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Abstract

Drug-induced liver injury (DILI) isone of the most important reasons for drug
development failure at both pre-approval and post-approval stages. There has been
increased interest in developing predictivein vivo, in vitro and in silico models to identify
compounds that cause idiosyncratic hepatotoxicity. In the current study we applied
machine learning, Bayesian modeling method with extended connectivity fingerprints
and other interpretable descriptors. The model that was developed and internally
validated (using a training set of 295 compounds) was then applied to a large test set
relative to the training set (237 compounds) for external validation. The resulting
concordance of 60%, sensitivity of 56%, and specificity of 67% were comparable to
internal validation. The Bayesian model with ECFC 6 fingerprint and interpretable
descriptors suggested several substructures that are chemically reactive and may also be
important for DILI-causing compounds, e.g. ketones, diols and a-methyl styrene type
structures. Using SMARTS filters published by several pharmaceutical companies we
evaluated whether such reactive substructures could be readily detected by any of the
published filters. It was apparent that the most stringent filters used in this study, like the
Abbott alerts which captures thiol traps and other compounds, may be of utilityin
identifying DILI-causing compounds (sensitivity 67%). A significant outcome of the
present study is that we provide predictions for many compounds that cause DILI by
using the knowledge we have available from previous studies. These computational
models may represent a cost effective selection criteria prior to in vitro or in vivo

experimental studies.
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Introduction

Pharmaceutical research must develop predictive approaches to decrease the late stage
attrition of compoundsin clinical trials. One approach to thisisto optimize absorption,
distribution, metabolism, distribution and toxicity (ADME/Tox) properties earlier which
isnow frequently facilitated by a pandl of in vitro assays. The liver is highly perfused and
the “first-pass’ organ for any orally-administered xenobiotic, while it also represents a
frequent site of toxicity of pharmaceuticalsin humans (Lee, 2003; Kaplowitz, 2005). The
physiological location and drug-clearance function of the liver dictate that for an orally-
administered drug, the drug exposure or drug load that the liver experiencesis higher
than that being measured systemically in peripheral blood (Ito et al., 2002). Drug-
metabolism in the liver can convert some drugsinto highly reactive intermediates and
which in turn can adversely affect the structure and functions of the liver (Kassahun et
al., 2001; Park et al., 2005; Walgren et a., 2005; Boelsterli et a., 2006). Therefore, itis
not surprising that drug-induced liver injury, DILI, isthe number one reason why drugs
are not approved and why some of them were withdrawn from the market after approval
(Schuster et al., 2005).

We have previously assembled alist of approximately 300 drugs and chemicals
with aclassification scheme based on clinical data for hepatotoxicity, for the purpose of
evaluating an in vitro testing methodology based on cellular imaging of human
hepatocyte cultures (Xu et al., 2008). Since every drug can exhibit some toxicity at high
enough exposure (i.e., the notion of “dose makes a poison” by Paracelsus), we previousy

tested a panel of orally administered drugs at multiples of the therapeutic Cax (maximum
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therapeutic concentration), taking into account the first-pass effect of the liver and other
idiosyncratic toxicokinetic/toxicodynamic factors. It was found that the 100-fold Cyrax
scaling factor represented a reasonable threshold to differentiate safe versus toxic drugs,
for an orally dosed drug and with regard to hepatotoxicity (Xu et a., 2008). The overall
concordance of the in vitro human hepatocyte imaging assay technology (HIAT), when
applied to about 300 drugs and chemicals, is about 75% with regard to clinical
hepatotoxicity, with very few false-positives (Xu et al., 2008). The reasonably high
specificity and reasonable sensitivity of such an in vitro test system has made it especially
attractive as part of a pre-clinical testing paradigm to select drug candidates with
improved therapeutic index for clinical hepatotoxicity.

Obvioudly, using in vitro approaches still comes at a cost. Firstly the compound
has to physically have been made and be available for testing, secondly the screening
system is still relatively low throughput compared to any primary screens and as a result
whole compound or vendor libraries cannot be cost effectively screened for prioritization.
Thirdly, the screening system should be representative of the human organ including drug
metabolism capability. Y et afourth consideration isthat the prediction of human
therapeutic Cra i'S Often imprecise prior to clinical testing in actual patients. A potential
alternative may be to use the historic DILI datato create a computational model and then
test it with an equally large set of compounds to ensure that there is enough confidence
such that its predictions can be used as a prescreen prior to actual in vitro testing.

There have been many examples where computational quantitative structure
activity relationship (QSAR) or machine learning methods have been used for predicting

hepatotoxicity (Cheng and Dixon, 2003; Clark et al., 2004) or drug-drug interactions
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(Ekins et a., 2000; Marechal et al., 2006; Ung et a., 2007; Zientek et al., 2010). One
recent study used a small set of 74 compounds (33 of which were known to be associated
with idiosyncratic hepatotoxicity and the rest were not) to create classification models
based on linear discriminant analysis (LDA), artificial neural networks (ANN), and
machine learning algorithms (OneR) (Cruz-Monteagudo et al., 2007). These modeling
techniques were found to produce models with satisfactory internal cross-validation
statistics (accuracy/sensitivity/specificity over 84%/78%/90%, respectively). These
models were then tested on very small sets of compounds (6 and 13 compounds,
respectively) with over 80% accuracy. A second study compiled a data set of compounds
reported to produce a wide range of effectsin the liver in different speciesthen used
binary QSAR models (248 active, 283 inactive) to predict whether a compound would be
expected to produce liver effects in humans. The resultant support vector machine (SVM)
models had good predictive power assessed by external 5-fold cross-validation
procedures and 78% accuracy for a set of 18 compounds (Fourches et al., 2010). A third
study created a knowledge-base with structural alerts from 1266 chemicals. Although not
strictly a machine learning method the alerts created were used to predict 626 Pfizer
compounds (ensitivity 46%, specificity 73% and concordance 56% for the latest version)
(Greene et a., 2010).

In the current study we have used atraining set of 295 compounds and atest set
of 237 molecules. In contrast to earlier studies we have used a Bayesian classification
approach (Xia et al., 2004; Bender, 2005) with ssimple, interpretable molecular
descriptors as well as extended connectivity functional class fingerprints of maximum

diameter 6 (ECFC_6) (Jones et a., 2007) to classify compounds as DILI or non-DILI.
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We also use these descriptors to highlight chemical substructures that are important for
DILI. In addition, we have applied chemical filtersto all the 532 moleculesin the test and
training set as many pharmaceutical companies use SMARTS [SMiles ARDbitrary Target
Specification] queries which specify substructures of interest

(http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html). Computational

models or filtersfor DILI could be avaluable filter for selecting compounds for further

synthesis and testing in vitro or in vivo.
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Methods

Source of DILI data. We have greatly expanded our original DILI drug list of about 300
drugs and chemicals with the same classification scheme based on clinical data for
hepatotoxicity (Xu et al., 2008). Our DILI positive drugs include those: 1) withdrawn
from the market mainly due to hepatotoxicity (e.g., troglitazone (Parker, 2002)), 2) not
marketed in the United States due to hepatotoxicity (e.g., nimesulide (Maciaet al.,
2002)), 3) receiving black box warnings from the FDA due to hepatotoxicity (e.g.,
dantrolene (Durham et a., 1984)), 4) marketed with hepatotoxicity warningsin their
labels (e.g., zileuton (Watkins et al., 2007)), 5) others (mostly old drugs) that have well-
known associations with liver injury and have a significant number (>10) of independent
clinical reports of hepatotoxicity (e.g., diclofenac (Bodlsterli, 2003)). Drugs that do not
meet any of the above positive criteria are classified as DILI negatives. The expanded
drug list and its DILI classifications were researched and collated at the same time asthe
original 300 drug list for in vitro testing. The expanded drug list includes 237

compounds which were previously not available for in vitro testing. However, since

computational modeling does not require the physical availability of compounds, we have

decided to use them as our relatively large test set for in silico modeling.

Training and test set curation. Assembling high quality data sets for the purpose of
computational analysis can be very challenging. Commonly public data sources are used
as trusted resources of information and without further validation and, as has been
demonstrated or suggested in anumber of previous studies, thisis not appropriate

((Fourches et d., ; Williams et al., 2009) and references therein). The set of validated
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chemical structures utilized as the training and test data were assembled from the
ChemSpider database (www.chemspider.com). The set of chemical hames associated
with the DILI set were searched against the ChemSpider database and the chemical
compounds associated with manually curated chemical records were downloaded. This
amounted to over 90% of the list of chemical names. For the remaining chemical names
the associated structures in ChemSpider were then manually validated by checking
various resources to assert the correct chemical structures. These included validation
across multiple online resources (e.g., Dailymed, ChemIDPLus and Wikipedia) aswell as
the Merck Index to ensure consistency between the various resources. The test and
training set (Supplemental Table 1, Supplemental sd files) were also compared by
Tanimoto smilarity (Willett, 2003) with MDL keys to remove any compounds with a
value of 1, indicative of them being identical but possessing different synonymsin each

dataset.

Bayesian machine lear ning model development. Laplacian-corrected Bayesian
classifier models were generated using Discovery Studio. (Version 2.5.5., Accelrys, San
Diego, CA) This approach employs a machine learning method with 2D descriptors (as
described previously for other applications (Rogers et al., 2005; Hassan et a., 2006; Klon
et a., 2006; Bender et al., 2007; Prathipati et al., 2008)) to distinguish between
compounds that are DILI positive and those that are DILI negative. Preliminary work
evaluated separately different functional class fingerprints (FCFP) (of size 0-20)
descriptors alongside interpretable descriptors. FCFP_6 had approximately the highest
receiver operator curve (ROC) for the leave-one-out for the DILI data. We then evaluated

separately other fingerprint descriptors (e.g. elemental type fingerprints, ECFP; AlogP
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code path length fingerprint, LPFP ), separately (ECFC_6, ECFP_6, EPFC_6, EPFP_6,
FCFC_6, FPFC_6, FPFP_6 LCFC_6 and LPFC_6) ((Bender, 2005) descriptor naming
conventions can be found within the help pages of Discovery Studio 2.5.5) . Several had
ROC values > 0.8 while ECFC_6 isthe focus of this study (due to the highest ROC)
obtained with the following interpretable descriptors: ALogP, ECFC_6, Apoal, logD,
molecular weight, number of aromatic rings, number of hydrogen bond acceptors,
number of hydrogen bond donors, number of rings, number of rotatable bonds, molecular
polar surface area, molecular surface area. Wiener and Zagreb indices were calculated

from an input sd file using the “ calculate molecular properties’ protocol.

The “create Bayesian model” protocol was used for model generation. The theory
behind this method has been described in more detail elsewhere (Zientek et al., 2010). A
custom protocol for validation was also used in which 10%, 30% or 50% of the training
set compounds were left out 100 times. The mean (xSD) of the calculated values were

reported.

Comparison of training and test sets.

The interpretable descriptors described above were used to compare compounds
of each classin thetraining and test sets using t-test statistical comparisons performed
with IMP (SAS Institute Cary, NC).

Principal Component Analysis (PCA) available in Discovery Studio version 2.5.5
was used to compare the molecular descriptor space for the test and training sets (using

the descriptors of ALogP, molecular weight, number of hydrogen bond donors, number

10
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of hydrogen bond acceptors, number of rotatable bonds, number of rings, number of
aromatic rings, and molecular fractional polar surface area). In each case, the respective
test set and the training set compounds were combined and used to generate the PCA
analysis.

For a comparison with recently launched drugs we extracted small-molecule
drugs from 2006-2010 from the Prous Integrity database and went through a curation
process similar to that described above. A number of these drugs were not “small
molecules’ appropriate for examination and modeling in this study and were immediately
rejected. Structure validation resulted in a set of 77 molecules (mean molecular weight
427.05 £ 280. 31, range 94.11-1994.09) that were used for PCA and physicochemical

property analysis.

SMARTSFilters. We used the 107 SMARTSfilters in Discovery Studio 2.5.5
(Supplemental Text). The Abbott ALARM (Huth et al., 2005), Glaxo (Hann et al., 1999)
and Pfizer LINT (also known as Blake filter (Blake, 2005)) SMARTS filter calculations
were performed through the Smartsfilter web application kindly provided by Dr. Jeremy
Y ang (Division of Biocomputing, Dept. of Biochem and Molecular Biology, University
of New Mexico, Albuquerque, NM,

(http://pasilla.health.unm.edu/tomcat/bi ocomp/smartsfilter). This software identifies the
number of compounds that pass or fail any of the filters implemented. Each filter was

evaluated individually with the combined set of training and test compounds (N = 532).

11
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Results

Bayesan Models. Weinitially evaluated the Bayesian model with multiple cross
validation approaches then we evaluated the models with multiple external test sets which
are more representative of chemical space coverage beyond the training set. The cross
validated receiver operator curve area under the curve (XV ROC AUC) for the model
with 295 molecules built with smple molecular descriptors alone was 0.86 and the best
split was 0.17 with the ECFC_6 descriptors and interpretabl e descriptors (Supplemental
data). By using the ECFC_6 descriptors, we can also identify those substructure
descriptors that contribute to the DILI (Figure 1A) and those that are not present in
compounds causing DILI (Figure 1B). The Bayesian mode generated was also evaluated
by leaving out either 10%, 30% or 50% of the data and rebuilding the model 100 timesin
order to generate the XV ROC AUC. In each case the |eave out 10%, 30% or 50% testing
AUC value was comparabl e to the leave-one-out approach and these values were very
favorable indicating good model robustness (Table 1). The mean concordance > 57%,
specificity > 61% and sensitivity > 52% did not seem to differ depending on the amount

of dataleft out.

Molecular featuresimportant for DILI. Analysis of simple interpretable molecular
properties between the compounds in the training set indicated that the mean ALogP was
the only one statistically different between those that cause DILI and those that do not
(Table 2). For the dlightly smaller test set Apol, the number of rotatable bonds, the
number of hydrogen bond acceptors, the number of hydrogen bond donors, molecular

surface area, molecular polar surface area, and the Zagreb index were all significantly

12
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different between compounds that cause DILI and those that do not. Further molecular
insgghtsinto the general properties of DILI forming compounds were obtained by using
the ECFC_6 descriptor results from Discovery Studio to select molecules with acommon
substructure and analyze those that cause DILI from those that do not. As demonstrated
in Figure 1A features such as long aliphatic chains (G1 and G2), phenols (G3), ketones
(G5), diols (G7), a-methyl styrene (G8) (represents a polymer monomer), conjugated

structures (G9), cyclohexenones (G10) and amides (G15) predominate.

Bayesian model validation. The Bayesian model was tested with 237 new compounds
not present in the previous 295 training set (Supplemental Table 1). The concordance
~60%, specificity 67% and sensitivity 56% were comparable (Table 3) with internal
validation (Table 1). A subset of 37 compounds (Supplemental Table 2) of most interest
clinically (including similar compounds which were either DILI causing or not) showed
similar testing values with a concordance greater than 63% (Table 2). Compounds of
most interest can be defined as well-known hepatotoxic drugs (e.g., those hepatotoxic
drugs cited elsewhere (FDA, 2009)), plustheir less hepatotoxic comparators, if clinically
available. These less hepatotoxic comparators are approved drugs that typically share a
portion of the chemical core structure as the hepatotoxic ones (e.g., zolpidem versus
alpidem, ibuprofen versus benoxaprofen, etc.). The purpose of thistest set isto explore
whether our in silico method can differentiate differencesin DILI potential between or
among closely related compounds, a scenario that is likely to be of most interest in real-

world drug discovery and development efforts.

13
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A PCA analysis using smple molecular descriptors showed that the training and
test set covered overlapping or similar chemical space (Figure 2A). However, there were
some distinct compounds like retinyl palmitate that were outside the training set (Figure
2B). Therefore, focusing in on compounds with a Tanimoto similarity greater than 0.7
left 28 compounds (Supplemental Table 3) whose Matthews correlation coefficient and
concordance was similar to the complete test set. The specificity increased to 80% and

and sensitivity decreased to 50% (Table 3) in this case.

SMART Sfiltering We have also evaluated the training and test set compounds further
by using various SMARTS filters which are used as alerts to remove undesirable
compounds before in vitro screening (Williams et al., 2009). The hypothesis tested was
whether the filters would predominantly remove compounds that caused DILI. Out of the
four sets of independent filters tested the Abbott alerts had the highest concordance and
sensitivity while the Glaxo filters had the highest specificity but lowest sensitivity and
concordance (Table 4). It would appear that the Abbott Alerts retrieve two thirds of all
the compounds causing DILI asthey fail these alerts. The best statistics with filtering are

lower than observed in Table 3 for the test sets with the Bayesian model.

Discussion

Pharmaceutical companies are keen to prevent late stage attrition due to adverse
drug reactions or drug-drug interactions, and the earlier they are aware of a potentially

problematic lead series, the sooner they can modify it and address the issue. In many

14
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ways this has been expedited and assisted by the increasing throughput of in vitro assays
which are also used for the development of computational models (with particular focus
on the liver due to itsimportance in first pass metabolism) (Ekins et al., 2003; O'Brien
and de Groot, 2005). Idiosyncratic liver injury or drug induced liver injury are much
harder to predict from thein vitro situation so we generally become aware of such
problems once a drug reaches large populations in the clinic, which istoo late. There
have been efforts recently to use computational models to predict DILI or idiosyncratic
hepatotoxicity. We are aware of at least three studies that tackled predicting DILI using
either LDA, ANN, OneR (Cruz-Monteagudo et al., 2007), SVYM (Fourches et a., 2010)
or structural alerts (Greene et a., 2010). A major limitation of these previous global
models for DILI (and for many computational toxicology models) istheir use of very
small test setsin all cases. In the first two studies the models were tested with very small
sets of compounds (<20) covering limited chemical space, while the third study used a
large set of 626 proprietary compounds as the test set (Greene et al., 2010). In the current
study we have carefully collated atraining set of 295 compounds (of which 158 cause
DILI) and avery large test set (relative to the training set) of 237 compounds (114 of
these cause DILI) and used them to create and validate a Bayesian model. The previous
studies also have not examined how well they could predict many sets of closely related
compounds in which some show DILI and others do not, which ismost likely the
scenario facing usin the real world of pharmaceutical research. Another issueisthe
guality of the compound datasets used for model building and testing (Williams et al.,

2000).

15
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Recently computational Bayesian models were developed for time-dependent
inhibition of CY P3A4 using over 2000 molecules for filtering of compounds that must be
screened in vitro dueto this activity (Zientek et a., 2010). The Bayesian approach has
also been used for modeling the apical sodium dependent bile acid transporter to identify
inhibitors (Zheng et al., 2009) and for modeling inhibitory activity of alarge set of
compounds (>200,000) against Mycobacterium Tuberculosisin whole cells (Ekins et al.,
2010). In our experience the Bayesian method can generate classifiers with good
enrichments and classification accuracy for an external test set. In this study internal
testing of the Bayesian model resulted in internal ROC scores (> 0.85) and specificity (>
61%), concordance (> 57%) and sensitivity (> 52%) (Table 1). Using the ECFC_6
descriptors we found that numerous of the fingerprints with high Bayesian scores and
present in many DILI compounds, appeared to be reactive in nature which could cause
time dependent inhibition of CY Psfor example (Zientek et a., 2010) or be precursors for
metabolites (Kassahun et al., 2001) that are reactive and may covalently bind to proteins.
However, it is puzzling why long aliphatic chains may be important for DILI (Figure 1A)
other than being generally hydrophobic and perhaps enabling increased accumulation. It
is possible they may be hydroxylated, then form other metabolites that are in turn
reactive. Further analysis of simple molecular descriptors calculated for the test and
training sets showed only differencesin ALogP for the training set while many
descriptors were significantly different in thetest set (e.g. DILI causing compounds have
less molecular branching as measured by the Zagreb index and lower sum of atomic
polarizabilities (Apol)) but not ALogP (Table 2). When we used the Bayesian model with

atest set we saw concordance (~60%) and specificity (~67%) and sengitivity (~56%),

16
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comparable to internal testing (Table 3). When we focused on a very small subset of
compounds of clinical interest the concordance increased. When we narrowed down the
dataset to only those molecules with > 70% similar to the training set (N = 28) based on
the Tanimoto similarity (with MDL Keys descriptors) the specificity increased above
80% and concordance increased slightly to ~64%. Such an increase in concordance
statisticsis analogous to that observed with other computational chemistry predictions, as
it smply and effectively narrows the applicability domain to molecules that would be
expected to be better predicted (Ekins et al., 2006). We have also evaluated the overlap of
the training and test set chemical space using PCA (Figure 2A), an approach we have
used previoudly (Zientek et al., 2010) that shows that many of the molecules in the test
set cover similar chemical space to the training set, while there are some compounds that
may be outliers like retinyl palmitate (Figure 2B), in this case it was correctly predicted
as causing DILI. We have compared how these 532 compounds relate to a set of 77
recently launched small-molecule drugs from the period 2006-2010 extracted from the
Prous Integrity database (Supplemental Figure 1). Again we find these molecules are
distributed throughout the combined training and test set, representative of overlap which
is also suggested from the mean physicochemical property values (Supplemental Table 4
compared with Table 2). These combined analyses would suggest that the test and
training set used for the DIL1 model is representative of current medicinal chemistry
efforts.

A further approach we have taken based on the output of the Bayesian model
fingerprint descriptors (which suggested many reactive substructures) was to use

published SMARTS filters which many groups have routinely used to remove reactive

17

20z ‘6 11dy uo seuinor 13dSV e Bio'sfeulnofledse"puip wou) pepeojumoq


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on September 15, 2010 as DOI: 10.1124/dmd.110.035113
This article has not been copyedited and formatted. The final version may differ from this version.

DMD # 35113

compounds, undesirable molecules, false positives and frequent hitters from their HTS
screening libraries or to filter vendor compounds (Williams et al., 2009). For example
REOS from Vertex (Walters and Murcko, 2002), filters from GSK (Hann et al., 1999),
BMS (Pearce et al., 2006),Abbott (Huth et al., 2005; Huth et al., 2007; Metz et ., 2007)
and others (Blake, 2005) have all been described. These latter SMARTSfiltersin
particular detect thiol traps and redox active compounds. More recently, an academic
group has published an extensive series of over 400 substructural features for removal of
Pan Assay |Nterference compoundS (PAINS) from screening libraries (Bagll and
Holloway, 2010). In only one case in our study with the filters from Abbott (Huth et al.,
2005; Metz et al., 2007) did we see a concordance or sensitivity value that was similar to
that observed previously with the Bayesian model. This would suggest that these
SMARTS may be useful as a pre-screen to remove potential DILI causing compounds
alongside the Bayesian models which perform better.

In summary, we present the first large scale testing of a machine learning model
for DILI that uses a similarly sized training and test sets. Our model may have utility in
identifying compounds with a potential to cause human DILI. The overall concordance of

the model islower (~60-64% depending on test set size) than that observed previously for

the in vitro HIAT (75% (Xu et al., 2008)). Our test-set dtatistics are similar to those
reported elsewhere using structural alerts (Greene et al., 2010). The compounds that are

scored to be DILI positive by our model, if still of high therapeutic interest, could be

further tested by combined in vitro and in vivo testing, as HIAT has sufficient sensitivity
and very high specificity (Xu et a., 2008). By providing all of our structural and DILI

classification data, the research community should now have a foundation for testing and
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benchmarking future computational models as well as generating predictions for DILI
with new compounds. In conclusion, a significant outcome of this study is that we can
enhance the predictive accuracy of models to identify compounds that cause DILI by
using the knowledge we have available currently from compounds already evaluated (in
the literature) to build a computational model. Such models alongside alerts based on
undesirable substructures ((Greene et al., 2010) or those in this study), could be used to
either filter or flag early stage molecules for this potential liability and could be evaluated
in future studies. It is also feasible that combinations of such computational approaches

may also be of utility to identify DILI causing compounds.
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¢) The structures of all compounds in the test and training sets as well as the set of

recently approved drugs are available in sdf format online and the Bayesian model

protocols used in Discovery Studio are available from the authors upon request.
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Figure1 A. ECFC_6 descriptors: features important for DILI. Each panel shows the
naming convention for each fragment, the numbers of moleculesit is present in that are
active and the Bayesian score for the fragment..1B. ECFC_6 descriptors: features absent
from DILI compounds. Each panedl shows the naming convention for each fragment, the
numbers of molecules it is present in that are active and the Bayesian score for the

fragment.

Figure2. Analysisof DILI training and test set by PCA. A. PCA plot. Yellow = test

set, blue = training set. The following descriptors were used with Discovery Studio 2.5.5:

ALogP, molecular weight, number of hydrogen bond donors, number of hydrogen bond
acceptors, number of rotatable bonds, number of rings, number of aromatic rings, and
molecular fractional polar surface area. 0.82 % of the variance was explained with the
first three principal components. B. Retinyl palmitate (O15-hexadecanoylretinoic acid),

the top left yellow compound in the PCA plot (A).
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Table 1. Results of internal validation of Bayesian model for DIL |
Cross validated results (Mean = SD) for Bayesian model building (ROC = Receiver operator curve).
Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), Specificity = TN/(TN+FP), Sensitivity = TP/(TP+FN)

true pogitive (TP), true negative (TN), false positive (FP) and false negative (FN)

External ROC Score  Internal ROC Score  Concordance (%)  Specificity (%) Sensitivity (%)

leave out 10% x 100 0.62+0.08 0.86 + 0.01 58.48 +8.31 65.45 + 15.22 52.83 +12.92
leave out 30% x 100 0.62 + 0.05 0.86 + 0.03 59.23+4.35 65.15+ 9.18 54.21 +9.69
leave out 50% x 100 0.60+0.04 0.85+0.04 57.63 + 3.87 61.81 + 10.57 54.20 + 9.83
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Table 2. Mean physicochemical propertiesfor the 295 DILI training set molecules and 237 test set molecules

Molecular descriptors generated in Discovery Studio 2.5.5 (Accerys, San Diego, CA).

Descriptor Training set Training set Test Set Test set
DILI — (N = 137) DILI + (N = 158) DILI — (N = 84) DILI + (N = 153)
ALogP 1.31+3.24 189+247* 1.49 + 3.07 2.09+ 2.56
Apol 12644.0 + 6478.29 12178.1 + 6061.78 14401.3 + 6419.16 12711.8 + 7124.28 *
LogD 0.65+3.43 123+245 0.80+ 3.07 146 + 2.69
MW 355.67 + 186.93 184.83 + 184.83 398.56 + 183.56 361.54 + 201.89
Number of rotatable bonds 5.17+4.35 447+ 404 5.74+3.17 481+4.04*
Number of rings 263+ 151 251+1.53 280+1.75 245+ 1.72
Number of aromatic rings 127+1.04 1.36+1.00 158+1.14 139+1.11
Number of H bond 5.20+ 4.06 497 + 3.61 6.49+ 4.07 5.08 +3.81**
acceptors
Number of H bond donors 251+282 2.09+2.38 257+252 188+1.96*
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Molecular surface area 352.68 + 180.92 332.88 + 183.78 386.34 = 177.07 342.62 £ 197.55*
Molecular polar surface 102.17 £ 92.83 96.48 + 74.51 125.60 + 78.23 97.80 + 74.76 **
area

Wiener Index 2383.90+ 6919.65 | 1919.01 + 5230.99 2667.27 + 3562.05 2280.12 + 4890.95
Zagreb Index 122.38 + 69.64 115.48 + 64.32 136.52 + 70.87 115.82 + 76.90 *
* t-test p < 0.05

** t-test p <0.01
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Table 3. Results of external validation of Bayesian model for DILI

The results were for the complete test set true positive (TP) =86, true negative (TN) =56, false positive (FP) = 28 and false negative
(FN) = 67. For the subset of most interest TP = 13, TN = 10, FP =5 and FN = 8. For the compounds > 70 % similar to the training set
TP=9,TN=8 FP=2and FN =9.

Matthews correlation coefficient (TPXTN-FPXFN)/((TP+FN)(TP+FP)(TN+FP)(TN+FN))"0.5

Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), Specificity = TN/(TN+FP), Sensitivity = TP/(TP+FN)

Matthews
correlation
Test Set (N) coefficient  Concordance (%)  Specificity (%)  Sensitivity (%)
Complete test set (N = 237) 0.22 59.91 66.67 56
Subset of most interest (N = 37) 0.28 63.88 66.67 61.9
Compounds > 70% similar to training set (N = 28) 0.29 60.71 80.00 50
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Table4. Summary of SMART Sfiltering for the combined DILI test and training set. The Abbott ALARM (Huth et al., 2005;
Metz et al., 2007), Glaxo (Hann et al., 1999) and Blake SMARTSfilter (Originally provided as a Sybyl script to Tripos by Dr. James
Blake (Array Biopharma) while at Pfizer (Blake, 2005)) calculation were performed through the Smartsfilter web application, (Dr.
Jeremy Y ang) Division of Biocomputing, Dept. of Biochem & Mol Biology, University of New Mexico, Albuguerque, NM,

(http://pangolin.health.unm.edu/tomcat/biocomp/smartsfilter). True positive (TP), true negative (TN), false positive (FP) and false

negative (FN)Concordance (prediction accuracy) = (TP+TN)/(TP+TN+FP+FN), Specificity = TN/(TN+FP), Sensitivity =

TP/(TP+FN).
Filters/ DILI class Molecules Passing filter  Moleculesfailing filter Concordance  Specificity Sengitivity
(%0) (%0) (%0)
Blake (Pfizer) total 283 249 50.7 54.7 47.9
DILI —ve 121 100
DILI +ve 162 149
Glaxo total 458 74 44.2 86.4 14.1
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DILI —ve 191 30
DILI +ve 267 44

Abbott total 192 340 55.8 40.3 66.9
DILI —ve 89 132
DILI +ve 103 208

Accelrystotal 276 256 47.9 49.8 46.6
DILI —ve 110 111
DILI +ve 166 145
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Supplemental data for Bayesian model

Output from discovery studio

L eave-one-out Cross-Validation Results

This model was built using 295 samples, and validated using a leave-one-out cross-validation. Each sample was left out one at a time,
and a model built using the results of the samples, and that model used to predict the left-out sample. Once all the samples had
predictions, a ROC plot was generated, and the area under the curve (XV ROC AUC) calculated.

Best Split was calculated by picking the split that minimized the sum of the percent misclassified for category members and for
category nonmembers, using the cross-validated score for each sample. Using that split, a contingency table is constructed, containing
the number of true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN).

.. | TP/FN .
Output XV ROC AUC | Best Split EP/TN #in Category
: 115/43
DILI new Bayesian ECFC6 EVEN more des Il 0.860 0.167 17/120 158

Enrichment Results

Back to Top

This model was built using 295 samples, and validated using a leave-one-out cross-validation. Each sample was left out one at a time,
and a model built using the results of the samples, and that model used to predict the left-out sample. Once all the samples had
predictions, an enrichment plot was generated, and the percentage of true category members captured at a particular percentage cutoff.
(For example, in a column labeled "1%" would be the percentage of true category members (e.g., actives) that were found in the top
1% of the list, when sorted by the model score.)



This table shows the output name, the percentage of samples that are in that particular category, the number of category members, and
the percentage of true members found. Percentages that are less than 100% are in bold.

Category

Output %

1% | 5% | 10% |25%| 50% | 75% | 90% | 95% | 99%

DILI new Bayesian ECFC6 EVEN more

des | 53.559% |1.9%(8.9%|17.7%{43%|75.9%{94.9%|99.4%|100%|100%

Percentile Results

Back to Top

This table shows, for each model, the cutoff needed to capture a particular percentage of the good samples. For each cutoff, it shows
below the estimated percentages of false positives and true negatives for the non-good samples. This table is designed to help you pick
the cutoff value that best balances your desire to capture as many good samples as possible, while keeping the number of false
positives at a minimum.

The rates shown in this table are estimates derived from the cross-validated data; the actual numbers you would find on your own data
may vary.

Cutoff which lead to 10% or greater false positives are displayed in bold for ease of identification.

Model Name 99% 95% 90% 70% 50% 30% 10% 5% 1%

DILI new Bayesian
ECFC6 EVEN more
des li

-11.190 |-7.008 -4.739 -2.230 -2.230 7.924 |10.433 |12.703 |16.884
62%/38% [48%/52% |40%/60% | 32%/68% | 18%/82% | 9%/91%|6%/94%|4%/96% | 2%/98%

Category Statistics Results




Back to Top

This table shows, for each category, statistics derived from the cross-validated predictions of the model built for that category as
applied to members of that category and non-members of that category. For each group, the number of members/nonmembers (N) is
given; the mean prediction for each subset (Mean); and the estimate standard deviation of the predictions for each subset (StdDev).

(Categories with one or no members do not have a mean and standard deviation, as there are too few predictions upon which to base

them during cross-validation. Also, occasionally categories may contain many duplicate or highly-similar compounds which predict

close or identical values, causing them to have unusually low standard deviation values. These low values may be adjusted at time of
use of these standard deviations for predicting, for example, percentile results.)

Output Category Category Noncategory | Noncategory
b N Mean (£StdDev) N Mean (£StdDev)
DILI new Bayesian ECFC6 EVEN more des Il 158 2.85 (£5.97) 137 -7.81 (x11.33)
Non-validated Models Results
Back to Top
Training Data Information
Back to Top

The properties used to provide the variables were: ALogP; ECFC_6; Apol; logD; Molecular_Weight; Num_AromaticRings;
Num_H_Acceptors; Num_H_Donors; Num_Rings; Num_RotatableBonds; Molecular_PolarSurfaceArea;
Molecular_SurfaceArea; Wiener; Zagreb

The test to identify "good" samples is:

property("'DIL1_Bins_Binary *') is defined AND property("'DILI_Bins _Binary *") = 1;



You can extend this model by adding your own training data to it to create a new model, but because the original training data is no
longer available, you will not be able to re-validate the new model. This extending is done using the New Model from Old component.
The new training samples must already have the appropriate properties as specified above (though properties that can be calculated-
on-demand will be). The "good" samples must be marked so that they will be correctly identified by the aforementioned test.

Model Construction Information

Back to Top

Model construction information:

Post-processing was performed to remove low-information bins. Low-information bins are those who have: normalized estimates in
the range [-0.05, 0.05].

For each property, the following table gives the original number of bins (Original), the number removed due to too few samples
(TooFew), the number removed due to a poor normalized estimate (Noninformative), and the final number of bins saved in the model
(Final).

Property Original TooFew Noninformative Final

ALogP 11 0 1 10
ECFC_6 7094 0 437 6657
Apol 11 0 1 10
logD 11 0 2 9
Molecular_Weight 11 0 0 11
Num_AromaticRings 5 0 2 3
Num_H_Acceptors 0 3 5
Num_H_Donors 6 0 1 5




Num_Rings 5 0 3

Num_RotatableBonds 9 0 2 7
Molecular_PolarSurfaceArea 11 0 1 10
Molecular_SurfaceArea 11 0 2 9
Wiener 10 0 2 8
Zagreb 10 0 2 8
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Supplemental Figure 1.

PCA analysis for DILI combined training and test set compared with a set of 77 recently approved drugs.

532 compounds in the DILI training and test set (N= 532, blue) were compared with 77 recently approved drugs obtained from the
Prous database. The following descriptors were used with Discovery Studio 2.5.5: ALogP, molecular weight, number of hydrogen
bond donors, number of hydrogen bond acceptors, number of rotatable bonds, number of rings, number of aromatic rings, and

molecular fractional polar surface area. 0.83 % of the variance was explained with the first three principal components. One outlier
approved drug molecule is Sugammadex (bottom, yellow).
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Supplemental Table 2. Subset of compounds of most interest. False =DILI negative (0), True = DILI Positive (1).

Human DILI DILI

DILI DILI Bin DILI Bayesian Bayesian
Compound Bayesian (1=positive; Bayesian  Closest Closest True True False False
Name Prediction  O=negative) score Similarity ~ Sample Positive Negative Positive Negative
Alpidem TRUE 1 2.69 0.31 Sample 249 1
Benoxaprofen TRUE 1 4.55 0.57 Sample 126 1
Bromfenac TRUE 1 2.50 0.48 Sample 295 1
Candesartan FALSE 0 -6.75 0.37 Sample 270
Ciglitizone FALSE 1 -8.23 0.48 Sample 27
Dilevalol TRUE 1 2.74 1.00 Sample 157
Entacapone TRUE 0 3.84 0.32 Sample 204
Flunoxaprofen TRUE 0 2.11 0.57 Sample 126
Ibufenac FALSE 1 -3.01 0.43 Sample 53



Ibuprofen
Irbesartan
Ketoprofen
Losartan
Lumiracoxib
Pemoline
Pirprofen
Tasosartan

Tolcapone

Troleandomycin

Ximelagatran

Zolpidem

Azithromycin

Buspirone

Diclofenac

FALSE

FALSE

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

TRUE

-0.81

-5.62

7.35

-8.59

5.33

0.29

3.65

-2.87

7.71

-14.09

-1.55

1.19

-16.25

-3.12

5.69

0.50

0.24

0.55

0.29

0.55

0.41

0.54

0.24

0.35

0.46

0.35

0.28

0.80

0.29

0.56

Sample 126
Sample 227
Sample 126
Sample 270
Sample 173
Sample 115
Sample 126
Sample 197
Sample 162
Sample 106
Sample 165
Sample 281
Sample 105
Sample 258

Sample 173



Nefazodone TRUE 3.73 0.67 Sample 283 1
Pioglitazone FALSE -5.14 0.40 Sample 27 1
Propranolol FALSE -9.58 0.64 Sample 232 1
Rosiglitazone FALSE -1.96 0.35 Sample 27 1
Telithromycin FALSE -6.25 0.39 Sample 105
Troglitazone FALSE -2.52 0.37 Sample 27
Valsartan FALSE -2.26 0.32 Sample 250 1
Sudoxicam TRUE 2.33 0.35 Sample 45 1
Meloxicam TRUE 10.07 0.64 Sample 233
Olmesartan FALSE -12.75 0.32 Sample 270 1
Celecoxib TRUE 6.15 0.31 Sample 160 1
Lapatinib TRUE 5.78 0.31 Sample 138 1
Gefitinib TRUE 551 0.37 Sample 18 1

Sum 13 10
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Supplemental Table 3. Compounds greater than 70% similar to training set. False =DILI negative (0), True = DILI Positive

).
Human
DILI Bin
DILI (1=positiv DILI
Bayesian e; DILI Bayesian True True False  False
Compound Predictio 0=negative Bayesia Closest DILI Bayesian Positiv Negativ Positiv Negativ
Name n ) nscore  Similarity Closest Sample e e e e
Streptomycin FALSE 0 -45.49 0.97 Sample 264 1
Quinine Sulfate TRUE 1 30.57 0.96 Sample 251 1
Clarithromycin FALSE 1 -13.31 0.91 Sample 105 1
Tobramycin FALSE 1 -38.58 0.91 Sample 154 1
Glutethimide FALSE 1 -6.73 0.81 Sample 16 1
Azithromycin FALSE 0 -16.25 0.80 Sample 105 1



Nafcillin Sodium
Tolazamide
Ampicillin
Sodium
Ifosfamide
Terbutaline
Sulfate
Adriamycin
Doxorubicin HCI
Calcifediol
Econazole Nitrate
Sulconazole
Nitrate
Fexofenadine

Methyldopa

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

8.21

-2.78

2.95

3.09

1.20

-25.50

-25.50

-18.49

-13.38

-9.79

-30.23

-8.21

0.80

0.80

0.79

0.79

0.79

0.78

0.78

0.78

0.78

0.78

0.78

0.78

Sample 182

Sample 139

Sample 220

Sample 78

Sample 180
Sample 146
Sample 146
Sample 103

Sample 191

Sample 191
Sample 272

Sample 162



Acenocoumarol
Epirubicin
Fialuridine
Grepafloxacin
Lactose

Ethinyl estradiol
Prochlorperazine
Maleate
Atomoxetine
Iproniazid

Minocycline HCI

FALSE

FALSE

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

TRUE

o

o

-7.29

-25.70

3.44

3.23

-14.06

7.39

6.07

-9.79

3.58

12.49

0.77

0.76

0.76

0.74

0.73

0.72

0.72

0.71

0.71

0.70

Sample 290
Sample 146
Sample 120
Sample 64
Sample 90

Sample 108

Sample 58
Sample 125
Sample 150

Sample 86

sum
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Supplemental Table 4. Mean physicochemical properties for Recently approved drugs from Prous database

Descriptor Recently approved
drugs from Prous

database

(N=77)
ALogP 2.09 £ 3.49
Apol 16315.18 + 9937.28
LogD 1.42 +3.52
MW 427.05 + 280.31
Number of rotatable bonds 7.05 £ 7.56
Number of rings 344 +£1.70
Number of aromatic rings 2.02+1.21
Number of H bond 6.01+£6.73
acceptors




Number of H bond donors

2.37+3.28

Molecular surface area

413.89 *+ 264.25

Molecular polar surface

area

110.85 + 133.18

Wiener Index

5843.43 +17813.73

Zagreb Index

158.23 £ 97.50
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Supplemental Text

Each filter has a minimum and maximum number of times that it is allowed to map (in parentheses). The following SMARTS were
used with default settings: Sulfonyl halide (0-1), Primary alkyl halide (0-1), Epoxide or aziridine (0-1), Sulfonate ester (0-1),
Phosphonate ester (0-1), Long aliphatic chain (0-1), Peroxide (0-1), 1-2 Dicarbonyl (0-1), Acid halide (0-1), Non-Hydrogen atoms (2-
35), Carbons (1-30), N-O-S (0-9),Sulfonyl halides (0-0), Acid halides (0-0), Alkyl halides (0-0), Acid anhydrides (0-0), Isocyanates or
Isothiocyanates (0-0), Thiocyanates (0-0), Carbodiimides (0-0), Sulfonates (0-0), Acylhydrazides (0-0), Isonitriles (0-1), Imines (0-0),
Acrylonitriles (0-0), Propenals (0-0), Macrocycles (0-0), Phosphorus 3 (0-0), Hexanes (0-0), 5 rotatable bonds (0-0), Aliphatic
alcohols (0-3), Perchlorates (0-0), Fluorines (0-7), CI-Br-1 (0-3), P halides (0-0), Cyanohydrines (0-0), Sulfate esters (0-0),
Pentafluorophenyl esters (0-0), Paranitrophenyl esters (0-0), HOBt esters (0-0), Lawesson’s reagents (0-0), Phosphoramides (0-0),
Aromatic azides (0-0), Quaternary C-CI-I-P-S (0-0), Beta carbonyl quaternary N (0-0), Acyl cyanides (0-0), Sulfonyl cyanides (0-0),
Thioepoxides (0-0), Benzylic quaternary N (0-0), Di or Triphosphates (0-0), Aminooxy-oxo (0-0), Nitros (0-1), N-halides (0-0),
Aldehyde (0-1), Cyano (0-1), Acid halides (0-0), Carbazides (0-0), Sulfate esters (0-0), Sulfonates (0-0), Acid anhydrides (0-0),
Peroxides (0-0), Pentafluorophenyl esters (0-0), Paranitrophenyl esters (0-0), Esters of HOBT (0-0), Isocyanates and Isothiocyanates
(0-0), Triflates (0-0), Lawesson reagent and derivatives (0-0), Phosphoramides (0-0), Aromatic azides (0-0), Beta carbonyl quaternary
Nitrogen (0-0), Acylhydrazide (0-0), Quaternary C or C1 or I or P or S (0-0), Phosphoranes (0-0), Nitroso (0-0), P or S Halides (0-0),

Carbodiimide (0-0), Isonitrile (0-0), Triacyloximes (0-0), Cyanohydrins (0-0), Acyl cyanides (0-0), Sulfonyl cyanides (0-0),



Cyanophosphonates (0-0), Azocyanamides (0-0), Azoalkanals (0-0), Aliphatic methylene chains of 7 carbons or more in length (0-0),
Compounds with 4 or more acidic groups (0-0), Crown ethers (0-0), Disulfides (0-0), Thiols (0-0), Epoxides or Thioepoxides or
Aziridines (0-0), 2-4-5 trihydroxyphenyl (0-0), 2-3-4 trihydroxyphenyl (0-0), Hydrazothiourea (0-0), Thiocyanate (0-0), Benzylic
quaternary Nitrogen (0-0), Thioesters (0-0), Cyanamides (0-0), Four numbered Lactones (0-0), Di and Triphosphates (0-0),
Betalactams (0-0), Quinones (0-0), Polyenes (0-0), Saponin derivatives (0-0), Cytochalasin derivatives (0-0), Cycloheximide
derivatives (0-0), Monensin derivatives (0-0), Cyanidin derivatives (0-0) and Squalestatin derivatives (0-0). A molecule must match

this filter or it will be classed as failing the filter.
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Drug Metabolism and Disposition
Supplemental Table 1

Training set

Chemical Name

1,2,3,4,5,6-hexachlorocyclohexane

3-Acetamidophenol (AMAP)
Acetaminophen
Acetazolamide
Acetohexamide
Acetylcholine Chloride
Acitretin

acivicin

Adenosine
Albendazole
Allopurinol

Alloxan Hydrate
Amantadine HCI
Amiloride HCI
Aminobenzoate Potassium
Aminoglutethimide
Aminosalicylic Acid
amiodarone
Amitriptyline HCI
ammonium chloride
amoxapine

Amrinone

Amsacrine HCI
Ascorbate

Aspirin

Astemizole

Formula
C6H6CI6
C8HINO2
C8HINO2
C4H6N403S2
C15H20N204S
C7H16CINO2
C21H2603
C5H7CIN203
C10H13N504
C12H15N302S
C5H4N40
C4H4N205
C10H18CIN
C6H9CI2N70
C7H6KNO2
C13H16N202
C7H7NO3
C25H29I12NO3
C20H24CIN
H4CIN
C17H16CIN30O
C10H9N3O

C21H20CIN303S

C6H806
C9H804
C28H31FN40O

PubChem_CID
727
12,124
1,983
1,986
1,989
187
5,284,513
294,641
60,961
2,082
2,094
312,231
2,130
16,231
978
2,145
4,649
2,157
2,160
22,985
2,170
3,698
2,179
235
2,244
2,247

DILI_Bins_Binary *

O O O »P »P O O O O O » » O O +r»r o

o O o



Atenolol

atractyloside
Azaserine
Azathioprine
Aztreonam (Z-isomer)
Bacitracin

Bambuterol

Beclomethasone Dipropionate

Benazepril
Benzbromarone

Bepridil HCI

Betahistine DiHCI
Betamethasone
Bezafibrate

Bicalutamide

Biotin

Brompheniramine Maleate
Bumetanide

Bupivacaine

Bupropion HCI

Busulphan

cadmium chloride
Calcium Pantothenate
Captopril

carbendazim
Carbenoxolone Disodium
Carbidopa

Cefoperazone Dihydrate
Chenodiol
Chloramphenicol Palmitate
Chlorpheniramine Maleate
chlorpromazine
Chlortetracycline HCI
Chlorzoxazone

Ciclopirox

Cimetidine

Ciprofibrate

Ciprofloxacin HCI

C14H22N203
C30H44K2016S2
C5H7N304
C9H7N702S
C13H17N508S2
C66H103N17016S
C18H29N305
C28H37CIO7
C24H28N205
C17H12Br203
C24H35CIN20
C8H14CI2N2
C22H29FO05
C19H20CINO4
C18H14F4N204S
C10H16N203S
C20H23BrN204
C17H20N205S
C18H31CIN202
C13H19CI2NO
C6H1406S2
CdcCi2
C18H32CaN2010
C9H15NO3s
C9HIN302
C34H48Na207
C10H14N204
C25H31N9010S2
C24H4004
C27H42CI2N206
C20H23CIN204
C17H19CIN2S
C22H24CI2N208
C7H4CINO2
C12H17NO2
C10H16N6S
C13H14CI203
C17H19CIFN303

2,249
5,702,200
5,284,344

2,265
5,742,832
6,474,109

54,766
20,469
5,362,124

2,333

2,351

2,366

9,782

39,042
56,069
171,548

6,834

2,471

2,474

444

2,478

176

6,109
44,093
25,429
6,419,769
34,359
6,420,003
10,133

5,959

2,725

2,726
5,280,963

2,733

38,911

2,756

2,763

2,764
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Flupenthixol
Cisapride
citalopram
Cladribine
clinafloxacin
Clomiphene Citrate
Clomipramine
Clonidine HCI
Clotrimazole
Clozapine
Colchicine
Cromolyn
Cyanocobalamin
Cyclophosphamide
cyclosporin A
Cyproheptadine HCI
Cyproterone acetate
Danazol

Dantrolene Sodium

Dapsone

Deferoxamine Mesylate

Demeclocycline HCI
desipramine

Dexamethasone

Dextromethorphan HBr

d-galactosamine
Didanosine
Diethylcarbamazine
Diflunisal

Digoxin

dilthiazem HCI

Diphenhydramine HCI

Disopyramide Phosphate

Dobutamine HCI
Donepezil
Dopamine
Doxycycline hyclate

Edrophonium Chloride

C23H25F3N20S
C23H29CIFN304
C20H21FN20
C10H12CIN503
C17H17CIFN303
C32H36CINO8
C19H23CIN2
C9H10CI3N3
C22H17CIN2
C18H19CIN4
C22H25N06
C23H16011
C63H88CoN14014P
C7H15CI2N202P
C62H111N11012
C21H22CIN
C24H29ClO4
C22H27NO2
C14H9N4NaO5
C12H12N202S
C26H52N6011S
C21H22CI2N208
C18H22N2
C22H29FO05
C18H26BrNO
C6H13NO5
C10H12N403
C10H21N30
C13H8F203
C41H64014
C22H27CIN204S
C17H22CINO
C21H32N305P
C18H24CINO3
C24H29NO3
C8H11NO2
C46H58CI2N4018
C10H16CINO

5,281,881
2,769
2,771

20,279
60,063

3,033,832
2,801
2,803
2,812
2,818
6,167
2,882

5,460,135
2,907

5,284,373
2,913

5,284,537

28,417

9,568,637
2,955
2,973

5,281,008
2,995
5,743

5,360,696

24,154
50,599
3,052
3,059
30,322
62,920
3,100
107,858
36,811
3,152
681

5,281,011
3,202
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Ergocalciferol
Ergonovine Maleate
erythromycin
Erythromycin estolate (1)
Eserine

estradiol

estradiol 17b glucuronide
Estrone

Ethynodiol Diacetate
Etoposide

Famotidine

FCCP

Felbamate

Fenofibrate
Fenoprofen Sodium
Fenoterol HBr
Flecainide Acetate
Floxuridine
Fluconazole
Flucytosine
Fludrocortisone Acetate
Flumazenil

fluoxetine

Flurbiprofen

Flutamide

Fluvastatin
fluvoxamine

Folate

Furazolidone
Furosemide
Gabapentin

Gallamine Triethiodide
Gallium Nitrate Hydrate
gatifloxacin

Gemfibrozil

Glafenine

Gliclazide

Glimepiride

C28H440
C23H27N306
C37H67NO13
C52H97NO18S
C15H21N302
C18H2402
C24H3208
C18H2202
C24H3204
C29H32013
C8H15N702S3
C10H5F3N40
C11H14N204
C20H21ClO4
C15H13NaO3
C17H22BrNO4
C19H24F6N205
C9H11FN205
C13H12F2N60O
C4H4FN30
C23H31FO6
C15H14FN303
C17H18F3NO
C15H13FO2
C11H11F3N203
C24H26FNO4
C15H21F3N202
C19H17N706
C8H7N305
C12H11CIN205S
C9H17NO2
C30H60I3N303
H2GaN3010
C19H22FN304
C15H2203
C19H17CIN204
C15H21N303S
C24H34N405S

5,280,793
6,437,065
12,560
12,560
5,983
5,991
66,424
9,919
6,432,306
36,462
3,325
3,330
3,331
3,339
3,342
3,343
41,022
5,790
3,365
3,366
5,875
3,373
3,386
3,394
3,397
5,281,101
5,324,346
6,037
5,323,714
3,440
3,446
6,172
61,635
5,379
3,463
3,474
3,475
3,476
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Griseofulvin
Hycanthone
Hydrochlorothiazide
Hydrocortisone
Hydroxyurea
Idarubicin HCI
Idoxuridine
Imipramine HCI
indomethacin
isoniazid
Isoproterenol HCI
Isotretinoin
Isoxsuprine HCI
Kanamycin Sulfate
Ketorolac Tromethamine
Ketotifen

Labetalol
Lamivudine
L-arginine
Leflunomide
L-Ethionine
Levodopa
levofloxacin
Lidocaine

Lisinopril
Lithocholic acid
Lomefloxacin HCI
Loperamide HCI
Lovastatin

maleic acid
Maprotiline
Mebendazole
Meclofenamate Sodium
Medroxyprogesterone Acetate
Mefenamic Acid
Melatonin
Memantine

Mercaptopurine

C17H17CIO6
C20H24N202S
C7H8CIN304S2
C21H3005
CH4N202
C26H28CINO9
C9H11IN205
C19H25CIN2
C19H16CINO4
C6H7N30
C11H18CINO3
C20H2802
C18H24CINO3
C18H38N4015S
C19H24N206
C19H19NOS
C19H24N203
C8H11N303Ss
C6H14N402
C12H9F3N202
C6H13NO2S
C9H11NO4
C18H20FN304
C14H22N20
C21H31N305
C24H4003
C17H20CIF2N303
C29H34CI2N202
C24H3605
C4H404
C20H23N
C16H13N303
C14H12CI2NNaO3
C24H3404
C15H15NO2
C13H16N202
C12H21N
C5H4N4s

441,140
3,634
3,639
26,133
3,657
107,865
5,905
3,696
3,715
3,767
3,779
444,795
3,783
441,374
3,826
3,827
3,869
60,825
6,322
3,899
25,674
6,047
149,096
3,676
5,362,119
9,903
3,048
3,955
53,232
21,954
4,011
4,030
4,037
5,702,080
4,044
896
4,054

667,490
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Mesoridazine Besylate
Metaproterenol Sulfate
Methacycline HCI
Methicillin Sodium
Methimazole
Methotrexate
Methoxamine HCI
Methylergonovine Maleate
Methysergide Maleate
Metoclopramide HCI
Metronidazole
Mexiletine HCI
Miconazole
Mitoxantrone diHCI
Molindone HCI
Monocrotaline
montelukast

Nadolol

Nalidixic Acid
Nalmefene
Naltrexone

Niacin

Nicardipine HCI
Nifedipine

Nimesulide
Nimodipine
Nisoldipine
Nocodazole
nomifensine
Norethindrone
Norgestrel
Nortriptyline HCI
Novobiocin
Orphenadrine Citrate
oxybendazole
Oxybutynin HCI
Oxyphenonium

Pamidronate

C27H32N204S3
C22H36N2010S
C22H23CIN208

C17H19N2NaO6S

C4H6N2S
C20H22N80O5
C11H18CINO3
C24H29N306
C21H27N302
C14H23CI2N302
C6HIN303
C11H18CINO
C18H14CI4N20
C22H30CI2N406
C16H25CIN202
C16H23NO6
C35H36CINO3S
C17H27NO4
C12H12N203
C21H25N03
C20H23NO4
C6H5NO2
C26H30CIN306
C17H18N206
C13H12N205S
C21H26N207
C20H24N206
C14H11N303Ss
C16H18N2
C20H2602
C21H2802
C19H22CIN
C31H36N2011
C24H31NO8
C12H15N303
C22H32CINO3
C21H34NO3
C3HI9NNa207P2

4,078
4,086
5,281,092

23,689,098

1,349,907
126,941
6,082
8,226
9,681
4,168
4,173
21,467
4,189
4,212
23,897
104,764
5,281,040
39,147
4,421
5,284,594
5,360,515
938
4,474
4,485
4,495
4,497
4,499
4,122
4,528
6,230
5,991
4,543
4,546
4,601
4,622
4,634
5,749
73,351
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Paromomycin Sulfate
Paroxetine
p-bromophenol
Penicillin G Sodium
Perhexilene
Phenacetin
Phenazopyridine HCI
phenelzine
Phenoxybenzamine HCI
Phentolamine Mesylate
Phenylbutazone
Phenylpropanolamine HCI
phenytoin

Pilocarpine

Pinacidil

Pindolol

Piroxicam

potassium dichromate
Praziquantel
Prednisone

Primaquine Phosphate
Primidone
Procarbazine HCI
Progesterone
Promazine HCI
Promethazine HCI
Propafenone HCI
Pseudoephedrine HCI
puromycin
Pyrazinamide
Pyridostigmine Bromide
Pyridoxine
Pyrimethamine
Quinapril

quinidine

quinine

raloxifene

ranitidine

C23H47N5018S
C19H20FNO3
C6H5BrO
C16H17N2NaO4s
C19H35N
C10H13NO2
C11H12CIN5
C8H12N2
C18H23CI2NO
C18H23N304S
C19H20N202
C9H14CINO
C15H12N202
C11H16N202
C13H21N50
C14H20N202
C15H13N304S
Cr2K207
C19H24N202
C21H2605
C15H27N309P2
C12H14N202
C12H20CIN3O
C21H3002
C17H21CIN2S
C17H21CIN2S
C21H28CINO3
C10H16CINO
C22H29N705
C5H5N30
C9H13BrN202
C8H11NO3
C12H13CIN4
C25H30N205
C20H24N202
C20H24N202
C28H27NO4S
C13H22N403Ss

165,580
43,815
7,808
2,349
4,746
4,754
4,756
61,100
4,768
91,430
4,781
26,934
1,775
5,910
4,826
4,828
5,280,452
8,232
4,891
5,865
4,908
4,909
4,915
12,419
4,926
4,927
4,932
7,028
4,984
1,046
4,991
1,054
4,993
54,892
11,069
8,549
5,035
3,001,055
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Retinoic Acid
Ribavirin
Riluzole
Risperidone
Sertraline
Simvastatin
Sorbitol
Spironolactone
Stavudine
Streptomycin Sulfate
Sulfasalazine
Sulindac
Sumatriptan
tacrine
tamoxifen
telmisartan
Temozolomide
terfenadine
Tetracaine HCI
tetracycline
thioacetamide
Thioguanine
Thiothixene
tianeptine
Ticlopidine
Timolol Maleate
Tolmetin
Tranylcypromine HCI
Trazodone HCI
trifluoperazine
Trimethadione
Trovafloxacin
Ursodeoxycholic acid
Vancomycin
Vidarabine
Warfarin
Zafirlukast

Zalcitabine

C20H2802
C8H12N405
C8H5F3N20S
C23H27FN402
C17H17CI2N
C25H3805
C6H1206
C24H3204s
C10H12N204
C21H41N7016S
C18H14N405S
C20H17FO3S
C14H21N302S
C13H14N2
C26H29NO
C33H30N402
C6H6N602
C32H41NO2
C15H25CIN202
C22H24N208
C2H5NS
C5H5N5S
C23H29N302S2
C21H25CIN204S
C14H14CINS
C17H28N407S
C15H15NO3
C9H12CIN
C19H23CI2N50
C21H24F3N3S
C6HINO3
C20H15F3N403
C24H4004
C66H75CI2N9024
C10H15N505
C19H1604
C31H33N306S
C9H13N303

444,795
37,542
5,070
5,073
68,617
54,454
5,780
5,833
18,283
19,649
5,353,980
1,548,887
5,358
1,935
2,733,526
65,999
5,394
5,405
8,695
5,497,101
2,723,949
2,723,601
941,651
68,870
5,472
5,478
5,509
19,493
5,533
5,566
5,576
483,952
31,401
444,193
21,704
6,691
5,717
24,066
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Zidovudine
Zileuton

Zomepirac

Test set
Chemical Name
sudoxicam
meloxicam
olmesartan
celecoxib
lapatinib

gefitinib
6-mercaptopurine
Abacavir
Acenocoumarol
Acetylcysteine
Aclarubicin HCI
adriamycin
aflatoxin B1

Allyl alcohol

allyl formate
alpidem
Amineptine HCI
Aminocaproic Acid
Amodiaquine HCI
Amoxicillin
Amphotericin B
Ampicillin Sodium

Anileridine HCI

ANIT (1-Naphthyl isothiocyanate)

Arsenic Trioxide
atomoxetine
Auranofin
Aurothioglucose
aurothiolamate
Azacytidine
Azatadine Maleate

Azlocillin Sodium

C10H13N504
C11H12N202S
C15H14CINO3

Formula
C13H11N304S2
C14H13N304S2
C29H30N606
C17H14F3N302S
C29H26CIFN404S
C22H24CIFN403
C5H4N4S
C14H18N60O
C19H15NO6
C5HINO3S
C42H54CINO15
C27H30CINO11
C17H1206
C3H60

C4H602
C21H23CI2N30
C22H28CINO2
C6H13NO2
C20H23CI2N30
C16H19N305S
C47H73NO17
C16H18N3Na04S
C22H29CIN202
C11H7NS

As203
C17H21NO
C19H32Au09PS
C6H11AuO5S
C4H3AuNa204s
C8H12N405
C24H26N204
C20H22N5Na06S

PubChem_CID

35,370
60,490
5,733

DILI_Bins_Binary *
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BEA (bromoethanamine)
benoxaprofen

Betaine HCI

Bismuth Subsalicylate

Bithionol

BNIT (2-Naphthyl isothiocyanate)

Bosentan

bromfenac
Bromobenzene
buthinioninesulphoxime
Butoconazole Nitrate
Butylated hydroxytoluene
Caffeine

Calcifediol

candesartan

Capsaicin
carbamzepine

carbon tetrachloride (2)
Carboplatin

Cefadroxil
Cefamandole Sodium
Cefotetan

Cefotiam HCI

Cefoxitin

Ceftazidime

Ceftriaxone Sodium E-Isomer

cephaloridine
Cephalothin Sodium
Cephapirin Sodium
Cephradine
cerivastatin
Chloroform
Chloroquine Phosphate
Chlorpropamide
Ciglitizone
Cinchophen
cisplatin

Citicoline

C2H6BrN
C16H12CINO3
C5H12CINO2
C7H5BiIO4
C12H6CI402S
C11H7NS
C27H29N506S
C15H12BrNO3
C6H5Br
C20H10Br4010S2
C19H18CI3N303s
C15H240
C8H10N402
C27H4402
C24H20N603
C18H27NO3
C15H12N20

CCl4
C6H12N204Pt
C16H19N306S
C18H17N6Na05S2
C17H17N708S4
C18H24CIN90O4S3
C16H17N307S2
C22H22N607S2
C18H17N8NaO7S3
C19H17N304S2
C16H15N2Na06S2
C17H16N3Na06S2
C16H19N304S
C26H34FNO5
CHCI3
C18H32CIN308P2
C10H13CIN203s
C18H23NO3S
C16H11INO2
H6CI2N2Pt
C12H22N4011P2
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Clarithromycin

Clemastine Fumarate
Clindamycin HCI
Clofibrate

Cloxacillin Sodium
Cyclizine

Dacarbazine

Dactinomycin

DCB (dichlorobenzene)
Dextroamphetamine Sulfate
dichloroethylene
dichlorophenyl succinimide

Dicloxacillin Sodium

Diethylhexylphthalate (phthalate ester)

difluoropentane
Dimercaprol
dimethylnitrosamine
dinitrophenol
Di-n-pentyl-phthalate
Diphenoxylate HCI
Dipyridamole

Diquat

Divalproex Sodium
d-limonene
Doxorubicin HCI
Econazole Nitrate
entacapone
Epirubicin
eprosartan
Ergotamine |-Tartrate
Ethane Dimethane Sulfonate
ethinyl estradiol
Ethosuximide
ethylene glycol
Fexofenadine
Fialuridine

Fipexide

Flufenamic Acid (Flufenamate)

C38H69NO13
C25H30CINO5
C18H34CI2N205S
C12H15CIO3
C19H19CIN3NaO6S
C18H22N2
C6H10N6O
C62H86N12016
C6H4CI2
C18H28N204S
C2H4CI2
C9H10CI2N20
C19H16CI2N3NaO5s
C24H3804
C5H10F2
C3H80S2
C2H6N20
C6H4N205
C18H2604
C30H33CIN202
C24H40N80O4
C12H12Br2N2
C16H31NaO4
C10H16
C27H30CINO11
C18H16CI3N304
C14H15N305
C27H29NO11
C23H24N204S
C37H41N5011
C14H10Cl4
C20H2402
C7H11NO2
C2H602
C32H39NO4
C9H10FIN205
C20H21CIN204
C14H10F3NO2



flunoxaprofen
Fluorouracil
Fluspirilene
Foscarnet
Glutethimide
grepafloxacin
Guanethidine Sulfate
Hexachlorophene
Hydrazine
Hyoscyamine Sulfate
Ibufenac

Ibuprofen
Ifosfamide
indacrinone
indinavir sulphate
lopamidol
iproniazid
irbesartan
Isocarboxazid
Isosorbide dinitrate
Isoxicam
Ketoconazole
ketoprofen

Lactose
Leucovorin Calcium
Liothyronine
Loracarbef
losartan
Lumiracoxib
Menadione
Mephobarbital
Meprobamate
Mestranol
Metformin
Methapyrilene
Methapyrilene
Methoxyacetic Acid

Methyldopa

C16H12FNO3
C4H3FN202
C29H31F2N30
CH305P
C13H15NO2
C19H22FN303
C10H24N404S
C13H6CI602
H4AN2
C17H25NO7S
C12H1602
C13H1802
C7H15CI2N202P
C18H14CI204
C36H49N508S
C17H22I3N308
C9H13N30
C25H28N60
C12H13N302
C6H8N208
C14H13N305S
C26H28CI2N404
C16H1403
C12H22011
C20H21CaN707
C15H12I3NO4
C16H18CIN305
C22H23CIN6O
C15H13CIFNO2
C11H802
C13H14N203
C9H18N204
C21H2602
C4H11N5
C14H19N3S
C14H19N3S
C3H603
C10H13NO4
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methylene dianiline
Methylphenidate
Metolazone
Mezlocillin Sodium
mianserin

Mibefradil
Microcystin-LR
Minocycline HCI
Mometasone Furoate
Moricizine HCI
Moxalactam Disodium
Myo-inositol

N-acetyl cysteine
Nafcillin Sodium
naproxen
Nitrofurantoin
o-bromophenol

Octyl Methoxycinnamate
Oxaprozin
Oxyquinoline Sulfate
Paclitaxel

PAP (para-aminophenol)
paraquat

Pargyline

pemoline

Penbutolol Sulfate
Pentanoic Acid
Permethrin
phenothiazine

phenyl isothiocyanate
Pimozide

Pirprofen

probenecid

Probucol
Prochlorperazine Maleate
Propofol

Quinine Sulfate

ragaglitazar

C16H18CIN3S
C14H19NO2
C16H16CIN303S
C21H24N5Na08S2
C18H20N2
C29H38FN303
C49H74N10012
C23H28CIN307
C27H30CI206
C22H26CIN304S
C20H18N6Na209S
C6H1206
C5HINO3S
C21H21N2NaO5S
C14H1403
C8H6N405
C6H5BrO
C18H2603
C18H15NO3
C9HINO5S
C47H51INO14
C18H24NO5PS2
C14H20N208S2
C11H13N
C9H8N202
C36H60N208S
C5H1002
C21H20CI203
C12HI9NS
C7H5NS
C28H29F2N30
C13H14CINO2
C13H19NO4S
C31H4802S2
C28H32CIN308S
C12H180
C40H50N408Ss
C25H25N0O5
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Retinyl palmitate
Rifabutin
Rifampicin

ritonavir

rotenone
Saquinavir base / mesylate
Spectinomycin HCI
Streptomycin
Streptozocin
Sulconazole Nitrate
Sulfabenzamide
Sulfamethizole
Sulfanilamide
Sulfinpyrazone
Tasosartan
telenzepine
Temafloxacin
Terbutaline Sulfate
Tetraethythiuran
Theophylline
Thiamine
ticrynafen
Tobramycin
Tolazamide
Tolbutamide
tolcapone
Tolrestat
Topiramate
trichloroethylene
Trientine HCI
Trimethobenzamide HCI
Trimethoprim
Tripelennamine HCI
Troleandomycin

Tromethamine

TUDC (tauroursodeoxycholic acid)

Uracil Mustard

Valproic Acid

C36H5803
C46H62N4011
C43H58N4012
C37H48N605S2
C23H2206
C38H50N605
C14H25CIN207
C21H39N7012
C8H15N307

C18H16CI3N303S

C13H12N203Ss
C9H10N402S2
C6H8N202S
C23H20N203S
C23H21N70
C19H22N402S
C21H18F3N303
C24H40N2010S
C10H20N2S4
C7H8N402
C12H17CIN4OS
C13H8CI204S
C18H37N509
C14H21N303s
C12H18N203Ss
C14H11INO5
C16H14F3NO3S
C12H21NO8S
C2HCI3
C6H19CIN4
C21H29CIN205
C14H18N403
C16H22CIN3
C41H67NO15
C4H11NO3
C26H45N0O5S
C8H11CI2N302
C8H1602



Verapamil HCI

Vinblastine Sulfate

Vincristine Sulfate
Ximelagatran
zolpidem
Azithromycin
buspirone
diclofenac
Nefazodone
Pioglitazone
Propranolol
Rosiglitazone
telithromycin
troglitazone

valsartan

C27H39CIN204
C46H60N4013S
C46H58N4014S
C24H35N505
C19H21N30
C38H72N2012
C21H31N502
C14H11CI2NO2
C25H32CIN502
C19H20N203S
C16H21NO2
C18H19N303S
C43H65N5010
C24H27NOS5S
C24H29N503

447,043
2,477
3,033
4,449
4,829
4,946

77,999
3,002,190
5,591
60,846
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