DMD#79244 Supplemental data

Journal: Drug Metabolism and Disposition

Liver zonation index of drug transporter and metabolizing enzyme protein expressions in mouse liver acinus.

Masanori Tachikawa, Yuna Sumiyoshiya, Daisuke Saigusa, Kazunari Sasaki, Michitoshi Watanabe, Yasuo Uchida, Tetsuya Terasaki

Supplemental Methods

Sulforhodamine101 (SR-101) uptake by mouse Oatp2b1-overexpressing HEK293 cells

HEK293 cells transiently expressing Oatp2b1 were generated by transfection of myc-DDK-tagged open reading frame of mouse Oatp2b1 inserted in the pCMV6 vector (OriGene Technologies, Rockville, MD), respectively. The transfection was performed using LipofectamineTM 2000 and Opti-MEM I medium (Invitrogen) according to the manufacturer's protocol. Briefly, the cells were seeded at 90% confluence in 24-well plates using antibiotic-free medium. The complex of the vector and lipofectamine was incubated with the cells for 6 h, and then the cells were cultured in normal culture medium for 24 hrs. For uptake study, the cells were washed with normal extracellular fluid (ECF) buffer (122 mM NaCl, 25 mM NaHCO3, 3 mM KCl, 0.4 mM K₂HPO₄, 10 mM glucose, 1.4 mM CaCl₂, 1.2 mM MgSO₄ and 10 mM HEPES, pH 7.4). Uptake was initiated by applying 300 μL normal ECF buffer containing 1 μM SR101 at 37°C. At 20 min, the solution was removed to terminate uptake, and the cells were washed in ice-cold normal ECF buffer. Images were taken with a fluorescence microscope (Fluoview, Olympus, Tokyo, Japan). The cells were then homogenized in distilled water using a sonicator. The homogenate was centrifuged at 21,600xg for 5 min at 4°C and the supernatant was collected. The cell-associated fluorescence was measured with a fluorescence detector (Fluoroscan Acent FL, Thermo Fisher Scientific, Waltham, MA). The accumulation of SR-101 in the cells was expressed as the cell-associated fluorescence per well.

DMD#79244 Supplemental Table S1 Target peptide sequences and selected/multiple reaction monitoring

Molecule	T	SRM/MRM transitions (m/z)						
wioiecule	rarget peptide sequence	Q1	Q3-1	Q3-2	Q3-3	Q3-4		
Slc21a7/Oatp1a5	SENSPLYIGILESGK	803.9	1189.683	816.4828	703.3987	533.2931		
	SENSPLYIGIL*ESGK	807.4	1196.7	823.5	710.4159	540.3103		
Slc38a4/Ata3	TSVITLLFPR	573.8	859.5402	746.4561	532.3243	419.2402		
	TSVITLLF P *R	576.9	865.554	752.4699	538.3381	425.254		
	LLFGPLPDLDGK	642.9	1058.552	911.4833	757.4092	432.2454		
Abca2	LLFGPLPD L *DGK	646.4	1065.569	918.5004	764.4264	439.2624		
	VFQVGNK	396.2	692.3727	545.3043	318.1773	417.2457		
Abca3	VFQ V *GNK	399.2	698.3864	551.3181	318.1773	423.2594		
	WIAEPAR	421.7	656.3727	543.2886	343.2089	175.119		
Abca4	WIAEPA*R	423.7	660.3798	547.2957	347.216	175.119		
	NAVVPIK	370.7	357.2498	555.3866	456.3182	626.4237		
Abca5	NAVVP I *K	374.2	364.267	562.4038	463.3354	633.4409		
	LFPQAAR	401.7	542.3046	445.2518	317.1932	689.373		
Abca6, 8a, 9	LFPQAA*R	403.7	546.3117	449.2589	321.2003	693.3801		
	OFOSPLR	438.2	385.2559	600.3464	472.2879	747.4149		
Abca7	OFOSPL*R	441.7	392.2731	607.3637	479.3051	754.4321		
	DLTLDVYK	483.8	738.4033	637.3556	524.2715	310.1762		
Abca8a	DLTLD V *YK	486.8	744.4171	643.3694	530.2853	310.1762		
	LFPOASR	409.7	705.3679	558.2995	461.2467	333.1881		
Abca8b	LFPOA*SR	411.7	709.375	562.3066	465.2538	337.1952		
	LLPOFEL	421.2	227 1757	615,2986	132,102	710 3723		
Abca9	LLP*OEEL	424.2	227.1757	621.3124	132.102	716 3861		
	LLAIPIPDNR	561.3	711 3784	501 2416	824 4626	614 3257		
Abca12	LLAIPI P *DNR	564.3	717 3923	507 2554	830 4764	620 3395		
	NIVWDPOK	500.3	487 2512	772 3989	673 3305	372 2243		
Abca13	NIVWD P *OK	503.3	493 265	778 4127	679 3443	378 2381		
	IATEAIENIR	565.3	531 2886	715 4098	644 3727	844 4524		
Abcb4 / mdr2	IATEA*IENIR	567.3	531.2000	719 4169	644 3727	848 4595		
	VI PNPALK	458.3	620 3647	128 2869	542 3298	331 23/1		
Cyp1a2	VI PNPALK*	462.3	620.3647	436 3011	550 344	339 2483		
	CYCVVESSCEP	402.3 570.3	781 3830	430.3011	330.344	535.2485		
Cyp2a5	GYGVVESSGER*	584.3	701 3022	602 3238	377.1822	545 2554		
	NISOSETNESK	626.9	1045 405	820 4042	7/2 2722	506 2020		
Cyp2c29	NISOSETNESK*	640.8	1043.493	830.4043 828 4185	751 2965	604 2191		
	CTTUTNU SSALV	650.0	822 4729	486 2026	046 5560	722 4251		
Cyp2d22	GTTLITNLSSALK	639.9	055.4720	480.2920	940.3309	732.4231		
	GITLIINLSSAL K *	463.9	841.487	480.2920	954.5711	740.4393		
Ugt1a1	SLSFNSDR	463.2	725.3212	038.2892	491.2208	201.1230		
	SESFISD R *	408.2	735.3295	648.2975	501.2291	201.1230		
Ugt1a9	SFLIGSAK	419.7	255.108	604.541	491.237	390.21		
-	SFLIGSAR*	424.7	245.108	596.267	120.000	400.21		
Ugt2b5	GAAVALNIR	442.8	200.103	586.367	129.066	299.171		
	GAAVALNIR*	447.8	200.103	596.367	129.066	299.171		
Ugt2b36		514.3	544.284	657.368	758.416	487.262		
-	TPATLGPNT R *	519.3	554.284	667.368	/68.416	497.262		
HMG-CoA reductase	LAEPSSLQYLPYR	768.9	1223.642	435.2351	839.4411	314.1713		
	LAEPSSLQYLPY K *	7/3.9	1233.65	445.2434	849.4494	314.1713		
NADPH-CPR	FAVFGLGNK	476.8	635.3513	734.4197	488.2829	805.4568		
	FAVFGL*GNK	480.3	642.3685	741.4369	495.3001	812.474		
FcRn	EQLFLEALK	545.8	573.3606	460.2766	720.4291	833.5131		
	EQLFLEALK*	549.8	581.3748	468.2908	728.4433	841.5273		
Glutamine synthetase (GS)	DIVEAHYR	501.8	774.3893	675.3209	546.2783	387.6983		
	DIVEAHY R *	506.8	784.3976	685.3292	556.2866	392.7024		
Actin	AGFAGDDAPR	488.7	701.3213	630.2842	458.2358	343.2089		
Attil	AGFAGDDA P *R	491.7	707.3351	636.298	464.2496	349.2227		

(SRM/MRM) transitions for quantification of each protein

Bold letters with asterisks indicate amino acid residues labeled with stable isotope (13C and 15N). Conditions of SRM/MRM analysis were optimized for high signal intensity following direct injection of peptide solution into the mass spectrometer through a turbo ion spray source. Theoretical m/z values of doubly charged ions of intact peptides (Q1) were assumed for precursor ions. Four singly charged fragment ions (Q3) were derived from each precursor ion.

	Limit of quantification				
Alias	(fmol/mm ²)				
	SR101 (+)	SR101(-)			
Slc transporter					
Slc2a1/Glut1	0.287	0.309			
Slc6a2/Net	1.11	1.10			
Slc7a5/Lat1	0.565	0.551			
Slc16a7/Mct2	0.860	0.872			
Slc21a2/Oatp2a1 (Pgt)	1.94	1.48			
Slc21a5/Oatp1a4	3.00	4.11			
Slc21a7/Oatp1a5	2.41	2.29			
Slc21a9/Oatp2b1	1.29	1.24			
Slc21a11/Oatp3a1	1.43	1.36			
Slc21a12/Oatp4a1	0.635	0.604			
Slc21a13/Oatp1a6	2.21	2.08			
Slc21a14/Oatp1c1	0.685	0.649			
Slc21a17/Oatp17	1.03	1.15			
Slc21a18/Oatp18	2.30	2.23			
Slc38a4/Ata3	0.375	0.402			
Slc47a1/Mate1	1.18	1.14			
Abc transporter					
Abcal	0.448	0.427			
Abca2	1.15	1.14			
Abca3	0.332	0.329			
Abca5	0.315	0.316			
Abca6, 8a, 9	0.839	0.868			
Abca7	0.323	0.298			
Abca8a	1.47	1.40			
Abca8b	0.445	0.461			
Abca9	0.487	0.493			
Abca12	0.834	0.853			
Abca13	0.547	0.529			
Abcb1a/Mdr1a	0.425	0.406			
Abcb1b/Mdr1b	0.566	0.544			
Abcc3/Mrp3	0.677	0.651			
Abcc5/Mrp5	0.220	0.225			
Abcc12/Mrp9	0.503	0.464			
Abcg8	0.257	0.264			
Enzyme					
Cyp1a2	32.3	32.1			
Cvp2a5	0.399	0.385			
Ugt2b5	1.93	1.82			
HMG-CoA reductase	0.620	0 594			

DMD#79244 Supplemental Table S2 Molecules under the limit of quantification

DMD#79244

Supplemental Table S3 Summery of the zonated expressions of transporters and metabolizing enzymes in peri-portal vein (PP) or peri-central vein (PC) regions of the liver in rodents

Molecule		Species	Method	mRNA Protein	Distribution in PP and PC regions	Reference
Slc transporter						
Slc10a1	Ntcp	Male Sprague- Dawley Rat	Quantitative PCR/Isolated hepatocytes by ante- or retrograde perfusion with digitonin	mRNA	PP=PC	(Baier et al., 2006)
			Immunohistochemistry	Protein	PP=PC	
		Male Sprague- Dawley Rat	Immunohistochemistry	Protein	PP=PC	(Donner et al., 2007)
Slc21a1	Oatp1a1	Male Sprague- Dawley Rat	Immunoblot/Isolated hepatocytes enriched by digitonin/collagenase perfusion	Protein	PP=PC	(Abu- Zahra et al., 2000)
		Male Sprague- Dawley Rat	Quantitative PCR/ Isolated hepatocytes by ante- or retrograde perfusion with digitonin	mRNA	PP=PC *mRNA expression tends to be greater in PC region although there is no statistical significance.	(Baier et al., 2006)
			Immunohistochemistry	Protein	PP=PC *Protein expression is excluded in the midzonal area.	
		Male Sprague- Dawley Rat	Immunohistochemistry	Protein	PP=PC	(Donner et al., 2007)
Slc21a10	Oatp1b2	Male Sprague- Dawley Rat	Immunohistochemistry	Protein	PP <pc< td=""><td>(Donner et al., 2007)</td></pc<>	(Donner et al., 2007)
Slc22a1	Oct1	Rat	Immunohistochemistry	Protein	PP <pc< td=""><td>(Meyer- Wentrup et al., 1998)</td></pc<>	(Meyer- Wentrup et al., 1998)
Slc22a7	Oat2	Rat	Quantitative PCR/Laser capture microdissection	mRNA	PP=PC	(Fork et al., 2011)
Abc transp	orter					
Abcb11	Bsep	Male Sprague-	Quantitative PCR/Isolated hepatocytes by ante- or	mRNA	PP <pc< td=""><td>(Baier et al., 2006)</td></pc<>	(Baier et al., 2006)

		Dawley Rat	retrograde perfusion with digitonin			
		Tut	Immunohistochemistry	Protein	PP <pc * Predominant pericentral cytoplasmatic staining.</pc 	
		Male Sprague- Dawley Rat	Immunohistochemistry	Protein	PP=PC	(Donner et al., 2007)
		Male Wistar Rat	Immunohistochemistry	Protein	PP>PC	(Micuda et al., 2008)
Abcc2	Mrp2	Male Sprague- Dawley Rat	Quantitative PCR/ Isolated hepatocytes by ante- or retrograde perfusion with digitonin	mRNA	PP=PC	(Baier et al., 2006)
			Immunohistochemistry	Protein	PP=PC	
Abcc4	Mrp4	Male Sprague- Dawley Rat	Immunohistochemistry	Protein	PP=PC	(Donner et al., 2007)
Enzyme						
Cyp2c29	Cyp2c29	Male C3H/He Mouse	Microarray/Isolated hepatocytes enriched by digitonin/collagenase perfusion	mRNA	PP <pc< td=""><td>(Braeunin g et al., 2006)</td></pc<>	(Braeunin g et al., 2006)
Cyp2e1	Cyp2e1	Male C3H/He Mouse	Quantitative PCR/Isolated hepatocytes enriched by digitonin/collagenase perfusion	mRNA	PP <pc< td=""><td>(Braeunin g et al., 2006)</td></pc<>	(Braeunin g et al., 2006)
		Male Alko mixed strain Rat	Immunohistochemistry	Protein	PP <pc< td=""><td>(Buhler et al., 1992)</td></pc<>	(Buhler et al., 1992)
Other						
Glul	GS	Mouse C3H/He Mouse	Microarray and Immunoblot/Isolated hepatocytes enriched by digitonin/collagenase perfusion	mRNA Protein	PP <pc PP<pc< td=""><td>(Braeunin g et al., 2006)</td></pc<></pc 	(Braeunin g et al., 2006)

Protein or mRNA expressions of transporters and metabolizing enzymes in liver PP or PC regions are summarized according to the previous reports. PP=PC: Even/Homogenous distribution in PP and PC regions, PP>PC: PP region-predominant distribution, PP<PC: PC region-predominant distribution

DMD#79244 References

- Abu-Zahra TN, Wolkoff AW, Kim RB, and Pang KS (2000) Uptake of enalapril and expression of organic anion transporting polypeptide 1 in zonal, isolated rat hepatocytes. *Drug Metab Dispos* 28:801-806.
- Baier PK, Hempel S, Waldvogel B, and Baumgartner U (2006) Zonation of hepatic bile salt transporters. *Dig Dis Sci* **51:**587-593.
- Braeuning A, Ittrich C, Kohle C, Hailfinger S, Bonin M, Buchmann A, and Schwarz M (2006)
 Differential gene expression in periportal and perivenous mouse hepatocytes. *FEBS J* 273:5051-5061.
- Buhler R, Lindros KO, Nordling A, Johansson I, and Ingelman-Sundberg M (1992) Zonation of cytochrome P450 isozyme expression and induction in rat liver. *Eur J Biochem* **204**:407-412.
- Donner MG, Schumacher S, Warskulat U, Heinemann J, and Haussinger D (2007) Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. *Am J Physiol Gastrointest Liver Physiol* **293:**G1134-1146.
- Fork C, Bauer T, Golz S, Geerts A, Weiland J, Del Turco D, Schomig E, and Grundemann D (2011) OAT2 catalyses efflux of glutamate and uptake of orotic acid. *Biochem J* **436**:305-312.
- Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, and Koepsell H (1998) Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. *Biochem Biophys Res Commun* **248**:673-678.
- Micuda S, Fuksa L, Brcakova E, Osterreicher J, Cermanova J, Cibicek N, Mokry J, Staud F, and Martinkova J (2008) Zonation of multidrug resistance-associated protein 2 in rat liver after induction with dexamethasone. *J Gastroenterol Hepatol* **23**:e225-230.

DMD#79244

Supplemental Figure S1 Uneven distribution of SR-101 in the liver acinus of mice at 30 min (A) or 90 min (B and C) after intravenous injection of SR-101. There are distinct regions strongly positive for SR-101 and either negative or weakly positive for SR-101, respectively. Scale bar: $50 \mu m$.

Supplemental Figure S2 A comparison of protein expression levels of transporters/receptors (A) and metabolizing enzymes (B) in the SR-101(+) and SR-101(-) liver regions of mice intravenously injected with SR-101. The solid line passing through the origin represents the line of identity, and the broken lines represent 2-fold differences. A; 1. Oatp1a1, 2. Mct1, 3. Slc22a18, 4. Ntcp, 5. Ent1, 6. Oatp1b2, 7. FcRn, 8. Bcrp, 9. Mrp6, 10. Bsep, 11. Oct1, 12. Mrp2, 13. Abcb4, 14. Abcg5, 15. 4F2hc, 16. Oat2, 17. Mrp4, 18. Oatp1a4. B; 1. Cyp2c29, 2. Cyp2e1, 3. Ugt1a9, 4. Cyp3a11, 5. Ugt2b3, 6. Ugt1a1, 7. NADPH-CPR, 8. Cyp2d22, 9. Cyp51a1, 10. Cyp8b1. Each point represents the mean \pm S.D. (n=3) in three independent analyses. U.L.Q; under the limit of quantification. **p<0.01, significantly different between the SR-101(+) and SR-101(-) regions. The individual values are shown in Table 1.

Supplemental Figure S3 Mouse Oatp2b1 mediates SR-101 uptake. (A) Representative fluorescence images of SR-101 in control HEK293 cells (Control/HEK293; A1 and A2) and mouse Oatp2b1-overexpressing HEK293 cells (Oatp2b1/HEK293; A3 and A4). Scale bars: 100 μ m. (B) Comparison of the SR-101 uptake amounts in Control/HEK293 cells (open column) and Oatp2b1/HEK293 cells (closed column). Each column represents the mean±S.E.M (n=4). **p<0.01, significantly different between Oatp2b1/HEK293 and Control/HEK293 cells.

Supplemental Figure S4 A comparison of protein expression levels of transporters, normalized by the level of 4F2hc, in the plasma membrane fractions of total mouse liver and laser-microdissected samples from frozen mouse liver sections. The data on plasma membranes are taken from the previous report (Miura et al., 2017). The data on the frozen liver sections are taken from Table 1. Each point represents the mean value of each transporter protein level divided by that of 4F2hc. The solid line passing through the origin represents the line of identity, and the broken lines represent 2-fold differences. The numbers near the circles identify the transporter: 1 Oatp1a1, 2 Na⁺, K⁺- ATPase, 3 Mct1, 4 Ntcp, 5 Ent1, 6 Oatp1b2, 7 Bcrp, 8 Mrp6, 9 Bsep, 10 Mrp2, 11 Abcb4, 12 Abcg5, 13 4F2hc, 14 Mrp4.

Reference

Miura T, Tachikawa M, Ohtsuka H, Fukase K, Nakayama S, Sakata N, Motoi F, Naitoh T, Katayose Y, Uchida Y, Ohtsuki S, Terasaki T, Unno M (2017) Application of quantitative targeted absolute proteomics to profile protein expression changes of hepatic transporters and metabolizing enzymes during cholic acid-promoted liver regeneration. *J Pharm Sci* **106**:2499-2508.