v4.2.0). Individual microsomal V_{max} and K_{m} values were generated randomly and centered by genotype around mean estimates extracted from previously published work (Dinh, Pearce, Haandel, Gaedigk, & Leeder, 2016). Within-group standard deviation for each parameter was fixed at 25% of the extracted mean estimate to simulate the variability observed in in-vitro population studies.

In silico Study Design. In silico experiments were conducted to simulate CYP2D6 mediated formation of 4-hydroxy-atomoxetine (4-OH-ATX) in human liver microsomes using atomoxetine as a probe substrate. Michaelis-Menten kinetics were simulated across substrate concentrations ranging between 0-2000 µM using V_{max} and K_{m} parameters obtained from individuals in the virtual population. Two types of sampling designs were employed to define substrate concentrations used to generate the Michaelis-Menten profiles: rich and sparse designs. Rich design experiments were conducted using 9 overlapping atomoxetine (ATX) incubation concentrations per subject (for extensive and ultra-rapid metabolizers) or 16 overlapping atomoxetine (ATX) incubation concentrations per subject (for intermediate and poor metabolizers). To determine an optimal sparse design sampling scheme a pilot study was conducted at the outset to explore the lower limit of a randomized sampling approach. In this pilot study, individuals of a virtual population (n = 21) were randomly assigned to either a 2 or 3pt sampling scheme with concentrations that were randomly selected across a fixed range (1-100 uM). Results from that study revealed that a 3pt sampling scheme, where substrate
concentration landed above, near and below the population K_m values, performed the best, whereas 2-point sampling schemes gave the least accurate estimates and were subject to a high degree of model shrinkage (data not shown). Based on these results, for the study at hand, the sparse design experiments used 3-4 staggered incubation concentrations (below, near, and above anticipated K_m value) per subject, with both designs covering similar concentration ranges, depending on the genotype. Residual error was added to simulated data using a constant coefficient of variation structure, where the observed metabolic rate (V_{obs}) for the i^{th} individual at the j^{th} substrate incubation concentration is described by Equation 1. The residual errors (ε_i) were normally distributed with a mean of 0 and a standard deviation (σ) set at the following values: 0, 0.05, 0.10, or 0.2.

Equation 1:

$$V_{obs\ ij} = V_{ij} + (V_{ij} \times \varepsilon_{ij})$$

$$\varepsilon_i \sim N(0, \sigma^2)$$

Model Development. In silico population modeling was performed in R (v4.2.0) using the NLME (Pinheiro & Bates, 2000) mixed-effects modeling package and supporting packages for data manipulation and graphics. The final model was built by fitting a structural (base) model and a random-effects model with covariates. The structure of the base model was derived from the Michaelis-Menten equation with modifications to V_{max} and K_m to incorporate both fixed- and random-effects. Product formation rate for the i^{th} individual at the j^{th} substrate incubation concentration, defined as (V_ij), was modeled as a function of a Φ_i and substrate concentration (S_i) plus residual error (ε_{ij}); where Φ_i is a matrix of parameters (Φ_{1i} and Φ_{2i}) each being vectors of...
fixed and random effects whose sum equates to the predicted individual-level estimates of \(V_{\text{max}} \) and \(K_m \), respectively (Equation 2). Specifically, individual estimates of \(V_{\text{max}} \) (\(\Phi_{1i} \)) and \(K_m \) (\(\Phi_{2i} \)) were defined as the sum of a typical population value for \(V_{\text{max}} \) (\(\theta_{1, V_{\text{max}}} \)) or \(K_m \) (\(\theta_{2, K_m} \)), a fixed covariate effect based on individual CYP2D6 genotype (\(X_{1i, \text{Genotype Vmax}} \) or \(X_{2i, \text{Genotype K_m}} \)) and an individual specific random effect on both \(V_{\text{max}} \) and \(K_m \) (\(\eta_{1i} \) and \(\eta_{2i} \), respectively) (Equation 3).

\(X_{1i, \text{genotype Vmax}} \) and \(X_{2i, \text{genotype K_m}} \) were incorporated as additive fixed-effects under the assumption that they do not depend on the magnitude of the typical value (reference group); rather they deviate from the typical value by a fixed magnitude. An additive variation was used to describe between-subject variability under the assumption that random effects are distributed evenly across a parameter estimate after accounting for the fixed genotype effect. Individual level random effects (\(\eta_i \)) and residual error (\(\varepsilon_{ij} \)) were assumed to be normally distributed with a mean of 0 and \(\varepsilon_{ij} \) having a variance of \(\sigma^2 \). \(V_{\text{max}} \) and \(K_m \) were assumed to be uncorrelated (independent), therefore variance (\(\Phi_{j} \)) for \(\eta_i \) was structured as a diagonal matrix with covariance set to 0. In scenarios where the underlying kinetic parameters are log-normally distributed in the population an alternate structure for incorporating random-effects into the model is to use exponential variation as described in Equation 4. Where \(\theta_{1, V_{\text{max}}} \) and \(\theta_{1, K_m} \) represent the typical population value for \(V_{\text{max}} \) and \(K_m \); \(\theta_{2, V_{\text{max}}} \) and \(\theta_{2, K_m} \) represent the fixed effect of each genotype on \(V_{\text{max}} \) and \(K_m \); \(X_{i, \text{Genotype}} \) represents a binary categorical covariate denoting the presence or absence of a specific genotype (0 = no, 1 = yes); and \(\eta_{1i} \) and \(\eta_{2i} \) represent individual random-effects on \(V_{\text{max}} \) and \(K_m \), respectively.

Equation 2:

\[
V_{ij} = f(\Phi_i, S_i) = \frac{\Phi_{1i} \times S_i}{\Phi_{2i} + S_i} + \varepsilon_{ij}
\]
Equation 3:

\[
\Phi_i = \begin{bmatrix} \Phi_{1i} \\ \Phi_{2i} \end{bmatrix} = \begin{bmatrix} \theta_{1, \text{Vmax}} \\ \theta_{2, \text{Km}} \end{bmatrix} + \begin{bmatrix} X_{1i, \text{Genotype Vmax}} \\ X_{2i, \text{Genotype Km}} \end{bmatrix} + \begin{bmatrix} \eta_{1i} \\ \eta_{2i} \end{bmatrix} = \theta + X_i + \eta_i
\]

\[
\eta_i = \begin{bmatrix} \eta_{1i} \\ \eta_{2i} \end{bmatrix} \sim N(0, \begin{bmatrix} \psi_1 & 0 \\ 0 & \psi_2 \end{bmatrix}), \quad \varepsilon_i \sim N(0, \sigma^2)
\]

Equation 4:

\[
\Phi_i = \begin{bmatrix} \Phi_{1i} \\ \Phi_{2i} \end{bmatrix} = \left(\begin{bmatrix} \theta_{1, \text{Vmax}} \\ \theta_{2, \text{Km}} \end{bmatrix} + \begin{bmatrix} \theta_{2, \text{Vmax}} \\ \theta_{2, \text{Km}} \end{bmatrix} \times X_{i, \text{Genotype}} \right) \times e^{\eta_{2i}}
\]

Intrinsic clearance \((CL_{int})\) estimates were calculated as the quotient of \(\text{V}_{\text{max}}/\text{K}_m\), with population level intrinsic clearance defined as \((\theta_1, \text{Vmax})/(\theta_2, \text{Km})\), genotype level defined as \((X_{1i, \text{Genotype Vmax}} + \theta_1, \text{Vmax})/(X_{2i, \text{Genotype Km}} + \theta_2, \text{Km})\) and individual level intrinsic clearance defined by \(\Phi_{1i}/\Phi_{2i}\) as described in Equation 5.

Equation 5

\[
CL_{int_i} = \frac{\Phi_{1i}}{\Phi_{2i}} = \frac{\theta_{1, \text{Vmax}} + X_{1i, \text{Genotype Vmax}} + \eta_{1i}}{\theta_{2, \text{Km}} + X_{2i, \text{Genotype Km}} + \eta_{2i}}
\]

Selection of the appropriate covariates and error model were based on Akaike criterion (AIC), \(F\)-tests (ANOVA), diagnostic plots, and the precision of the parameter estimate (95% confidence intervals, relative standard error). The final model was weighted using a power residual error structure.
Model Evaluation. Intrinsic clearance (CL_{int}) sensitivity was assessed by comparing standardized residuals (Pearson) values for each CYP2D6 genotype across all experimental designs and conditions (rich and sparse designs, 0-20% CV). Standardized residuals were calculated using **Equation 6**. Where the Pearson residual (R_{p,ijk}) of the i^{th} genotype and the j^{th} experimental condition for the k^{th} parameter is equal to the difference between the predicted (P_{ijk}) estimate of the i^{th} genotype for the j^{th} condition and expected value for the k^{th} parameter divided by the square-root of the expected value for the k^{th} parameter for the i^{th} genotype.

Equation 6

\[
R_{p,ijk} = \frac{P_{ijk} - E_{tk}}{\sqrt{E_{tk}}}
\]

Additionally, non-parametric bootstrap analysis based on a total of 120 generated datasets (10 resampled populations per experimental condition) was performed to evaluate the precision of the final model parameters. Mean parameter estimates and 95% confidence intervals for each condition were summarized by genotype. Confidence intervals were calculated using **Equation 7**, where confidence interval (CI) is equal to the mean value of the sample population (\(\bar{x}\)) plus or minus the t-score at significance level \(\alpha (0.05)\) for \(N-1\) degrees of freedom, \(t_{(\alpha/2),(N-1)}\) multiplied by the standard error of the sample population mean \(S_{\bar{x}}\).

Equation 7

\[
CI = \bar{x} \pm t_{(\alpha/2),(N-1)} \times S_{\bar{x}}
\]
Substrate Depletion Model. An alternative, and mathematically equivalent, method of estimating intrinsic clearance and Michaelis-Menten parameters is by monitoring depletion of parent drug rather than metabolite formation. Here, we assume (1) reaction rate \(v \) which is the change in substrate concentration over time \(d[S]/dt \) is equal to the change in product formation over time \(-d[P]/dt \) at steady-state, and (2) product formation represents the sum of all metabolic formation clearance pathways for the parent in the system. Reaction rate \(v \) can be modeled as a substrate dependent hyperbolic relationship defined by a theoretical first-order depletion rate constant observed at infinitesimally low substrate concentrations \(k_{dep[S] \to 0} \) and the Michaelis-Menten constant \(K_m \); where \(k_{dep[S] \to 0} \) is equal to intrinsic clearance (Equation 8).

Similar to the Michaelis-Menten equation, a population approach can be applied by re-parameterizing this model to include fixed and random effects (Equation 9). The depletion rate for the \(i^{th} \) individual at the \(j^{th} \) substrate incubation concentration, defined as \(v_{ij} \), can be modeled as a function of a \(\Phi_i \) and substrate concentration \(S_i \) plus residual error \(\varepsilon_{ij} \); where \(\Phi_i \) is a matrix of parameters \(\Phi_{1i} \) and \(\Phi_{2i} \) each being vectors of fixed and random effects whose sum equates to the predicted individual-level estimates of \(V_{max} \) and \(K_m \), respectively.

Equation 8

\[
\begin{align*}
v &= k_{dep[S]} = k_{dep([S] \to 0)} \times \left(1 - \frac{[S]}{[S] + K_m} \right) \\
k_{dep([S] \to 0)} &= \frac{V_{max}}{K_m}
\end{align*}
\]

Equation 9:

\[
v_{ij} = f(\Phi_i, S_i) = \frac{\Phi_{1i}}{\Phi_{2i}} \times \left(1 - \frac{[S]}{[S] + \Phi_{2i}} \right) + \varepsilon_{ij}
\]
RESULTS

Virtual Population Characteristics. A summary of the model development workflow can be found in Figure 1. To generate a virtual population, reported V_{max} and K_m estimates from 21 human liver microsome (HLM) donors (Dinh et al., 2016) were used as a proxy to assign Michaelis-Menten values. Average V_{max} and K_m values across individuals from a total of 9 genotype groups were used as the mean estimates for their respective virtual group. A summary of the extracted parameter estimates can be found in Table S1. Within-group variability was simulated ($n = 1000$ per genotype group) using randomly selected and normally distributed values with a standard deviation of 25% of the mean reported genotype group estimate for both V_{max} and K_m (Figure 2). Setting the standard deviation for the underlying distribution of the Michaelis-Menten parameters (V_{max} and K_m) for each genotype to 25% of the original estimate provided a 707-fold range in V_{max} values (3.47 - 2457 pmol/min/mg protein) and a 464-fold range in K_m values (0.26 - 120.53 µM) across the virtual population ($n = 9000$). Additionally, at 25% CV, within-group variability of Michaelis-Menten parameters exhibited a 6-fold range for each CYP2D6 genotype. Population geometric means for V_{max} and K_m were 181.29 pmol/min/mg protein, and 2.74 µM, respectively. A comparison of the virtual mean estimates and standard deviation for V_{max} and K_m values vs. the actual mean estimate along with their ranges can be found in Table S2 and S18. The experimental population was generated by randomly sampling the virtual population with a total of 10 individuals per genotype group ($n = 90$); a summary of parameter estimates for the sample population (experimental population) can be found in Table 1.
In silico Experiments. To evaluate the utility of estimating Michaelis-Menten parameters using a non-linear mixed effects modeling approach with a minimal dataset, two *in silico* experimental designs (rich design, and sparse design) were evaluated against one another. Due to substantial differences in parameter estimates across genotype groups, in order to characterize the full kinetic profile of 4-OH-ATX formation *in vitro*, ATX incubation concentrations for extensive metabolizer (EM; *I/*I, *I/*2, *I/*4, *2/*2, *2/*3, and *2/*4) and ultra-rapid metabolizers (UM; *I/*2x2) ranged from 0.1-100 μM, while ATX incubation concentrations for intermediate metabolizers (IM; *4/*41) and poor metabolizers (PM; *4/*5) ranged from 1-2000 μM (**Figure 3**). Additionally, each experimental design was subjected to 4 levels of experimental error: 0, 5, 10, and 20% CV (**Figure 4**).

Model Optimization. A Michaelis-Menten structural model was used to characterize the hyperbolic relationship between the initial reaction rate (V_0) of 4-OH-ATX formation and ATX substrate concentration (S). When fixed covariate effects and individual-level random effects (**Equations 2 & 3**) were both incorporated into the model there was improvement in model fit when compared to the base model alone for both rich and sparse sampling designs (ANOVA, $p < 0.0001$). Additive, proportional, combined (additive + proportional), and power structures were used to model residual error (data not shown). The power residual error structure was selected because it provided the greatest improvement across AIC, BIC and log-likelihood, in addition to eliminating heteroscedastic patterns in residual plots (**Tables S3-S10**). Final UM/EM models and IM/PM models stratified by condition are shown in **Figure 5**. Summary tables for all models and experimental conditions can be found in the supplementary data (**Tables S11-S14**). Model
diagnostic plots and the complete code used to perform the data analysis can be found in the supplemental information.

Model Evaluation. Sensitivity analysis was conducted to determine the impact of experimental design on parameter estimates (V\(_{\text{max}}\) and K\(_{\text{m}}\)). Both V\(_{\text{max}}\) and K\(_{\text{m}}\) estimates were within 2-fold of the reference value across all experimental design conditions ([Supplemental Figures 1 & 2](#)). Additionally, extracted estimates of intrinsic clearance (V\(_{\text{max}}\)/K\(_{\text{m}}\)) were also evaluated for sensitivity to experimental conditions. Overall, intrinsic clearance estimates for all CYP2D6 genotype groups across each experimental condition were within 2-fold of reference values and the magnitude of the standardized residual (R\(_{\rho}\), \(P = \text{Pearson}\)) of estimated intrinsic clearance from reference values for each group fell within an acceptable range (-2 < R\(_{\rho}\) < 2) across all conditions ([Supplemental Figure 3](#)); with *1/*2 being the only notable exception for sparse 3 and 4pt 20% CV sampling designs (R\(_{\rho}\) = -2.4 and -2.3, respectively). To assess the sensitivity of the model to individuals within the sample population (n=90 subjects), bootstrap analysis was performed on the original virtual population (n=9000 subjects) which yielded 10 re-sampled populations datasets for each experimental design and condition (n = 120 new datasets). Each dataset was fit to the final non-linear mixed effects covariate model and fixed effects on V\(_{\text{max}}\) and K\(_{\text{m}}\) for each CYP2D6 genotype were extracted. Bootstrapped parameter estimates and 95% confidence intervals for V\(_{\text{max}}\) and K\(_{\text{m}}\) across all conditions for each CYP2D6 genotype are plotted in [Supplemental Figures 4 & 5](#); tabulated summaries can be found in the supplemental data ([Table S15-S17](#)). In summary, bootstrapped Michaelis-Menten estimates, and their 95% confidence intervals fell within 80-125% of reference values for the majority of experimental designs and conditions, specifically 88% and 98% of designs for K\(_{\text{m}}\) and V\(_{\text{max}}\), respectively.
Sparsely sampled designs with high residual error (20% CV) most frequently fell out of this range for K_m (13% of designs) yet infrequently for V_{max} (<1% of designs). All bootstrapped parameter estimates (and confidence intervals) were within 2-fold of their respective reference values.
DISCUSSION

The concept of conducting population analysis in vitro using human liver microsomes as a model system has been demonstrated previously (Belle et al., 2000) where non-linear mixed effects modeling was used as a tool to identify human cytochrome(s) P450s (CYP) involved in the deethylation of phenacetin to acetaminophen. A two-enzyme non-linear mixed effects kinetic model was fit to a sparse data set, generated from incubations containing human liver microsomes (n=19) and phenacetin. Variability in CYP1A2 activity was found to correlate with inter-HLM V_{max} variability, and when CYP1A2 activity was included in the model as a covariate the coefficient of variation improved from 70% to 39%. A noted limitation of that study was a potential data set bias due to the experimental design favoring the identification of the low K_{m1} enzyme (CYP1A2) and lacking the optimum design needed to identify the high K_{m2} enzyme (CYP2C19). In a subsequent study (Bogacka et al., 2017) this concept was expanded upon by exploring how a categorical factor with covariate information can be a design variable combined with other design factors. Bogacka et al. demonstrated how incorporating optimum design strategies into experimental planning can lead to substantial savings and concluded that optimized designs can be equally efficient using less experimental material than is needed in standard practice or, if a similar experimental effort is allowed, can achieve higher efficiency.

Our analysis demonstrates that the incorporation of genotype as a categorical factor with covariate information in conjunction with a dynamic strategic sampling approach can allow for accurate measurement of metabolic kinetic parameters using 50-70% fewer primary data than conventional experimental designs. Our strategic sampling approach, using sparse data at the individual level staggered in a manner to create rich data at the covariate level, provided accurate estimates of kinetic parameters associated with CYP2D6 genotype; with a geometric mean
percent error of 2.61% (range 0%-9.33%) for V_{max} and 4.39% (range 0%-55.7%) for K_{m} across all experimental designs and conditions, when compared to the published estimates. Bootstrap analysis further supported the efficacy of the strategic sampling approach, with mean parameter values and their 95% confidence intervals falling within 80-125% of published estimates for most experimental designs and condition (88% and 98% of conditions for K_{m} and V_{max}, respectively). Additionally, there were minimal differences in parameter estimates and sensitivity to condition between sparse 3pt and 4pt sampling strategies, even with experimental errors as high as 10% CV.

In a scenario where metabolic products have not been (or cannot be) characterized, our approach can still be utilized by adjusting the experimental design to monitor the elimination of the parent drug and switching from a Michaelis-Menten structural model to a substrate depletion model (Equation 8); which has been previously identified as a mathematically equivalent means for monitoring intrinsic clearance of the parent compound in vitro (Nath & Atkins, 2006). Similarly, a non-linear mixed effects model can be applied to estimate kinetic parameters (V_{max}, and K_{m}) across a substrate concentration range to approximate intrinsic clearance ($k_{\text{depl}}[S \rightarrow 0]$) at the individual level (Equation 9). Although modeling in-vitro data using a substrate depletion approach is not the focus of this study, the principles remain the same, hence, provides a suitable example for the broad applicability of our method.

While our strategic sampling approach does not leverage optimal design estimators (Fedorov & Leonov, 2013) which statistically determine the best experimental design by using an iterative search algorithm that seeks to minimize the covariance of the parameter estimates for a specified model using optimality criterion (i.e., D, and E-optimality), it provides a practical example of how such an approach can be applied empirically, solely based off a sampling range
that would be used in a conventionally designed *in vitro* study. It is important to note that a priori knowledge of a genotype-effect (*in vitro* or *in vivo*) is not required when deciding which genotype to include as a covariate in this model, when the goal of a study is to test whether there is a significant difference in activity between a particular variant compared to the reference allele. This is particularly useful for exploratory analysis or hypothesis testing purposes. Moreover, the incorporation of random effects not only allows us to estimate between-subject variability, but also quantify and attribute sources of variability (i.e., inter-day, inter-instrument, and between-analyst variability); many of which are factors unaccounted for when conducting *in vitro* studies (Piehowski et al., 2013). This additional benefit also provides an opportunity to probe complex characteristics of experimental data, such as an interaction between fixed-effects, and hierarchical random-effect structures (Pinheiro & Bates, 2000) (crossed, or nested-random effect designs); both of which could be informative tools for identifying causal variants/conditions found in complex genomic traits (Favé et al., 2018; Goddard, Kemper, MacLeod, Chamberlain, & Hayes, 2016; Slatkin, 2008) (i.e., haplotype synergy, and gene-environment interactions).

A notable limitation of the sparse sampling approach is its sensitivity to high experimental error (≥ 20% CV), particularly in the estimation of K_m, where the initial sample population estimates of K_m were over-predicted, leading to underestimation of intrinsic clearance. The overprediction of K_m was not readily apparent in the bootstrap analysis, suggesting that its occurrence is a phenomenon specific to that sample population. The bootstrap analysis confirms that a 20% CV leads to a decrease in the precision of the K_m estimate; an observation that is more apparent for the 3pt and 4pt sampling conditions. This is presumably because variability in the K_m region of the Michaelis-Menten curve can lead to significant
changes in the predicted reaction rate, and consequently, the estimated \(K_m\) value. Inclusion of more points across the full Michaelis-Menten profile may help anchor and/or center \(K_m\) estimates under high variability conditions, as evidenced by the greater precision observed for the rich design models. Additionally, it is assumed that the sampling range needed to capture the full kinetic profile for each genotype is generally known; that may not always be the case. Scenarios where the \(K_m\) values for a particular genotype vary drastically from the typical population value warrant adjustments in the sampling range to maximize profile coverage. Finally, the frequencies of an existing gene variant may differ from sub-population to sub-population due to exogenous factors (i.e., genetic drift, population bottlenecks, and founders’ effects), therefore, estimates of population level fixed effects will be heavily dependent on the sub-population they are estimated from, which may not always reflect the total population.

Conclusions. In summary, this study highlights the utility of non-linear mixed effects models as a population based *in vitro* approach for characterizing the impact of pharmacogenes on the underlying kinetic parameters that influence xenobiotic metabolism. Introducing CYP2D6 genotype as a categorical covariate in our NLME model allowed for an estimation of the impact that each genetic variant had on Michaelis-Menten parameters (\(V_{\text{max}}\) and \(K_m\)) as fixed-effects and provided a means for assessing between-subject variability. Additionally, we provide a method for empirically designing a sampling strategy that can generate robust estimates of covariate effects using sparse data at the individual level. Altogether, we envision significant utility for this approach, not only as an exploratory tool for identifying covariates of interest with *in vitro* studies, but also as a quantitative tool for providing a mechanistic understanding of how genetic variation impacts xenobiotic metabolism at a molecular level.
ACKNOWLEDGMENTS

The authors would like to thank Jean Dinh, Ph.D., Samuel Arnold, Ph.D., and Jeannine Fisher, M.S. for informative discussions and helpful recommendations.
AUTHOR CONTRIBUTIONS

Participated in research design: Alade, Thummel, Nath, Isoherranen

Performed Data Analysis: Alade

Wrote or contributed to the writing of the manuscript: Alade, Thummel, Nath, Isoherranen
FOOTNOTES

Funding

- This work was supported in part by funding from the National Institutes of Health, P01 GM116691.

Conflicts

- No author has an actual or perceived conflict of interest with the contents of this article.

Data Availability

- R scripts and data files necessary to reproduce our analysis are publicly available and can be cloned at the following online repository. (http://nathanalade.github.io/In-Vitro-NLME/)
FIGURE LEGENDS

Figure 1. NLME Model development workflow. UM, EM, IM, and PM in the experimental design represent ultra-rapid metabolizer (UM), extensive metabolizer (EM), intermediate metabolizer (IM), and poor metabolizer (PM), respectively.

Figure 2. Distribution of Michaelis-Menten parameters for virtual population (n=9000) stratified by CYP2D6 genotype. K_m represents the Michaelis-Menten constant, and V_{max} represents maximal 4-OH Atomoxetine formation (pmol/min/mg protein) by CYP2D6 in human liver microsomes.

Figure 3. Illustration of rich sampling design (9-16 points per subject) vs strategic sparse sampling design (3-4 points per subject) for two subjects with the same genotype and no experimental error (0% CV). (A-C) Rich, sparse 4-point, and sparse 3-point experimental designs for extensive and ultra-rapid metabolizers; (D-F) designs for intermediate and poor metabolizers. Black line represents the non-linear least-squares Michaelis-Menten fit for the genotype group.

Figure 4. Illustration of experimental error scenarios for 3 subjects with the same genotype. Black line represents the non-linear least-squares Michaelis-Menten fit for the genotype group.

Figure 5. In-silico NLME predicted Michaelis-Menten fits of 4-hydroxy-atomoxetine formation using human liver microsomes by CYP2D6 extensive metabolizers (*1/*1, *1/*2, *1/*4, *2/*2,
*2/*3, and *2/*4), ultra-rapid metabolizers (*1/*2x2), intermediate (*4/*41), and poor metabolizers (*4/*5) across all experimental conditions (sparse 3-4pt, 0-20% CV).
Table 1. Summary of Parameter Estimates for Sample Population

<table>
<thead>
<tr>
<th>CYP2D6 Genotype</th>
<th>V_{max} (pmol/min/mg protein)</th>
<th>K_m (μM)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1/*1</td>
<td>373.70 ± 62.84</td>
<td>1.53 ± 0.26</td>
<td>10</td>
</tr>
<tr>
<td>*1/*2</td>
<td>495.81 ± 83.38</td>
<td>1.47 ± 0.25</td>
<td>10</td>
</tr>
<tr>
<td>*1/*2x2</td>
<td>1486.38 ± 249.95</td>
<td>1.92 ± 0.32</td>
<td>10</td>
</tr>
<tr>
<td>*1/*4</td>
<td>288.84 ± 48.57</td>
<td>0.97 ± 0.16</td>
<td>10</td>
</tr>
<tr>
<td>*2/*2</td>
<td>265.65 ± 44.67</td>
<td>4.84 ± 0.81</td>
<td>10</td>
</tr>
<tr>
<td>*2/*3</td>
<td>264.60 ± 44.5</td>
<td>1.39 ± 0.23</td>
<td>10</td>
</tr>
<tr>
<td>*2/*4</td>
<td>101.09 ± 17</td>
<td>1.77 ± 0.30</td>
<td>10</td>
</tr>
<tr>
<td>*4/*41</td>
<td>32.57 ± 5.48</td>
<td>5.64 ± 0.95</td>
<td>10</td>
</tr>
<tr>
<td>*4/*5</td>
<td>12.99 ± 2.18</td>
<td>72.9 ± 12.26</td>
<td>10</td>
</tr>
</tbody>
</table>

V_{max} and K_m values represent mean ± standard deviation of each genotype group.
REFERENCES

https://doi.org/10.2134/agronj2012.0506

MIXED-EFFECTS MODELS FOR IN VITRO XENOBIOTIC METABOLISM

Individualization in Children s. (July), 1070–1079.

Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping

https://doi.org/10.1038/nrg2361

Figure 1

Virtual Population
- Total Population (n=9000)
- Sample Population (n=90, 10 per diplo- id type)

In-Silico Experiments
- Rich Design
- Sparse Design

Model Development
- Base Model
 - Covariate Model
 - Covariance Model
 - Error Model

Model Optimization/Selection

Final Model
- IM and PM Dataset
- UM and EM Dataset

Model Evaluation
- Sensitivity Analysis
 - Strategic Sampling
 - Experimental Error (0-20% CV)
- Model Validation
 - Bootstrapped Estimates
Figure 2

(A) Distribution of V_{max} (pmol/min/mg protein) across different genotypes.

(B) Distribution of K_m (uM) across different genotypes.
Figure 3
Figure 4
Figure 5

This article has not been copyedited and formatted. The final version may differ from this version.

Figure 5: Graph showing 4-OH-Atomoxetine Formation (pmol/min/mg protein) in different conditions, with Atomoxetine concentration ranging from 10 to 100 uM for various genotypes.

Genotype:
- 1/1
- 1/2
- 1/2x2
- 1/4
- 2/2
- 2/3
- 2/4
- 4/41
- 4/5
- 4/5

Graphs represent data with different levels of CV:
- Rich (0% CV)
- Rich (5% CV)
- Rich (10% CV)
- Rich (20% CV)
- Sparse (3pt, 0% CV)
- Sparse (3pt, 5% CV)
- Sparse (3pt, 10% CV)
- Sparse (3pt, 20% CV)
- Sparse (4pt, 0% CV)
- Sparse (4pt, 5% CV)
- Sparse (4pt, 10% CV)
- Sparse (4pt, 20% CV)