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Abstract 

Medroxyprogesterone acetate (MPA) is one of the most frequently prescribed 

progestin for conception, hormone replacement therapy, and adjuvant endocrine 

therapy. MPA has a low oral bioavailability due to extensive metabolism; however, its 

metabolism was poorly documented. This study was intended to profile the phase I 

metabolites of MPA and the P450 isoforms involved. After MPA was incubated with 

human liver microsomes and NADPH-generating system, five main metabolites 

(namely M-1, M-2, M-3, M-4, and M-5) were isolated by HPLC. Three major 

metabolites (M-2, M-4 and M-3) were tentatively identified to be 6β-, 2β-, and 1β- 

hydroxy MPA by LC/MS and 1HNMR. By consecutive metabolism of purified M-2, 

M-3 and M-4, M-1 and M-5 were proposed to be 2β-, 6β-dihydroxy MPA and 

1,2-dehydro MPA, respectively. CYP3A4 was identified to be the isoform primarily 

involved in the formation of M-2, M-3, and M-4 in studies with specific P450 

inhibitors, recombinant P450s, and correlation analysis. Rat and minipig liver 

microsomes were included evaluating species differences, and the results showed 

little difference among the species. In human liver microsomes, the Km values ranged 

from 10.0 to 11.2 μM, the Vm values ranged from 194 to 437 pmol/min/mg for M-2, 

M-3, and M-4. In conclusion, CYP3A4 was the major CYP isoform involved in MPA 

hydroxylation, with 6β-, 2β-, and 1β- being the possible hydroxylation sites. Minipig 

and rat could be the surrogate models for man in MPA pharmacokinetic studies. 
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Introduction 

Medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione; 

MPA, Fig. 1), a synthetic progesterone analog, was used in conception and hormone 

replacement therapy (HRT) by millions of women worldwide(Ratchanon and 

Taneepanichskul, 2000). In USA, MPA is the most common HRT progestin in use 

(Ghatge et al., 2005; Singh, 2007; Otto et al., 2008) and one of the most popular oral 

conceptive among adolescent girls(Cromer et al., 2004). In large dose, MPA is used in 

adjuvant endocrine therapy to treat endometrial cancer and breast cancer (Ghatge et 

al., 2005). MPA was an immunosuppressant, and its potential to treat a number of 

inflammatory conditions was in clinical trial (Anonymous, 2003). 

MPA has a longer half-life than progesterone and can be administrated 

orally(Ghatge et al., 2005). The oral bioavailability of MPA was low, which was 

estimated to be 5-15% (Fotherby, 1996). Serum MPA concentration would plateau 

when oral dose exceeded 1000 mg/d (Etienne et al., 1992). Poor oral bioavailability 

probably resulted from its low solubility and intense metabolism in the 

gastrointestinal tract and the liver. 

There were considerable reports concerning the adverse effects of MPA, such as 

irregular bleeding, amenorrhea, weight gain and thrombosis (Chotnopparatpattara and 

Taneepanichskul, 2000). Our previous findings suggested that there was possibility of 

drug-drug interactions when MPA was co-administrated with drugs cleared by 

CYP2C9 (Zhang et al., 2006). Because of the adverse effects, MPA had a high 

discontinuation rate in contraception (Bonny et al., 2004). Researches from Women’s 
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Health Initiative Trial indicated that the addition of MPA to conjugated equine 

estrogens significantly increased the risk of breast cancer (Rossouw et al., 2002; 

Chlebowski et al., 2003) in HRT. Prescriptions for MPA declined dramatically (Hersh 

et al., 2004; Wood et al., 2007) thereafter and the reasons for increased breast cancer 

risk were in intense investigation (Ghatge et al., 2005; Wood et al., 2007; Otto et al., 

2008). A recent study suggested that MPA underwent metabolic activation to reactive 

species that were genotoxic (Siddique et al., 2006). This process was both rat liver S9 

(P450) and NADPH dependent (Siddique et al., 2006). It’s not clear how the 

metabolites were activated into reactive species; therefore, it is important to study the 

metabolic pathway of MPA. 

The aim of present study is to identify the main metabolites of MPA in human 

liver microsomes (HLMs) and the main CYP isoforms involved. Metabolism of MPA 

was also conducted with minipig liver microsomes (PLMs) and rat liver microsomes 

(RLMs) to compare the species differences. 
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Materials and methods 

Chemicals 

D-glucose-6-phosphate, glucose-6-phosphate dehydrogenase, NADP+, 

sulfaphenazole, quinidine, clomethiazole, furafylline, 8-methoxypsoralen, omeprazole, 

and MPA were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ketoconazole 

was obtained from ICN Biomedicals Inc. (Aurora, Ohio, USA). S-mephenytoin was 

purchased from Toronto Research Chemicals Inc. (North York, Canada). Montelukast 

sodium was obtained from Beijing Aleznova Pharmaceutical (Beijing, China). 

Triethylenethiophosphoramide (thioTEPA) was purchased from Acros Organics (Geel, 

Belgium). All other reagents were of HPLC grade or of analytical grade. 

cDNA-expressed recombinant CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, 

CYP2E1 and CYP3A4 derived from baculovirus infected insect cells coexpressing 

NADPH-P450 reductase was obtained from BD Gentest Corp. (Woburn, MA, USA). 

cDNA-expressed CYP2C8 and CYP2C19 in Escherichia coli coexpressing 

NADPH-P450 reductase were purchased from New England Biolabs (Beijing) Ltd 

(Beijing, China). 

Preparation and characterization of liver microsomes 

Human livers were obtained from autopsy samples (n=9, male Chinese, ages from 

27 to 48) from Dalian Medical University, with the approval of the ethics committee 

of Dalian Medical University. The medication history of the donors was not known. 

Research involving human subjects was done under full compliance with government 

policies and the Helsinki Declaration. 
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Procedures involving animals complied with the Laboratory Animal Management 

Principles of China. Sprague-Dawley rats (n=10, male, weight 180-220 g) were 

purchased from Dalian Medical University. The animals had free access to tap water 

and pellet diet. The rats were euthanized by decapitation, and livers were rapidly 

excised and pooled for preparation of microsomes. 

Colony-bred Chinese Bama minipig weighing 10 to 12 kg (n=6, male, age 6 

months) were obtained from Department of Animal Science, 3rd Military Medical 

University, China. The animals used are descendants of sows and boars obtained from 

the original stock at Bama County, GuangXi Province, China. The animals were 

euthanized by intravenous injection of pentobarbital sodium (150 mg/kg body weight); 

tissue samples were taken from the left medial lobe of the liver within 5 min after 

death. Liver samples were pooled together to prepare microsomes. 

Liver specimens were stored in liquid nitrogen until preparation of microsomes. 

Microsomes were prepared from liver tissue by differential ultracentrifugation as 

described previously (Li et al., 2006). Protein concentration was determined by using 

bovine serum albumin as standards (Lowry et al., 1951). Total CYP concentration 

was determined according to Omura and Sato (Omura and Sato, 1964) with the use of 

molar extinction coefficient 91 mM-1·cm-1. Liver microsomes were diluted to 10 

mg/mL and were stored at –80 °C. CYP concentration was 0.63, 0.52, and 0.23-0.39 

nmol/mg in PLMs, RLMs, and HLMs, respectively. 

Incubation system 

The incubation mixture, with a total volume of 200 μL, included 100 mM 

potassium phosphate buffer (pH 7.4), NADPH-generating system (1 mM NADP+, 10 

mM glucose-6-phosphate, 1 unit/mL of glucose-6-phosphate dehydrogenase, and 4 
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mM MgCl2), liver microsomes (0.3 mg/mL), and MPA (10 μM). MPA were 

previously dissolved in methanol, with a final methanol concentration below 1% (v/v) 

in the reaction mixture. After 3-min preincubation at 37°C, the reaction was initiated 

by adding NADPH-generating system. After incubated for 10 min in a shaking water 

bath, the reaction was terminated by the addition of methanol (100 μL). The mixture 

was kept on ice until it was centrifuged at 20,000× g for 10 min at 4 °C. Aliquots of 

supernatants were transferred for HPLC analysis. Control incubations without 

NADPH or without substrate or without microsomes were included to ensure that 

metabolites formation were microsomes and NADPH dependent. All incubations 

were carried out in duplicate, and results were expressed as mean ± SD. 

HPLC/MS method 

The HPLC system (SHIMADZU, Kyoto, Japan) consisted of a SCL–10A system 

controller, two LC–10AT pumps, a SIL–10A auto injector, a SPD–10AVP UV detector 

and a Shim-pack (Shimadzu corporation) C18 column (4.6×150 mm, 5 μ) was used to 

separate MPA and its metabolites. The mobile phases were solvent B, H2O and 

solvent A, CH3OH, with linear gradient from initially 52% A to 80% A over 20 min. 

The eluent was monitored at 254 nm with a flow rate of 1 ml/min. 

LC/MS was used to characterize the structures of MPA metabolites. The HPLC 

eluent from detector was introduced into the mass spectrometer via a 1:4 split. The 

mass spectrometer was a TSQ triple quadrupole (Thermo Fisher Scientific, Waltham, 

MA, USA) equipped with an ESI interface. The spray voltage was 4.5 kV and the 

capillary temperature was 300 ºC. Nitrogen was used as nebulizing and auxiliary gas. 
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The nebulizing gas backpressure was set at 40 psi, and auxiliary gas at 20 (arbitrary 

units). Initially, the mass spectrometer was programmed to perform full scans 

between m/z 200 and 500 in order to observe the [M+H]+ and [M-H]─ signals. 

Metabolite purification 

PLMs were used to prepare MPA metabolites since it resemble HLMs in MPA 

metabolism. The incubation system was scaled up to 500 mL. MPA (200 μM) was 

incubated with PLMs (1.0 mg/mL) and NADPH-generating system (1 mM NADP+, 

10 mM glucose-6-phosphate, 1 unit/mL of glucose-6-phosphate dehydrogenase, and 4 

mM MgCl2) for 60 min at 37 °C. Under these conditions, about 5%, 3%, and 5% of 

MPA was converted to M-2, M-3, and M-4, respectively. Methanol (250 mL) was 

added to the reaction mixture to precipitate the protein. After centrifuged at 9000× g 

for 10 min, the supernatant was separated and extracted with ethyl acetate (250 mL 

×3). The organic layer was combined and dried in vacuo. Then the residue was 

dissolved in ethyl acetate (1 mL) and separated by preparative TLC (Silica gel, 20×20 

cm, 2 mm, Merck), which was developed by chloroform-acetone (9:1, v/v) 

(McCamish et al., 1979). MPA and its metabolites were monitored under UV light at 

254 nm. The metabolites were isolated, and they were further purified by HPLC. The 

purity of M-2, M-3, M-4 was about 99%, 97%, and 99% (HPLC), respectively. 

NMR spectroscopy 

Proton NMR spectra were obtained at 400 MHz on a Bruker AV-400 spectrometer 

(Bruker, Newark, Germany). Compounds were dissolved in CDCl3 and experiments 

were conducted at 21 °C. Chemical shifts are reported in ppm with reference to 
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tetramethylsilane. 

Assay with recombinant CYPs 

cDNA-expressed recombinant human CYP isoforms co-expressing NADPH-P450 

reductase either from insect cells (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, 

CYP2E1, and CYP3A4) or from Escherichia coli (CYP2C8, and CYP2C19) was used. 

The incubations were carried out as described for the human liver microsomal study. 

To examine the contribution of each CYP isoform, MPA (100 μM) was incubated with 

each of the recombinant CYPs (40-80 nM) at 37°C for 30 min. HPLC with UV 

detection was used to monitor possible metabolites. Relative high substrate 

concentration was selected so that adequate metabolites were generated for the 

convenience of detection. 

Correlation Study 

Correlation studies were performed by incubation of MPA (10 μM, near Km value) 

with liver microsomes (0.3 mg/mL) from nine individual donors for 10 min. The 

isoform specific maker reactions were as follows (Zhang et al., 2007): phenacetin 

O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), paclitaxel 

6α-hydroxylation (CYP2C8), diclofenac 4'-hydroxylation (CYP2C9), S-mephenytoin 

4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 

chlorzoxazone 6-hydroxylation (CYP2E1), paclitaxel 3'-p-hydroxylation (CYP3A4) 

and testosterone 6β-hydroxylation (CYP3A4). The correlation parameter was 

expressed by the linear regression coefficient (r). 

Chemical inhibition study 

Chemical inhibition studies were performed by adding different human CYP 

inhibitors to the incubation mixture of MPA (10 μM) before the addition of 
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NADPH-generating system. The serum level of MPA can be as high as 1.7 μM 

(Ghatge et al., 2005). The selection of a 10-μM concentration was based on the Km 

value, and relative high substrate concentration was selected so that adequate 

metabolites were generated for the convenience of detection. The selective inhibitors 

of eight major CYPs and their concentrations were as follows (Bjornsson et al., 2003): 

furafylline (10 μM) for CYP1A2, 8-methoxypsoralen (2.5 μM) for CYP2A6, 

thioTEPA (50 μM) for CYP2B6 (Rae et al., 2002), montelukast (2 μM) for CYP2C8 

(Walsky et al., 2005), sulfaphenazole (10 μM) for CYP2C9, omeprazole (20 μM) for 

CYP2C19 (Ko et al., 1997), quinidine (10 μM) for CYP2D6, clomethiazole (50 μM) 

for CYP2E1, ketoconazole (1 μM) for CYP3A4. 8-Methoxypsoralen is known as a 

mechanism-based inhibitor, so it was preincubated with HLMs, buffer, and 

NADPH-generating system at 37 °C for 3 min (Koenigs et al., 1997), and the reaction 

was initiated by the addition of MPA. Furafylline was a potent competitive inhibitor 

for CYP1A2 (Sesardic et al., 1990); therefore it was used without pre-incubation. 

Troleandomycin (Anzenbacher et al., 1998), ketoconazole (Li et al., 2006), 

sulfaphenazole (Kobayashi et al., 2003), and furafylline (Kobayashi et al., 2003) were 

found to be inhibitors of rat or minipig CYP3A, CYP2C and CYP1A, respectively. 

Therefore, inhibitory effects of troleandomycin (25 μM), ketoconazole (1 μM), 

sulfaphenazole (10 μM), and furafylline (10 μM) towards MPA (10 μM) metabolism 

in RLMs and PLMs were examined. Troleandomycin was preincubated with liver 

microsomes, buffer, and NADPH-generating system at 37 °C for 10 min, and the 

reaction was initiated by the addition of MPA. 
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Kinetic study 

To estimate kinetic parameters, MPA (5-100 μM) was incubated with liver 

microsomes (0.3 mg/mL) for 10 min. When the substrate concentration was lower 

than 5 μM, so few metabolites were produced by the liver microsomes that it’s 

difficult to accurately measure the velocities. For recombinant CYP3A4, MPA (2-40 

μM) was incubated with CYP3A4 (10 nM) for 10 min for kinetic analysis. The 

apparent Vm and Km values were calculated from nonlinear regression analysis of 

experimental data according to the Michaelis-Menten equation. Preliminary 

experiments were carried out to make sure that formation of metabolites was in the 

linear range of both reaction time and the concentration of microsomes.  
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Results 

Detection of MPA metabolites in different species 

After MPA (100 μM) was incubated with HLMs (0.5 mg/mL) and 

NADPH-generating system for 30 min, at least five main new peaks (M-1 to M-5) 

were detected by LC-UV (Fig. 2). These new peaks were not observed in the negative 

controls without NADPH, or without substrate, or without microsomes (data not 

shown). The formation rate of the main metabolites was in the following order: M-2 > 

M-4 > M-3 > M-5 ≈ M-1 in HLMs (Table 1). To investigate inter-individual 

differences, MPA (100 μM) was incubated with HLMs (0.3 mg/mL) from nine donors 

for 10 min, and the results showed more than 10-fold difference in the 

biotransformation rates (Fig. 3). Despite rates of metabolism fluctuated in different 

samples; relative abundance of main metabolites was constant (M-2 > M-4 > M-3 > 

M-5 ≈ M-1). 

To compare species differences, PLMs and RLMs were also included to study 

MPA metabolism. Similar metabolites profiles were obtained from PLMs and RLMs, 

where M-2, M-3 and M-4 were the dominant metabolites (Table 1). 

 

Metabolites identification 

The positive-ion mode was adopted for structure analysis because it’s more 

sensitive than the negative-ion mode in present investigation. Mass spectra were 

dominated by [M+K]+. The m/z for the [M+K]+ of M-1, M-2, M-3, M-4, M-5 and 

MPA were 457.1, 441.1, 441.1, 441.1, 423.1 and 425.1, respectively. Accordingly, the 
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molecular weight (MW) was calculated to be 418, 402, 402, 402, and 384 for M-1 to 

M-5 (Table 1), indicating the incorporation of one (M-2, M-3, and M-4) or two (M-1) 

oxygen atom, or loss of hydrogen (M-5, Table 1). 

The structures of the three major mono-hydroxylated metabolites of MPA, namely 

M-2, M-3, M-4 were determined by 1HNMR (Table 2). M-2 was the most abundant 

metabolite; and the most distinctive spectra changes were involved in the C6 region. 

The 6α-methyl proton signal at 1.07 ppm (3H, d) was replaced by 1.43 ppm (3H, s), 

indicative of hydroxylation at 6β position, and the 4-proton signal at 5.79 ppm (1H, s) 

was replaced by 6.04 ppm (1H, s) (Table 2). Moreover, the 1HNMR spectrum of M-2 

was in agreement with those reported for 6β-hydroxy-MPA (Fang et al., 1986; Guo et 

al., 2006), therefore, M-2 was identified as 6β-hydroxy-MPA. 

1HNMR spectrum of M-3 was characterized by the simultaneous shift about 0.2 

ppm towards the low field for 2α-H, 2β-H, and 6β-H compared with MPA (Table 2). 

The methyl groups at 6, 18, 19, 21, and 23 were intact, and 19-methyl signal at 1.18 

ppm (3H, s) shifted slightly to 1.26 ppm (3H, s). In comparison with the spectra 

changes between 1β-hydroxytestosterone and testosterone in 1HNMR (Krauser et al., 

2004), M-3 was tentatively identified as 1β-hydroxy-MPA. The signal appeared at 

4.11 ppm (1H, m) was assigned to 1α proton. Final confirmation of the structure 

requires comparison with the authentic standard. 

M-4 was tentatively identified as 2β-hydroxy-MPA based on the following 

observation (Table 2): the five methyl groups were intact, and the 2α-proton at 2.35 

ppm (1H, m) was replaced by 4.23 ppm (1H, q), and 1α-proton at 1.7 ppm (1H, m) 
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was replaced by 2.68 ppm (1H, m). Again final proof of the structure awaits 

comparison with synthetic standard. 

M-1 and M-5 were not separated in large quantity due to low transformation rate. 

Their structures were inferred indirectly by subsequent metabolism of M-2, M-3 and 

M-4. Following 10-min incubation with HLMs (0.5 mg/mL) and NADPH-generating 

system at 37 °C, both purified M-2 and M-4 (about 10 μM) were able to produced 

M-1, which suggested that M-1 was hydroxylated consecutively at 2β and 6β position, 

i.e. 2β-, 6β-dihydorxy MPA (MW=418). M-3 (MW=402) was unstable at 37°C (pH 

7.4); it slowly converted to M-5 (MW=384), suggesting loss of water. Accordingly, 

the structure of M-5 is proposed to be 1,2-dehydro MPA. 

 

Chemical inhibition studies 

P450 phenotyping and kinetic studies were conducted only for three dominant 

mono-hydroxylated metabolites, i.e. M-2, M-3, and M-4. Selective inhibitors of the 

nine major CYPs were used to screen the CYP isoforms responsible for formation of 

the metabolites in HLMs (Fig. 4). Among tested inhibitors, ketoconazole inhibited 

MPA metabolism almost completely, with no metabolites detectable. 

8-Methoxypsoralen also inhibited formation of three metabolites by about 50%. 

Inhibitors of other CYP isoforms didn’t show significant inhibition (less than 20% 

inhibition). Therefore, CYP3A4 might be the major CYP isoform involved in the 

formation of M-2, M-3, and M-4. 

Inhibition of MPA metabolism in RLMs and PLMs by CYP3A, CYP1A, and 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on August 25, 2008 as DOI: 10.1124/dmd.108.022525

 at A
SPE

T
 Journals on A

pril 16, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 22525 

 16 

CYP2C inhibitors was also performed. In PLMs, troleandomycin (25 μM) and 

ketoconazole (1 μM) inhibited the formation of three metabolites (M-2 to M-4) by 

about 50% and 60%, respectively. In RLMs, troleandomycin and ketoconazole 

inhibited the formation of three metabolites by about 30% and 60%, respectively. 

Compared with other two metabolites, M-2 was less sensitive to the inhibitory effect 

of troleandomycin and ketoconazole. Furafylline and sulfaphenazole exhibited less 

than 10% inhibition in both RLMs and PLMs for the formation of three metabolites. 

 

Assay with recombinant human CYPs 

To further verify CYP isoforms involved in the metabolism of MPA, activity of 

MPA hydroxylation was determined using nine cDNA-expressed CYP isoforms. The 

there main metabolites (M-2, M-3, and M-4) were formed exclusively by CYP3A4. 

None of the three metabolites were detected in the incubation with CYP1A2, 

CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, or CYP2E1 (less than 

0.01 pmol/min/pmol CYP). Therefore, all three metabolites were ascribed to 

CYP3A4. 

 

Correlation Study 

Correlation was the highest between the formation of three metabolites (M-2, M-3, 

and M-4) and testosterone 6β-hydroxylation (CYP3A4, r>0.9, Table 3), paclitaxel 

3'-p-hydroxylation (CYP3A4, r>0.9). MPA hydroxylation also correlated with 

phenacetin O-deethylation (CYP1A2, r=0.6), coumarin 7-hydroxylation (CYP2A6, 
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r=0.8), and paclitaxel 6α-hydroxylation (CYP2C8, r=0.8). These correlations 

probably result from high correlation among individual CYP isoforms (r=0.7 between 

CYP1A2 and CYP3A4, r=0.9 between CYP2A6 and CYP3A4, and r=0.9 between 

CYP2C8 and CYP3A4). Moreover, recombinant CYP1A2, CYP2A6, and CYP2C8 

failed to metabolize MPA. Therefore, CYP3A4 was the major CYP isoform involved 

in the formation of M-2, M-3, and M-4 in HLMs. 

 

Kinetic of MPA metabolism 

H1 liver sample was selected for kinetic study because it represented moderate 

CYP3A4 activity. In liver microsomes, formation rates of MPA metabolites were 

linear up to 0.3-mg/mL microsomal protein and 10-min incubation. Thus, 0.3 mg/mL 

HLMs and 10 min were adopted in the following kinetic assay. Due to limitation of 

detection sensitivity and low biotransformation rate, it’s difficult to accurately 

quantify the metabolites in low substrate concentration range; therefore, the range of 

substrate concentrations for kinetic analysis in liver microsomal assay was 5-100 μM, 

and 2-40 μM in CYP3A4. In the concentration range tested, MPA hydroxylation 

obeyed the Michaelis-Menten kinetics, as evidenced by Eadie-Hofstee plot (data not 

shown). The kinetic parameters, including Km and Vm for MPA hydroxylation were 

listed in Table 4 and results of typical kinetic experiments of MPA hydroxylation in 

HLMs were graphically displayed in Fig. 5. All three metabolites exhibited similar 

Km values in HLMs (around 10 μM) and recombinant CYP3A4 (ranged from 6.1 to 

11.4 μM), indicating comparable binding affinities towards these hydroxylation sites 
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(Table 4). In PLMs and RLMs, however, the Km values were higher and more 

diversified (Table 4), reflecting species differences. The intrinsic clearance (Vm/Km) 

was highest for M-2 among the three metabolites in the incubation system with HLMs, 

PLMs, and recombinant CYP3A4; suggesting M-2 was the major metabolism 

pathway. The Vm/Km value for M-4 was the highest in PLMs. 
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Discussion 

The 6α-methyl and 17-acetoxy in MPA makes it more resistant to hepatic 

metabolism than progesterone (McCamish et al., 1979). These structure modifications 

improve the pharmacokinetics behavior of MPA by increasing the half life and oral 

bioavailability. Nevertheless, the slow metabolism property also made metabolic 

studies more difficult (McCamish et al., 1979). In vitro MPA metabolism study dated 

back to 1979, McCamish et al isolated three metabolites of MPA in the incubation 

system of RLMs (McCamish et al., 1979). C6 and C2 were proposed as hydroxylation 

sites for two metabolites by mass spectra (McCamish et al., 1979). In vivo evidences 

suggested that hydroxylation is the main reaction involved in MPA metabolism 

(Helmreich and Huseby, 1962). The preferred hydroxylation sites were 2-, 6- and 

21-positions(Sturm et al., 1991), with 6β, 21-dihydroxy-MPA was the main metabolite 

(Helmreich and Huseby, 1962; Fukushima et al., 1979). While has been extensively 

studied in vivo, MPA metabolism by modern methodology was relative poorly 

documented (Dollery, 1998, M17-21; Lobo, 1999; Mimura et al., 2003). For example, 

the structures of the metabolites were mostly proposed by mass spectra and were not 

fully characterized. For in vivo studies, some artifacts would be introduced during 

long hydrolysis and extraction process of urine or stool (Castegnaro and Sala, 1962; 

Fukushima et al., 1979).  

Follow incubation with HLMs, the main MPA metabolites were proposed to be 

6β-, 2β-, and 1β- hydroxy MPA by LC/MS and 1HNMR (Table 1 and Table 2). 

Hydroxylation at 6β- and 2β- positions was in agreement with previous speculations 
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(McCamish et al., 1979; Sturm et al., 1991). We also observed a dehydro MPA (M-5), 

which was observed by McCamish et al. (McCamish et al., 1979). Previous studies 

suggested that the MPA 21-hydroxylation represented one of the major metabolism 

routes (Helmreich and Huseby, 1962; Sturm et al., 1991), however, the structure of 

21-hydroxy MPA or 6β, 21-dihydroxy-MPA was not confirmed by 1HNMR. The 

21-hydroxy MPA was not detected, or at least not a major metabolite in the present 

study. M-2, M-3, and M-4, three major metabolites were excluded to be 21-hydroxy 

MPA, because the 1HNMR spectra showed that the 21-proton were intact. M-1 

(MW=418) was proposed to be 2β-, 6β-dihydorxy MPA since it was a metabolite of 

both M-2 (6β-hydorxy MPA) and M-4 (2β-hydorxy MPA). M-5 was a degradation 

product of M-3 (1β-hydorxy MPA) and mass spectra suggested loss of water (MW 

384 versus 402). Therefore, the structure of M-5 was proposed to be 1, 2-dehydro 

MPA. M-2, M-3 and M-4 are dominant metabolites, which account for more than 

85% of the five metabolites. Although M-1 and M-5 are the minor metabolites in vitro, 

they could be the major metabolites in vivo, where lower substrate concentration and 

longer biotransformation time were expected. 

Under linear conditions, i.e. 0.3 mg/mL HLMs and 10-min incubation, formation 

of M-1 and M-5 was negligible, therefore, kinetic and P450 phenotyping studies were 

conducted only for the dominant mono-hydroxylated metabolites, i.e. M-2, M-3, and 

M-4. CYP3A4 was identified as the main CYP isoform involved in MPA metabolism 

in HLMs by the following observation: 1) ketoconazole inhibited the formation of 

M-2, M-3 and M-4 almost completely; 2) only CYP3A4 was able to catalyze MPA to 
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M-2, M-3 and M-4; 3) the formation of M-2, M-3 and M-4 correlated with 

testosterone 6β-hydroxylation. This result was in agreement with study by monitoring 

the parent drug disappearance (Kobayashi et al., 2000). In HLMs, 8-methoxypsoralen 

inhibited the metabolites formation by about 50%. However, 8-methoxypsoralen also 

inhibited the formation of MPA metabolites to a similar extent when MPA was 

incubated with recombinant CYP3A4 (data not shown). Therefore, the inhibitory 

effect of 8-methoxypsoralen towards MPA metabolism in HLMs resulted from its 

inhibitory effect towards CYP3A4. The contribution of CYP2A6 to the formation of 

three metabolites of MPA was negligible because none of the metabolites was 

detected when MPA was incubated with recombinant CYP2A6. Accordingly, the 

metabolic pathway of MPA was proposed in Fig. 6.  

The spectra of metabolites were in general rather similar among liver microsomes 

from human, rat and minipig. In PLMs or RLMs incubation system, M-2 was also the 

most abundant metabolite, followed by M-4 and then by M-3 (Table 1). Ketoconazole, 

a CYP3A inhibitor, inhibited the metabolites formation in both PLMs and RLMs 

incubation system, which indicated the possible involvement of CYP3A in MPA 

metabolism. The involvement of CYP3A in MPA metabolism has also been 

confirmed in rats based on parent drug disappearance (Mimura et al., 2003). These 

results suggested that rat and minipig could be surrogate models for man in MPA 

metabolism study. 

Although MPA itself rather than its metabolites was regarded as the active form 

(Ghatge et al., 2005), the biological activities of its metabolites were not fully 
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characterized. Structure of M-5 is of interest because it resembles quinoids that might 

eventually produce reactive oxygen species that are genotoxic (Siddique et al., 2006). 

However, M-5 was not separated in adequate amount for toxicological analysis due to 

low yield, and such a hypothesis worth further investigation. 

In conclusion, three main hydroxylation site of MPA were proposed to be 6β, 2β, 

and 1β position, which lead to five major metabolites. The main metabolites were 

generated by CYP3A in human. PLMs and RLMs metabolized MPA in a similar way 

to HLMs. Clarification of MPA metabolites and the involving CYP isoforms is helpful 

to the studies of pharmacological and toxicological property of metabolites. 
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Figure legends 

Fig. 1. Structure of MPA. Arrows denote proposed hydroxylation sites for its main 

metabolites. 

Fig. 2. Representative HPLC profiles of MPA and its metabolites (M-1 to M-5). MPA 

(100 μM) was incubated with HLMs (0.5 mg/mL) at 37 °C for 30 min with 

NADPH-generating system as described in Materials and Methods. 

Fig. 3. Metabolism of MPA in nine different human liver samples (H1 to H9). MPA 

(100 μM) was incubated with liver microsomes (0.3 mg/mL) for 10 min. Mean ± SD 

of duplicate incubations. 

Fig. 4. Inhibition of MPA metabolism by selective P450 inhibitors in HLMs. The 

selective inhibitors of eight major CYPs and their concentrations were as follows: 

furafylline (10 μM) for CYP1A2, 8-methoxypsoralen (2.5 μM) for CYP2A6, 

thioTEPA (50 μM) for CYP2B6, montelukast (2 μM) for CYP2C8, sulfaphenazole 

(10 μM) for CYP2C9, omeprazole (20 μM) for CYP2C19, quinidine (10 μM) for 

CYP2D6, clomethiazole (50 μM) for CYP2E1, ketoconazole (1 μM) for CYP3A4. 

Mean ± SD of duplicate incubations. 

Fig. 5. Michaelis-Menten plots of MPA metabolism in H1 liver microsomes. MPA 

(5.0-100 μM) was incubated with HLMs (0.3 mg/mL) at 37 °C for 10 min with 

NADPH-generating system. 

Fig. 6. Proposed metabolic pathway of MPA in HLMs. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on August 25, 2008 as DOI: 10.1124/dmd.108.022525

 at A
SPE

T
 Journals on A

pril 16, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 22525 

 32 

Table 1. Formation rates of different MPA metabolites (M-1 to M-5) in different 

species. MPA (100 μM) was incubated with liver microsomes (0.3 mg/mL) for 10 min. 

The rates of formation are expressed in pmol/mg/min. Results represent average of 

duplicate incubations. 

Metabolite M-1 M-2 M-3 M-4 M-5 

tR(min) 13.4 18.7 20.1 22.1 23.4 

tR(%) 51 71 76 84 89 

MW 418 402 402 402 384 

HLMs 54 391 172 227 52 

PLMs 33 264 168 218 63 

RLMs 51 321 86 300 28 
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Table 2. 1HNMR data for MPA and its metabolite (M-2, M-3, and M-4). 

Proton 

δ(ppm) 

MPA M-2 M-3 M-4 

18-CH3 0.67, s 0.71, s 0.68, s 0.68, s 

6-CH3 1.07, d 1.43, s 1.08, d 1.06, d 

19-CH3 1.18, s 1.40, s 1.26, s 1.17, s 

21-CH3 2.03, s 2.05, s 2.03, s 2.04, s 

23-CH3 2.09, s 2.10, s 2.10, s 2.10, s 

6β 2.42, m N/A 2.58, m 2.48, m 

1α – – 4.11, m 2.68, m 

2α 2.35, m 2.40, m 2.56, m 4.23, m 

2β 2.43, m 2.53, m 2.61, m N/A 

16β 2.93, m 2.95, m 2.93, m 2.94, m 

4-H 5.79, s 6.04, s 5.84, s 5.81, s 

N/A, no proton attached; –, shift was not assigned. 
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Table 3. Correlation (r) values between formation rates of MPA metabolites (M-2, 

M-3, and M-4) and P450 isoform specific activities. MPA (10 μM) was incubated 

with liver microsomes (0.3 mg/mL) for 10 min. 

P450s P450 isoform specific reactions M-2 M-3 M-4 

CYP1A2a Phenacetin O-deethylation 0.62 0.61 0.61 

CYP2A6a Coumarin 7-hydroxylation 0.82 0.82 0.83 

CYP2C8a Paclitaxel 6α-hydroxylation 0.82 0.83 0.83 

CYP2C9 Diclofenac 4'-hydroxylation -0.11 -0.11 -0.08 

CYP2C19 S-Mephenytoin 4'-hydroxylation 0.14 0.14 0.13 

CYP2D6 Dextromethorphan O-demethylation 0.31 0.32 0.35 

CYP2E1 Chlorzoxazone 6-hydroxylation 0.37 0.39 0.42 

CYP3A4 Testosterone 6β-hydroxylation 0.97 0.98 0.98 

CYP3A4 Paclitaxel 3'-p-hydroxylation 0.99 0.99 0.98 

aNo metabolite formation was observed by recombinant CYP1A2, CYP2A6, and 

CYP2C8. 
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Table 4. Kinetic parameters of MPA metabolism in HLMs, RLMs, PLMs and 

recombinant CYP3A4.  

Metabolite HLMs PLMs RLMs CYP3A4 

 Vm Km Vm/Km Vm Km Vm/Km Vm Km Vm/Km Vm Km Vm/Km 

M-2 437 11.2 39.2 349 41.0 8.5 453 46.5 9.8 21.1 6.1 3.5 

M-3 194 10.1 19.2 184 17.2 10.7 97 21.4 4.5 9.6 11.4 0.8 

M-4 253 10.0 25.5 261 26.8 9.8 330 8.6 38.5 13.4 6.4 2.1 

Km values were in μM; Vm values were in pmol/mg/min for liver microsomes, or in 

min-1 for CYP3A4. The range of substrate concentrations was 5-100 μM for liver 

microsomes, or 2-40 μM for CYP3A4. 
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