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ABSTRACT 

This review summarizes the biology of the major facilitative membrane 

transporters, the reduced folate carrier (RFC) (SLC19A1) and the proton-coupled folate 

transporter (PCFT) (SLC46A1). Folates are essential vitamins, and folate deficiency 

contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the 

major folate transporter in mammalian cells and tissues.  PCFT mediates the intestinal 

absorption of dietary folates and appears to be important for transport of folates into the 

central nervous system. Clinically relevant antifolates for cancer such as methotrexate 

and pralatrexate are transported by RFC and loss of RFC transport is an important 

mechanism of methotrexate resistance in cancer cell lines and in patients.  PCFT is 

expressed in human tumors, and is active at pH conditions associated with the tumor 

microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel 

tumor-targeted antifolates related to pemetrexed with selective membrane transport by 

PCFT over RFC are being developed. In recent years, there have been major advances in 

understanding the structural and functional  properties, and the regulation of RFC and 

PCFT. The molecular bases for methotrexate resistance associated with loss of RFC 

transport and for hereditary folate malabsorption, attributable to mutant PCFT, were 

determined.  Future studies should continue to translate molecular insights from basic 

studies of RFC and PCFT biology into new therapeutic strategies for cancer and other 

diseases.  
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INTRODUCTION 

Folates are B9 vitamins that are required for synthesis of thymidylate, purine 

nucleotides, serine and methionine (Stokstad, 1990).  Folates are essential for cell growth 

and tissue development and must be obtained from exogenous sources since mammals 

cannot synthesize these derivatives de novo. Folates are also hydrophilic molecules that 

are anions at physiologic pH and do not cross biological membranes by diffusion alone.  

Genetically distinct systems have evolved in mammalian cells to facilitate 

membrane transport of folates (Kugel Desmoulin et al., 2012a; Matherly and Goldman, 

2003; Zhao et al., 2011a; Zhao and Goldman, 2013). The best characterized folate 

transporter is the ubiquitously expressed reduced folate carrier (RFC; SLC19A1) 

(Matherly and Hou, 2008; Matherly et al., 2007). RFC was initially characterized over 35 

years ago in relation to its kinetics and thermodynamics (Goldman, 1969; Goldman, 

1971; Goldman et al., 1968). Following its cloning in the mid-1990s (Dixon et al., 1994; 

Moscow et al., 1995; Prasad et al., 1995; Williams and Flintoff, 1995; Williams et al., 

1994; Wong et al., 1995), RFC was recognized as the major cellular and tissue folate 

transporter in mammals. In 2006, the proton-coupled folate transporter (PCFT;SLC46A1) 

was identified with characteristics distinctly different from those for RFC, including its 

acidic pH optimum and substrate specificity (Qiu et al., 2006). While PCFT turned out to 

be identical to a carrier previously reported to transport heme (Shayeghi et al., 2005), this  

activity was later recognized to be at most a minor component, as it soon became clear 

that the primary role for PCFT involved transport of dietary folates across the apical 

brush-border of the small intestine (Zhao et al., 2009a). PCFT is also important to the 

transport of folates into the central nervous system (CNS) (Wollack et al., 2008; Zhao et 
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al., 2009b). PCFT is expressed in other tissues, although given its modest transport 

activity at neutral pH, its broader physiologic role remains uncertain.    

In addition to its established role in the membrane transport of physiologic folates, 

RFC is a major systemic transport system for antifolate drugs used for cancer 

chemotherapy including methotrexate (MTX), pemetrexed (PMX) (Alimta), raltitrexed 

(RTX), and pralatrexate (PDX) (Kugel Desmoulin et al., 2012a; Matherly et al., 2007) 

(Figure 1). These drugs are also substrates for PCFT, albeit to different extents (Kugel 

Desmoulin et al., 2012a; Zhao and Goldman, 2007).  However, it is the RFC transport 

component which predominates; i.e., although the PCFT transport flux for these clinically 

relevant antifolates can be significant, particularly at the acidic pH characterizing the 

tumor microenvironment, there would be no net therapeutic gain since membrane 

transport by RFC in normal tissues would continue.  These considerations provided 

impetus for developing a new therapeutic paradigm for antifolate drug development, 

namely the rational development of tumor-targeted therapies based on tumor-specific 

high level expression and/or function of PCFT (Kugel Desmoulin et al., 2012a).  

In this review, we focus on the molecular, regulatory, and functional 

characteristics of the major facilitative folate transporters, RFC and PCFT. This includes 

their basic biology, along with their physiology and roles in cancer therapy.   
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THE ROLE OF MEMBRANE TRANSPORT IN IN VIVO FOLATE 

HOMEOSTASIS   

Folic acid is the synthetic form of the folate derivatives found in cells. Folates 

differ in oxidation of the pteridine ring, and for reduced or tetrahydrofolate (THF) 

cofactor forms, the nature of their associated one-carbon unit (methyl, formyl, methylene, 

methenyl) and its position of substitution (N10 or N5 positions) (Stokstad, 1990). Within 

cells, folate cofactors exist primarily as poly-γ-glutamates which include 2-8 glutamate 

moieties, conjugated to the parent molecule in an ATP-dependent step catalyzed by folyl-

γ-glutamate synthetase (Shane, 1989). Polyglutamylation is an essential metabolic 

function as folate polyglutamates are retained intracellularly due to their polyanionic 

character and their poor substrate activities for the major folate efflux pumps (see below). 

Further, polyglutamyl folates are preferred substrates for folate-dependent enzymes, 

although substrate activity varies for different polyglutamyl forms (Moran, 1999; Shane, 

1989).  Within cells, one-carbon-substituted THF polyglutamate cofactors participate in 

the carbon-transfer reactions leading to purine nucleotides, thymidylate, and the amino 

acids serine and methionine (Figure 2). Methionine is converted to S-adenosyl 

methionine (SAM), required for biological methylation reactions, including those 

involving DNA, RNA, neurotransmitters and proteins such as histones (Lu, 2000).  

10-Formyl THF is the one carbon donor in reactions catalyzed by β-glycinamide 

ribonucleotide (GAR) formyltransferase (GARFTase) and 5-aminoimidazole-4-

carboxamide (AICA) ribonucleotide (AICAR or ZMP) formyltransferase (AICARFTase), 

leading to the purine nucleotides (Figure 2). Thymidylate synthase (TS) catalyzes 

synthesis of dTMP from dUMP using 5,10-methylene THF as a one-carbon donor, 
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generating dihydrofolate. Dihydrofolate is reduced back to THF by dihydrofolate 

reductase (DHFR).  5,10-Methylene THF is also a source of one-carbon units for the 

synthesis of serine from glycine by serine hydroxymethyltransferase (both mitochondrial 

and cytosolic). Further, 5,10-methylene THF is converted by 5,10-methylene THF 

reductase to 5-methyl  THF which provides a one-carbon unit for methylation of 

homocysteine to methionine by methionine synthetase.   

Excellent sources of folates include dark green leafy vegetables, orange juice, 

liver, and strawberries (Gregory, 1995).  Cooking decreases folate levels in food. Dietary 

folates are absorbed in the proximal gastrointestinal (GI) tract via their transport across 

the enterocyte brush-border apical membrane by PCFT (Zhao et al., 2011a; Zhao et al., 

2009a). Although RFC is expressed throughout the intestine (Inoue et al., 2008; Qiu et al., 

2006; Qiu et al., 2007), the acidic pH optimum of the upper GI (pH ~5.8-6.0) is highly 

conducive to PCFT membrane transport but not to RFC transport (Yun et al., 1995).  

Whether RFC contributes to intestinal folate absorption in the lower GI where the pH is 

less acidic is unclear. After entering the enterocytes by PCFT, folates are transported 

across the basolateral membrane surface [most likely by multidrug resistance-associated 

protein (MRP) 3] into the bloodstream and are delivered to the liver by the hepatic portal 

vein (Zhao et al., 2011a; Zhao et al., 2009a). Folates are released from the liver into the 

blood primarily as 5-methyl THF, which is the major circulating form of folate.  

5-Methyl THF, like all folates, is hydrophilic and incapable of permeating plasma 

membranes by diffusion alone.  RFC is expressed ubiquitously in tissues and tumors and 

is the major folate transporter which transports folate cofactors from the blood into cells 

of peripheral tissues (Matherly et al., 2007). In human tissues, highly elevated human 
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RFC (hRFC) transcripts are detected in placenta and liver, with significant levels in other 

tissues including leukocytes, kidney, lung, bone marrow, intestine and portions of the 

CNS and brain (Whetstine et al., 2002a). By immunohistochemistry of mouse tissues, 

RFC was detected at the apical brush border membrane of small intestine and colon, 

hepatocyte membranes, the apical membrane of the choroid plexus, the basolateral 

membrane of the renal tubule epithelium, and the apical membrane of the cells lining the 

spinal canal (Wang et al., 2001).  

Folate deficiency results from insufficient dietary folate or impaired intestinal 

folate absorption (see below). This can result in pathologic conditions such as 

cardiovascular disease, neural tube defects, neurologic disorders, and cancer (Lucock, 

2000). RFC is essential for development, since in mice, inactivating both RFC alleles by 

targeted homologous recombination is embryonic lethal (Zhao et al., 2001c). Whereas 

approximately 10% of RFC-null mice could be brought to live birth by folic acid 

supplementation, these animals went on to die within 1-2 weeks due to failure of 

hematopoietic organs such as bone marrow, thymus, or spleen. (Zhao et al., 2001c). 

PCFT is also expressed in many normal tissues, although levels are generally 

modest (Kugel Desmoulin et al., 2012a). Major sites of PCFT expression include the 

apical brush-border surface of the jejunum and duodenum, as well as kidney, the 

sinusoidal membrane of the liver, and the basolateral membrane of the choroid plexus 

and retinal pigment epithelium (Inoue et al., 2008; Qiu et al., 2006; Umapathy et al., 

2007; Zhao et al., 2009a; Zhao et al., 2009b). PCFT is also expressed in placenta and 

spleen.  While PCFT is highly active in the acidic conditions which characterize the 

upper GI, given its acidic pH optimum, PCFT seems unlikely to represent a generalized 
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mechanism for folate uptake into tissues where it is expressed, although it appears to be 

essential for transport across the choroid plexus (below). Human PCFT (hPCFT) is 

abundantly expressed in human tumor cell lines (e.g., breast, prostate, ovarian, lung) and 

at very low-to-undetectable levels in leukemias (Gonen et al., 2008; Kugel Desmoulin et 

al., 2011; Zhao et al., 2004a).  

Loss of hPCFT is associated with hereditary folate malabsorption (HFM) 

syndrome, a rare autosomal recessive disorder characterized by the onset of macrocytic 

folate-deficiency, anemia, and failure to thrive within the first few months of life (Atabay 

et al., 2010; Diop-Bove et al., 2013; Geller et al., 2002; Lasry et al., 2008; Mahadeo et 

al., 2010; Mahadeo et al., 2011; Meyer et al., 2010; Min et al., 2008; Qiu et al., 2006; 

Shin et al., 2011; Shin et al., 2010; Zhao et al., 2007). Other manifestations of HFM 

include hypoimmunoglobulinemia, developmental delays, gait disorders, peripheral 

neuropathies, and seizures.  HFM derives from homozygous mutations in the hPCFT 

gene including base insertions, deletions, or substitutions, manifesting as exon skipping, 

frame shifts, premature translation terminations and amino acid substitutions. Loss of 

hPCFT function leads to impaired intestinal folate absorption, resulting in severe 

systemic folate deficiency and impaired transport of folates across the choroid plexus into 

the CNS (Wollack et al., 2008; Zhao et al., 2009b).  PCFT knockout mice provide an 

excellent in vivo model of HFM that largely recapitulates the HFM syndrome seen in 

humans with mutated hPCFT, including undetectable serum folate and elevated plasma 

homocysteine. The phenotype can be rescued by oral supplementation with high levels of 

5-methyl THF or parenteral administration of 5-methyl THF or leucovorin [(6R,S]5-

formyl THF] (Salojin et al., 2011).  
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Other folate uptake systems in mammalian cells and tissues include folate 

receptors (FRs) α and β, glycosyl phosphatidylinositol-tethered proteins (Elnakat and 

Ratnam, 2004; Zhao et al., 2011a). FRs mediate folate internalization by endocytosis 

(Sabharanjak and Mayor, 2004). FRα is expressed in the choroid plexus, the proximal 

renal tubules, the retinal pigment epithelium, uterus and placenta (Elnakat and Ratnam, 

2004). In polarized epithelial cells, FRα is expressed on the apical membrane where it is 

not in contact with the circulation (Chancy et al., 2000).  FRβ is expressed in placenta 

and hematopoietic cells, as well as in activated macrophages (Elnakat and Ratnam, 2004). 

In normal bone marrow and peripheral blood cells, FRβ is non-functional (Reddy et al., 

1999). In malignant tissues such as non-mucinous adenocarcinomas of the ovary, uterus, 

and cervix, FRα is expressed in high levels and is exposed to the circulation (Elnakat and 

Ratnam, 2004). FRβ is expressed in chronic myelogenous leukemia and acute 

myelogenous leukemia cells (Pan et al., 2002; Ross et al., 1994). The expression of FRα 

in the plasma membranes of solid tumors and FRβ in leukemias has prompted 

development of folate-based therapeutics as targeting and cytotoxic agents for therapeutic 

applications including cancer and inflammatory diseases (Salazar and Ratnam, 2007; 

Wang et al., 2010; Wang et al., 2011; Xia and Low, 2010; Yang et al., 2012).  

The organic anion transporters (OATs) and organic anion-transporting 

polypeptides (OATPs) transport a diverse spectrum of organic ions such as 

bromosulfopthalein, taurocholate, and probenecid, as well as folates, into epithelial 

tissues such as kidney and intestine (Burckhardt, 2012; Konig et al., 2013).  Finally, 

efflux pumps including MRPs (MRPs 1-5 and 8) and ABCG2 also transport folates 
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(Gonen and Assaraf, 2012; Kruh et al., 2007; Natarajan et al., 2012), thereby opposing 

the cellular uptake mediated by the other major transporters.    

In proximal renal tubules, both PCFT and OATP1 are expressed at the apical 

brush border membrane, along with FRα, whereas RFC and OAT1/OAT3 are present at 

the basolateral membrane (Zhao et al., 2011a; Zhao et al., 2009a). Folates are filtered via 

the glomerulus and are reabsorbed from the urine primarily by a FRα-mediated process, 

although OATP1 may contribute to folate reabsorption.  Whether PCFT might contribute 

to folate reabsorption is not clear. Folates are transported into the circulation  by folate 

transporters at the basolateral membrane. While FRs, RFC and PCFT are all expressed in 

the placenta, their contributions to transplacental transport of folates are not entirely clear.  

FRα- and PCFT-null mice are fertile. A woman with HFM due to a homozygous stop 

codon in the hPCFT coding sequence was recently reported to experience a normal term 

pregnancy and delivery (Zhao et al., 2011a).  

Folates are concentrated in the cerebral spinal fluid via active transport at the 

choroid plexus (Geller et al., 2002; Spector and Lorenzo, 1975). FRα is localized to the 

basal and apical membranes (Spector and Lorenzo, 1975; Zhao et al., 2011a), and RFC is 

present on the apical membrane of the choroid plexus (Wang et al., 2001). PCFT is also 

localized to the basolateral membrane of the choroid plexus (Zhao et al., 2009b). 

Although the neutral pH at both interfaces is inconsistent with PCFT transport, a 

localized low pH conducive to PCFT transport may occur at the basolateral membrane of 

ependymal cells, reflecting the presence of sodium-hydrogen exchangers (Zhao et al., 

2011a; Zhao et al., 2009a). HFM is accompanied by low levels of CNS folates, even in 

patients who take folate supplements (Diop-Bove et al., 1993; Geller et al., 2002), 
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establishing the role of hPCFT in folate uptake into the CNS.  Moreover, loss of function 

mutations in FRα were described in children with cerebral folate deficiency that appears 

several years after birth (Cario et al., 2009; Steinfeld et al., 2009).  While RFC is 

positioned to extract folates from the CSF, its role in CNS transport is not clear.  

BIOLOGY OF RFC 

Transport characteristics and structure/function  

RFC is the major membrane transporter of circulating folate cofactors (Matherly 

et al., 2007). The transport kinetics and thermodynamics for RFC were first characterized 

in the mid-to-late1960s (Goldman, 1969; Goldman, 1971; Goldman et al., 1968). RFC 

transport is temperature-dependent and characterized by a neutral pH optimum such that 

transport activity decreases dramatically below pH 7 (Sierra et al., 1997). RFC substrates 

are structurally diverse and include ring systems differing in aromaticities and in the 

presence or absence of heteroatoms or substituents, the length and character of the linker 

domain connecting the aromatic rings, and the identity and charge character of the 

terminal amino acid (Figure 1).   

(6S)5-formyl THF and (6S)5-methyl THF are excellent substrates for RFC 

(Goldman et al., 1968). Transport of (6S)5-formyl THF is preferred over the (6R) 

stereoisomer (Sirotnak et al., 1979), although transport is not stereospecific for 5-methyl 

THF (Chello et al., 1982; White et al., 1978). Whereas 5-methyl and 5-formyl THF both 

show low micromolar affinities for RFC, folic acid is a poor RFC substrate with binding 

affinities one-to-two orders of magnitude less than those for the reduced folate forms 

(Goldman et al., 1968; Westerhof et al., 1995). The clinically used antifolates MTX, 

PMX, RTX, and PDX are all excellent RFC substrates with Kts in the low micromolar 
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range (Jansen, 1999; Matherly and Hou, 2008; Matherly et al., 2007; Sirotnak et al., 

1998; Visentin et al., 2013).  The hemiphthaloylornithine antifolate PT523 (Jansen, 1999; 

Rhee et al., 1994; Rosowsky et al., 1994; Wright et al., 2000) and the benzoquinazoline 

antifolate GW1843U89 (Duch et al., 1993) (Figure 1) are the best substrates for hRFC 

yet described with binding affinities in the submicromolar range. Interestingly, 

GW1843U89 is reported to be a comparatively poor substrate for the murine RFC (Duch 

et al., 1993).  

A unifying feature of RFC transport substrates involves their anionic character. 

Both folate cofactors and certain antifolates include a terminal glutamic acid and at 

neutral pH, the glutamyl α and γ carboxyl groups are ionized. Interestingly, some amino 

acid replacements are well tolerated, including valine and 2-aminosuberate analogs of the 

antifolate ICI198,583 (Westerhof et al., 1995), and both ZD9331 and PT523 (Jansen, 

1999; Rhee et al., 1994; Rosowsky et al., 1994; Wright et al., 2000).   ICI198,583-D-

glutamate is poorly transported by RFC, in contrast to ICI198,583-L-glutamate (Jansen, 

1999). In a study of the role of substrate glutamyl α or γ carboxyl groups in RFC 

transport, diamino furo[2,3-d]pyrimidine antifolates with L-glutamate, or with substituted 

glutamyl α and γ groups, were tested for RFC binding (Deng et al., 2008). The analog 

with L-glutamate and that with a single α but no γ carboxyl group were bound to RFC, as 

reflected by competition with [3H]MTX uptake. Conversely, analogs with only a single γ 

but no α carboxyl, or without either the α or γ group were inert. Thus, only the α carboxyl 

group of (anti)folate substrates is required for substrate binding and membrane transport 

by RFC.  
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The energetics of RFC transport have been studied. Transport of folate substrates 

by RFC is not directly linked to ATP hydrolysis, nor is it sodium- or proton-dependent 

(Goldman, 1971; Henderson and Zevely, 1983). Rather, the driving force for 

concentrative uptake of (anti)folates seems to involve gradients of organic phosphates 

across the plasma membrane that bind and exit cells via RFC, while at the same time 

inhibiting folate export by this mechanism (Goldman, 1971). The net result is the 

transport of (anti)folates into cells by RFC whereby the transmembrane gradient (inside > 

outside) for one substrate (“organic phosphate”) drives uphill transport of another 

substrate (folate).  In support of this model are reports that MTX transport is 

competitively inhibited by structurally diverse organic anions such as adenine nucleotides 

and thiamine phosphates (Goldman, 1971). Further, thiamine pyrophosphate  and ZMP 

(AICA ribonucleotide) are bona fide RFC substrates which when present within cells 

trans-stimulate folate influx by RFC while inhibiting (anti)folate export via this 

mechanism (Visentin et al., 2012b; Zhao et al., 2002; Zhao et al., 2001b). Although RFC 

generates only small transmembrane chemical gradients, when considered in light of the 

dianionic nature of folates and membrane potentials, RFC generates substantial 

electrochemical potentials across the plasma membrane (Goldman, 1971; Goldman et al., 

1968).  

RFC was cloned in the mid-1990s from rodents and humans (Dixon et al., 1994; 

Moscow et al., 1995; Prasad et al., 1995; Williams and Flintoff, 1995; Williams et al., 

1994; Wong et al., 1995). RFC belongs to the major facilitator superfamily (MFS) of 

transporters including more than 2000 sequenced members (Chang et al., 2004; Matherly 

and Hou, 2008; Saier et al., 1999). The MFS family proteins include, among others, 
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transporters of amino acids, sugars, vitamins, nucleosides, and organic phosphates, as 

well as neurotransmitters. hRFC shows a structure typical of MFS proteins with 591 

amino acids arranged in 12 transmembrane domains (TMDs), with cytosolic N- and C-

termini and a large non-conserved loop domain between TMDs 6 and 7 facing the cytosol 

(Matherly and Hou, 2008; Matherly et al., 2007) (Figure 3). RFCs from various species 

are reasonably conserved (64-66% conservation between humans and rodents) with the 

highest homologies in the transmembrane-spanning regions and the lowest homologies in 

the N- and C-termini and the connecting loop between TMDs 6 and 7.  The C-termini for 

primate RFCs are 50-86 amino acids longer than those from other species (Matherly and 

Hou, 2008).  hRFC is glycosylated at Asn58 in the extracellular loop domain connecting 

TMDs 1 and 2 (Matherly et al., 1991; Wong et al., 1998). Mutation of Asn58 to Gln 

abolishes N-glycosylation, as reflected in a shift from a broadly-migrating ~85 kDa 

species to 65 kDa, but has minimal effect on either membrane targeting or transport 

activity (Wong et al., 1998).   

Structural determinants of RFC function and cellular trafficking were 

characterized by deletional mutagenesis.  Whereas deletions of N- (positions 1-27) and 

C-terminal (positions 453-591) amino acids from ectopically expressed hRFC only 

slightly impacted trafficking to the membrane surface and carrier function, deletion of 

larger segments (positions 302-591 or 1-301) abolished surface targeting (Marchant et al., 

2002).   Deletion of major segments (49 or 60 amino acids; positions 215-263 and 

positions 204-263, respectively) from the loop domain connecting TMDs 6 and 7 of 

hRFC (Figure 3) also abolished transport (Liu et al., 2003). Interestingly, when these 

deleted loop segments in hRFC were replaced by the corresponding segment from the 
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MFS homolog SLC19A2 which transports thiamine, transport was restored (Liu et al., 

2003).  Further, when hRFC was expressed in cells as individual TMD1-6 and TMD7-12 

half molecules, transport was restored (Witt et al., 2004).  Collectively, these results 

establish that neither the N- or C- termini, nor the intracellular loop domain connecting 

TMDs 6 and 7 participate in binding and translocation of folate substrates. The primary 

role for the TMD6-7 loop domain is to provide appropriate spacing between the TMD1-6 

and TMD7-12 segments for optimal membrane transport.  

A functional “Cys-less” hRFC was generated by replacement of the 11 cysteine 

residues in hRFC with serine (Cao and Matherly, 2003). Cys-less hRFC was used for 

exhaustive Cys-scanning insertional mutagenesis and substituted-cysteine accessibility 

methods (SCAM). The 282 cysteine mutants were individually expressed in a hRFC-null 

(R5) HeLa subline treated with 2-sulfonatoethyl methanethiosulfonate (MTSES) to 

identify aqueous accessible TMD residues involved in substrate binding and translocation 

(Hou et al., 2005; Hou et al., 2006). Based on patterns of MTSES inhibition of transport 

and protection with excess substrate (leucovorin), TMDs 4, 5, 7, 8, 10, and 11 were 

identified as comprising the membrane translocation pathway for anionic folate substrates.  

Interestingly, of the 282 hRFC Cys mutants, only 10 Cys mutants were inactive for 

transport. These included 10 positions in a stretch of TMD4 (Arg133, Ile134, Ala135, 

Try136, Ser138), Tyr281 in TMD7, Ser313 in TMD8, and Arg373 in TMD10.  Several of 

these amino acids were previously implicated as functionally or structurally important by 

site-directed mutagenesis (Arg133, Arg373) (Liu and Matherly, 2001; Sadlish et al., 

2002; Sharina et al., 2001) or from studies of non-functional hRFC in cells selected for 

MTX resistance (Ser313)(Zhao et al., 1999).  
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From studies in mouse and human RFCs, other residues were implicated as 

functionally important, including (numbers are based on hRFC) Val29, Gly44, Glu45, 

Ser46, Ile48, Val106, Trp107, Ser127, and Ala132 (Brigle et al., 1995; Drori et al., 

2000a; Jansen et al., 1998; Roy et al., 1998; Wong et al., 1999; Zhao et al., 1998; Zhao et 

al., 2000; Zhao et al., 1999).  Arg133 in TMD4 forms a charge-pair with Asp88 in TMD2 

of hRFC (Liu and Matherly, 2001). A charge-pair association was also suggested for 

Glu45 and Lys404 (equivalent to Lys411 in hRFC) in mouse RFC (Zhao et al., 2003). 

Lys411 is in TMD11 of hRFC and was labeled by a radioaffinity ligand for RFC [N-

hydroxysuccinimide (NHS) [3H]MTX] (Deng et al., 2008). NHS-esters of diamino 

furo[2,3-d]pyrimidine antifolates with modified amino acids including a substituted α or 

γ group were used for affinity labeling hRFC. Labeling was increased for analogs with 

unmodified γ- over α-carboxylates, establishing that the γ-carboxylate forms an ionic 

association with Lys411. From the solved structures for the bacterial MFS homologs, the 

lactose/proton symporter  (LacY) (Abramson et al., 2003) and glycerol-2-phosphate/ 

inorganic phosphate antiporter (GlpT) (Huang et al., 2003), a 3-dimensional homology 

model for hRFC was generated with a membrane translocation pathway comprised of 

TMDs 1, 2, 4, 5, 7, 8, 10, and 11, and mechanistically important roles for Ser281, Ser313, 

and Arg373 (Hou et al., 2006).  

Recent studies suggest that like many MFS proteins, hRFC exists as a homo-

oligomer (Hou and Matherly, 2009).  Each hRFC monomer functions independently; i.e., 

each hRFC monomer comprises a separate translocation pathway for folate substrates 

(Hou et al., 2010). However, co-folding of hRFC monomers to form oligomeric hRFC 

appears to be necessary for intracellular trafficking and surface expression of the 
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functional transporter (Hou and Matherly, 2009). Indeed, by co-expression of wild type 

and inactive mutant Ser138Cys hRFCs, combined with surface biotinylation and confocal 

microscopy, a dominant-negative phenotype was demonstrated, involving markedly 

decreased cell surface expression of both mutant and wild type hRFCs caused by 

impaired intracellular trafficking.  

Regulation of RFC expression and function   

The hRFC gene maps to chromosome 21q22.2 (Moscow et al., 1995) and includes 

five coding exons with conserved intron-exon boundaries and as many as 6 non-coding 

regions and promoters (Matherly et al., 2007). Five of these (designated A, B, C, D, and 

E) are separate non-coding exons, whereas the A1/A2 non-coding sequence is fused to 

the first hRFC coding exon (Flatley et al., 2004; Whetstine et al., 2002a). Promoter 

activity was localized to the 5’regions proximal to the A1/A2, A, B, C, and D non-coding 

regions and for 4 of these promoters, ubiquitously expressed (e.g., SP1, USF1) and 

tissue-specific (e.g., AP2, C/EBp, Ikaros) transcription factors and cis elements were 

identified as important  for hRFC transcription (Matherly et al., 2007). Thus, hRFC levels 

in various cells and tissues are likely to reflect differential promoter usage, combined 

with differing levels of critical transcription factors. Other likely determinants of hRFC 

transcriptional activity include additional up- and downstream cis elements, 

polymorphisms in the hRFC promoters (see below), and general promoter architecture 

and chromatin structure. A downstream region proximal to hRFC exon B was reported to 

be methylated in MDA-MB-231 human breast cancer cells (Worm et al., 2001) and 

primary lymphomas (Ferreri et al., 2004), resulting in loss of hRFC transcripts.  However, 

methylation was not detected in other cell culture models with reduced hRFC levels 
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(Rothem et al., 2004) nor in primary acute lymphoblastic leukemia (ALL) specimens (Liu 

et al., 2006).  

The non-coding exons for the hRFC gene are alternately spliced to generate 

multiple hRFC transcripts with unique untranslated regions (UTRs) (as many as 15 have 

been reported) linked to a common hRFC coding sequence (Flatley et al., 2004; Payton et 

al., 2007; Whetstine et al., 2002a). hRFC 5’UTR transcript heterogeneity was reported to 

impact the efficiency of 5’CAP-dependent translation and result in differences in hRFC 

transcript stabilities (Payton et al., 2007). For the A1/A2 and A 5’UTRs, upstream AUGs 

occur in-frame with the hRFC coding sequence and result in modified hRFC proteins 

with 62 and 22 additional amino acids linked to the N-terminus of the 591 amino acid 

hRFC protein form encoded from hRFC transcripts including the B 5’UTR (Flatley et al., 

2004; Payton et al., 2007). Although the physiological significance of these alternate 

hRFC forms remains uncertain, the hRFC A1/A2 carrier isoform including 62 additional 

N-terminal residues was reported to exhibit slightly decreased transport activity (Flatley 

et al., 2004).   

Reflecting the importance of RFC to in vivo folate homeostasis and the impact of 

folate deficiency on human health and disease, interest in mechanisms of RFC regulation 

in relation to exogenous folate levels is high. For instance, elevated RFC levels were 

reported in cell lines (CCRF-CEM, L1210, K562) following prolonged in vitro culture 

with sub-physiologic concentrations of reduced folates (Jansen et al., 1990; Matherly et 

al., 1991; Sirotnak et al., 1984b).  In mice fed folate-deficient diets, RFC transcripts and 

proteins increased in small intestine (Liu et al., 2005). However, the physiologic 

significance of these changes in intestinal RFC is unclear given the acidic pH of the GI 
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which favors intestinal transport by PCFT over RFC.  In Caco-2 and HuTu-80 cells, 

hRFC transcripts and proteins were induced in response to folate deficiency in vitro and a 

transcriptionally active putative folate-responsive region was identified upstream of the 

hRFC-B minimal promoter (Subramanian et al., 2003). However, in another study using 

transport-upregulated CEM/7A T-cell leukemia cells and MCF7/MR breast cancer cells, 

hRFC levels decreased in response to folate deficiency (Ifergan et al., 2008). This result 

was suggested to represent an adaptive-protective response to folate-deficiency which 

counteracts the detrimental effects of high affinity folate extrusion via the hRFC. 

However, it is unclear how this can be reconciled with the formation of polyglutamyl 

folates within cells, which themselves are poor substrates for efflux, and the small net 

efflux of folates via RFC relative to MRP-mediated export.   

Most recently, post-transcriptional regulatory effects on hRFC transcripts, protein 

and transport were examined in hRFC-null HeLa cells stably transfected with hRFC and 

cultured with increasing sub-physiologic to physiologic concentrations of extracellular 

folate (leucovorin) (Hou et al., 2013). The results suggested a novel regulation of hRFC 

in response to increasing extracellular folates involving increased hRFC transcripts and 

hRFC protein, reflecting differences in hRFC transcript stabilities. At higher folate 

concentrations, there was impaired intracellular trafficking and plasma membrane 

targeting with increased endoplasmic reticulum (ER)-trapped hRFC (Hou et al., 2013).    

High frequency polymorphisms have been identified in the hRFC gene and 

include nucleotide substitutions, deletions, and insertions in the hRFC coding region 

(G80A, resulting in replacement of Arg27 by His), the 3’ non-coding region (T2582G, 

C2617G), the A1/A2 promoter and 5’ non-coding region, and promoter A (Matherly et al., 
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2007). Although the functional impact and broader clinical significance of these 

alterations are still uncertain or remain controversial, increased hRFC transcriptional 

activity was associated with the 61 bp repeat polymorphism identified in hRFC promoter 

A (Whetstine et al., 2002b). When transport function of Arg27-hRFC was compared to 

His27-hRFC, there was no significant difference (Whetstine et al., 2001).  

hRFC transcript variants have been described. These include: (i) a CATG 

insertion at position 191 in a MTX resistant ALL cell line and in primary ALL specimens 

that generates a frame-shift and an early translational termination at position 1176 

(Whetstine et al., 2001; Wong et al., 1999); (ii) a 625 bp deletion in exon 7 (positions 

1569-2193) that preserves a functional hRFC protein (Wong et al., 1995); and (iii) a 988 

bp deletion (positions 1294-2281), including all of TMD12, that generates an inactive 

transporter (Drori et al., 2000b).  

A regulation of hRFC by its phosphorylation was implied (Kumar et al., 1997), 

although this has not been further studied. The original finding that AICA ribonucleoside 

regulates hRFC transport (McGuire et al., 2006) now appears to be unrelated to the 

activating effect of AICA ribonucleotide (ZMP)  on AMP-activated protein kinase 

(AMPK), but rather reflects trans-stimulation of hRFC by intracellular ZMP (Visentin et 

al., 2012b) (see above).  

Thus, multiple regulatory mechanisms operate to ensure that there are sufficient 

levels of RFC protein and folate cofactor transport to meet needs for cell proliferation and 

tissue regeneration under diverse tissue environments. Further, alterations involving these 

mechanisms may significantly impact RFC levels and function, including specialized 

tissue functions, thus contributing to the pathophysiology of folate deficiency.  
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BIOLOGY OF PCFT  

Transport characteristics and structure/function considerations  

hPCFT is comprised of 459 amino acids (Figure 4). The predicted molecular 

mass is 49.8 kDa. PCFT, like RFC is a member of the MFS of secondary transporters, 

although hPCFT and hRFC share only 14% amino acid identity.  hPCFT includes 12 

TMDs with cytosolic N- and C-termini, as established by immunofluorescence studies of 

N- and C-terminal HA-tagged hPCFT and by SCAM with 2-aminoethyl 

methanethiosulfonate (MTSEA)-biotin (Unal et al., 2008; Zhao et al., 2010). There are 

two N-glycosylation sites (Asn58 and Asn68) in the extracellular loop domain connecting 

TMDs 1 and 2 in hPCFT (Unal et al., 2008). When Asn58 and Asn68 were individually 

mutated to Gln, hPCFT expression and function were unaffected; however, transport 

activity decreased to ~40% for the Asn58/Asn68 double mutant. Expression of C-

terminal yellow fluorescent protein-tagged hPCFT localized to the apical membranes of 

MDCK (Madin-Darby Canine Kidney) and Caco-2 cells (Subramanian et al., 2008). 

Deletion of carboxyl-terminal amino acids (to position 449) had no effect on apical 

membrane targeting or transport activity. Whereas Cys66 in the first extracellular loop 

forms a disulfide bond with Cys298 in the fourth extracellular loop (connects TMDs 7 

and 8), this is not essential for transport activity (Zhao et al., 2010).  

The transport properties of PCFT have been characterized in transfected cell lines 

and in oocytes microinjected with PCFT cRNAs (Deng et al., 2009; Qiu et al., 2006; 

Zhao and Goldman, 2007). In HEK293 cells, transport activity was maximal at pH 4.5 

(Nakai et al., 2007), although it was appreciable up to pH 6.5 (Zhao and Goldman, 2007). 

With further increased pH, there is a dramatic loss of transport activity such that above 
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pH 7, transport is very low. Decreased transport reflects both increased Kt and decreased 

Vmax values, although this varies for different transport substrates (Kugel Desmoulin et al., 

2011; Kugel Desmoulin et al., 2010; Wang et al., 2010; Wang et al., 2011; Zhao and 

Goldman, 2007; Zhao et al., 2008). RFC substrates including 5-methyl THF and 5-formyl 

THF, MTX, aminopterin (AMT), PMX, and PDX are also transported by PCFT, 

particularly at low pH, although with increasing pH there are substantial differences in 

Kts (Deng et al., 2009; Kugel Desmoulin et al., 2012a; Menter et al., 2012; Qiu et al., 

2007; Zhao and Goldman, 2007; Zhao et al., 2008).  PCFT shows similar Kts for reduced 

(5-methyl and 5-formyl THF) and oxidized (folic acid) folate forms and is stereospecific 

for (6S)5-formyl THF (Zhao and Goldman, 2007). PCFT also is stereospecific for L- 

over D-AMT (Menter et al., 2012). This was attributable almost entirely to differences in 

Kts. From growth inhibition patterns in Chinese hamster ovary or HeLa cell lines 

engineered to express hPCFT without RFC, both RTX and lometrexol (LMX) are 

transported by hPCFT (Deng et al., 2009; Kugel Desmoulin et al., 2010; Zhao et al., 

2008); however, PT523 and GW1843U89 are not PCFT substrates (Deng et al., 2009; 

Zhao and Goldman, 2007). The 5-substituted pyrrolo[2,3-d]pyrimidine antifolate PMX is 

among the best PCFT substrates reported (Zhao and Goldman, 2007). More recently, a 

series of novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates was described as 

excellent PCFT substrates with Kts comparable to that for PMX (Cherian et al., 2013; 

Kugel Desmoulin et al., 2012a; Kugel Desmoulin et al., 2011; Kugel Desmoulin et al., 

2010; Wang et al., 2010; Wang et al., 2012; Wang et al., 2011).  The apparent affinities 

of these 5- and 6-substituted pyrrolo[2,3-d]pyrimidine analogs were less impacted by pH 

than for other PCFT transport substrates.  
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PCFT transport activity was not affected by removal of Na+, K+, Ca+2, Mg+2, or 

Cl- (Qiu et al., 2006). Treatment with carbonylcyanide p-

trifluoromethoxyphenylhydrazone (a proton ionophore) (Qiu et al., 2006) or nigericin (a 

K+/H+-exchanging ionophore) (Inoue et al., 2008) reduced transport by PCFT. Similarly, 

treatment of HeLa cells with nitrate or bisulfite abolished the pH gradient and inhibited 

PCFT transport (Zhao et al., 2013). From studies in Xenopus oocytes, PCFT transport of 

folates is electrogenic such that there is a net translocation of positive charges for each 

negatively charged folate molecule (Qiu et al., 2006), although the coupling ratio is not 

known. Further, in Xenopus oocytes, PCFT transport was accompanied by intracellular 

acidification (Unal et al., 2009a). In the absence of a transmembrane pH gradient, PCFT 

can still function. In this case, transport is driven by the membrane potential (Qiu et al., 

2006; Umapathy et al., 2007). At acidic pH, PCFT was reported to exhibit channel-like 

activities, i.e., the proton flux was uncoupled from transport of folate substrates 

(Mahadeo et al., 2010; Unal et al., 2009a). 

Structural determinants of hPCFT transport have been deduced from studies of 

loss-of-function hPCFT mutations identified in HFM patients, and by mutagenesis of 

amino acids implicated as potentially functionally important from considerations of 

species homologies, amino acid charge or polarity, and TMD localization.  Residues 

implicated as functionally important include Glu185 (TMD5) (important for proton 

coupling) (Unal et al., 2009b), His281 (TMD7) (important for PCFT protonation which 

augments substrate binding) (Unal et al., 2009a) and Arg376 (TMD10) (impacts proton 

and substrate binding) (Mahadeo et al., 2010) (Figure 4). A conserved stretch of amino 

acids linking TMDs 2 and 3 (DXXGRR; positions 109-114) including a β-turn was 
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implicated as functionally important for transport (Lasry et al., 2008; Shin et al., 2010; 

Subramanian et al., 2008; Zhao et al., 2007). Both Asp109 and Arg113 are essential for 

hPCFT transport since amino acid replacements at these positions abolished transport 

regardless of charge or polarity. From the loss of hPCFT transport for the Arg113Cys 

mutant, homology modeling based on the GlpT template was used and predicted that 

Arg113 protrudes into a hydrophobic cavity comprised of TMDs 1, 3, 4 and 6 (Lasry et 

al., 2008). However, this was not experimentally confirmed.  Both Asp109 and Arg113 

may directly participate in binding and translocation of (anti)folate substrates.  

Mutations at His247 (Ala, Arg, Gln, Glu) resulted in substantially decreased rates 

of transport (decreased Vmax) and increased affinities (decreased Kt) for folate substrates 

compared to wild-type hPCFT (Unal et al., 2009a).  In a hPCFT homology model, 

His247 was predicted to reside in a highly electropositive region at the cytoplasmic 

opening to the water-filled translocation pathway where it interacted with Ser172, thus 

limiting substrate access to the putative folate binding pocket. Consistent with this 

interpretation, the Ser172Ala hPCFT mutant showed a similar transport phenotype to that 

for His247Ala hPCFT and enhanced proton transport in the absence of substrate.  

Other residues implicated as functionally important to hPCFT transport include 

Leu161 (TMD4), Glu232 (TMD6), Ile304 (TMD8), and Pro425 (flanks TMD12) (Zhao 

et al., 2011b) (Figure 4). Mutation of Glu232 (Gly) decreased the rate of carrier 

translocation whereas mutations at Ile304 (Phe) and Leu161 (Arg) decreased substrate 

affinities (Zhao et al., 2011b). Mutation of Pro425 to Arg resulted in decreased binding of 

MTX and other (anti)folate substrates, however, PMX binding was preserved (Shin et al., 
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2012). From mutant studies, Gly189 and Gly192, located in TMD5, were implicated as 

functionally important (Zhao et al., 2012).  

Cysteine-scanning mutagenesis, combined with reactivity with membrane-

impermeable sulfhydryl-reactive methanethiosulfonate (MTS) reagents [MTSES (2-

sulfanatoethyl methanethiosulfonate), MTSET [(2-trimethylammonium)ethyl 

methanethiosulfonate), MTSEA-biotin] were used to localize residues in hPCFT to the 

substrate binding region. Thus, Phe157, Gly158, and Leu161 in TMD4 and Ile188 in 

TMD5 were reactive with MTS reagents and could be protected by PMX, placing these 

residues within or near the folate binding site in hPCFT (Shin et al., 2013; Zhao et al., 

2012).   

Like other MFS proteins including hRFC, hPCFT exists as a homo-oligomer (Hou 

et al., 2012). In ectopically expressed hPCFT, oligomerization was demonstrated by 

protein cross-linking with 1,1-methanediyl bismethanethiosulfonate (MTS-1-MTS), blue 

native gel electrophoresis, co-binding of co-expressed epitope-tagged (HA and His10) 

hPCFT monomers to nickel affinity columns, and fluorescence resonance energy transfer 

between co-expressed YPet- and ECFP*-tagged hPCFT monomers. Oligomerization was 

functionally significant as co-expression of wild-type and mutant Pro425Arg hPCFTs 

exhibited a “dominant-positive” functional phenotype, establishing positive cooperativity 

between monomers, and a functional rescue of the inactive mutant hPCFT by wild-type 

hPCFT. Based on these results, an “alternate access” model for hPCFT, analogous to that 

suggested for monomeric hPCFT, was proposed which incorporates a functionally 

important role for hPCFT oligomerization (Hou et al., 2012).   
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The hPCFT primary sequence includes GXXXG motifs in TMD 2 (amino acids 

93-97) and TMD 4 (amino acids 155-159), analogous to dimerization motifs reported for 

other amphipathic proteins (Duan et al., 2011; Polgar et al., 2010). While mutation of 

Gly93 and Gly97 to Ala did not inhibit transport activity or oligomer formation, as 

determined with thiol-reactive (MTS-1-MTS) protein cross-linking (Zhao et al., 2012), 

analogous studies with the GXXXG motif in TMD4 were not performed. Using cross-

linking with MTS-1-MTS as a metric for hPCFT oligomerization, Zhao et al. individually 

mutated each of the seven cysteine residues in wild type hPCFT in order to assess the 

impact on PCFT oligomerization (Zhao et al., 2012). Whereas serine replacement of 

Cys21, -66, -151, -298, -328, and -397 had no impact on cross-linking with MTS-1-MTS, 

Cys229Ser in TMD6 abolished cross-linking (Zhao et al., 2012). This implies that TMD6 

provides a structural interface between individual hPCFT monomers.  

In contrast to aforementioned evidence that oligomeric hPCFT is structurally and 

functionally important, a study by Duddempudi et al. suggested that hPCFT may not be 

oligomeric when expressed in Chinese hamster ovary cells or Xenopus oocytes and 

isolated from plasma membranes prepared by polymerization with colloidal silica and 

polyacrylic acid (Duddempudi et al., 2013). As this latter report used entirely different 

methods and metrics than the earlier study of Hou et al. (Hou et al., 2012), it is not 

possible to reconcile their disparate conclusions.    

Regulation of PCFT expression  

The hPCFT gene consists of 5 exons and is localized to chromosome 17q11.2.  

The hPCFT promoter includes a minimal transcriptional unit localized between positions 

-42 and +96 (Diop-Bove et al., 2009; Stark et al., 2009). The promoter is G/C rich and 
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includes a 1085 bp CpG island spanning the transcriptional start site which is 

hypermethylated accompanying low level hPCFT expression in MTX-resistant HeLa and 

T-cell ALL (Jurkat, CCRF-CEM) cells (Diop-Bove et al., 2009; Gonen et al., 2008). 

Treatment with 5-aza-2’deoxycytidine resulted in restoration of hPCFT mRNA 

expression and transport. In mice fed a folate-deficient diet, PCFT transcript levels 

increased (~13-fold) in the proximal small intestine compared to levels in mice fed a 

folate-replete diet (Qiu et al., 2007).  

Studies have begun to identify transcriptional regulatory factors and cis elements 

which regulate the hPCFT gene (Eloranta et al., 2009; Furumiya et al., 2013; Gonen and 

Assaraf, 2010; Gonen et al., 2008; Stark et al., 2009). Three nuclear respiratory factor-1 

(NRF-1) sites (positions -108 to -97, -93 to -82, and -10 to +1) were identified in the 

hPCFT minimal promoter and NRF-1 binds and transactivates the hPCFT gene, leading 

to increased hPCFT transcripts (Gonen and Assaraf, 2010). 1,25-Dihydroxyvitamin D3 

(vitamin D3) induced hPCFT levels in Caco-2 cells in vitro and in rat duodenal biopsies 

ex vivo (Eloranta et al., 2009). Induction of hPCFT by vitamin D3 resulted in enhanced 

transport at pH 5.5.  In the presence of vitamin D3, vitamin D receptor (VDR) 

heterodimerized with retinoid X receptor-α and bound a VDR response element in the 

hPCFT promoter (positions -1694 to -1680).  While these results suggested that vitamin 

D3 could affect bioavailability of dietary folates via PCFT transactivation, in VDR 

homozygous knock-out mice, hepatic and plasma folates, as well as intestinal PCFT 

transcripts, were unchanged from wild-type mice (Brandsch et al., 2013). Moreover, in 

rat dams and their offspring, there were no changes in levels of plasma folates in response 

to dietary vitamin D (Brandsch et al., 2013).  
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Recent studies explored the transcriptional basis for tissue-specific expression 

patterns for PCFT in small intestine, including the localization of PCFT primarily to the 

proximal GI, with lower levels in other regions of the GI tract (Furumiya et al., 2013). 

The focus was on the effect of individual transcription factors which are specifically or 

abundantly expressed in small intestine. Using a reporter construct including hPCFT 

upstream sequence from positions -1695 to +96 in luciferase reporter assays, 

transactivation was seen with Krüppel-like factor 4 (KLF4) and this was further enhanced 

by hepatocyte nuclear factor 4α (HNF4α). Conversely, caudal-type homeobox 

transcription factor 2 (CDX2) and CCAAT/enhancer-binding protein α (C/EBPα) 

suppressed hPCFT promoter activity. Western blots of rat small intestine proteins 

demonstrated uniform expression of KLF4 along the entire length of the intestinal tract, 

proximally expressed HNF4α, and distal expression of CDX2 and C/EBPα, consistent 

with the observed proximal-to-distal expression of PCFT in the GI tract. 

ROLE OF ANTIFOLATES IN CANCER THERAPY    

The antifolates remain an important class of drugs for the treatment of numerous 

cancers, notably pediatric ALL, osteogenic sarcoma, lymphoma, breast cancer, non-small 

cell lung cancer, and malignant pleural mesothelioma (Gonen and Assaraf, 2012; Kugel 

Desmoulin et al., 2012a; Monahan and Allegra, 2011; Visentin et al., 2012a). MTX was 

introduced more than 60 years ago (Farber, 1949; Farber and Diamond, 1948) yet 

remains a vital drug for both cancer (Gonen and Assaraf, 2012; Monahan and Allegra, 

2011; Visentin et al., 2012a) and non-malignant diseases such as rheumatoid arthritis and 

psoriasis (Chladek et al., 1998; Wessels et al., 2008). Numerous other antifolates have 

since been synthesized and tested preclinically, in many cases drawing from the enhanced 
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understanding of the pharmacology and biology of MTX or AMT, including their 

membrane transport, polyglutamylation, and binding to intracellular targets. In recent 

years, a new generation of clinically relevant antifolates has emerged including PDX  

(Marchi et al., 2013; Sirotnak et al., 1998; Thompson, 2009), RTX (Wilson and Malfair 

Taylor, 2009), and PMX (Cohen et al., 2009; Hazarika et al., 2005) (Figure 1). Other 

agents are still in the pipeline and are in various stages of development including, most 

recently, a series of novel PCFT-selective 6-substituted[2,3-d]pyrimidine antifolates 

designed to selectively target solid tumors by virtue of their substantial PCFT expression 

and their acid microenvironments which favor membrane transport by PCFT (Kugel 

Desmoulin et al., 2012a) (Figure 5).  

Classical antifolates, like folate cofactors, are anions at physiologic pH, such that 

facilitative membrane transport is critical to their cellular uptake and drug efficacy 

(Goldman and Matherly, 1985; Gonen and Assaraf, 2012; Zhao and Goldman, 2003). The 

ubiquitously expressed RFC is the major transport route for  antifolate drugs such as 

MTX, RTX, and PDX into both normal tissues and tumors, even though cellular uptake 

by FRs and/or PCFT can also occur (Gonen and Assaraf, 2012; Kugel Desmoulin et al., 

2012a; Matherly et al., 2007). The relative contributions of these routes reflect levels of 

these uptake systems in different tissues and tumors, the pH of the tissue/tumor 

microenvironment, and substrate specificities for the individual uptake systems. 

Transport of antifolates by RFC into normal tissues contributes to the toxicities 

associated these agents.  

The role of membrane transport in MTX antitumor activity has been extensively 

documented (Goldman and Matherly, 1985; Gonen and Assaraf, 2012; Kugel Desmoulin 
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et al., 2012a; Matherly et al., 2007; Monahan and Allegra, 2011; Zhao and Goldman, 

2003). For MTX, transport is essential to generate sufficient intracellular drug to 

maximally inhibit DHFR and to provide substrate for synthesis of polyglutamyl 

derivatives required for cellular drug retention and to sustain antitumor effects in spite of 

decreasing extracellular drug (Goldman and Matherly, 1985; Zhao and Goldman, 2003). 

Polyglutamylation of MTX is critical to drug efficacy as tumors with elevated capacity to 

synthesize MTX polyglutamates are generally more responsive to drug (Goldman and 

Matherly, 1985; Gonen and Assaraf, 2012; Monahan and Allegra, 2011; Zhao and 

Goldman, 2003). Further, the extent of MTX polyglutamylation is likely a contributing 

factor to tumor selectivity over normal tissues, and to the selectivity of leucovorin rescue 

from MTX toxicity (Zhao and Goldman, 2003). Similar considerations would apply to 

other DHFR inhibitors such as PDX that are metabolized to polyglutamates (Visentin et 

al., 2013), but not to antifolates such as PT523 that are not metabolized to polyglutamates 

(see below). For PMX, RTX, and LMX, all of which inhibit enzymes other than DHFR 

as their primary cellular targets, polyglutamylation is especially important since 

polyglutamate forms of these drugs are more potent enzyme inhibitors than the non-

polyglutamyl drug forms (Chattopadhyay et al., 2007; Hughes et al., 1999; Mendelsohn 

et al., 1999; Shih and Thornton, 1999).  

Impaired membrane transport results in MTX resistance with in vitro and in vivo 

preclinical models, and has been implicated in clinical resistance to MTX in ALL and 

osteogenic sarcomas (Gonen and Assaraf, 2012; Matherly et al., 2007; Zhao and 

Goldman, 2003). Impaired RFC transport has also been described for other antifolate 

inhibitors (Gonen and Assaraf, 2012). In non-small cell lung cancer and malignant 
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pleural mesothelioma, expression of hRFC was associated with responses to treatment 

with PMX (Alvarez-Fernandez et al., 2013; Mairinger et al., 2013).  In cell lines, 

transport resistance reflects loss of RFC due to decreased levels or point mutations and 

synthesis of inactive transporters (Gonen and Assaraf, 2012; Matherly et al., 2007; Zhao 

and Goldman, 2003). Loss of transport frequently accompanies other cellular alterations 

including decreased polyglutamate synthesis and/or increased levels of intracellular target 

enzymes (Gonen and Assaraf, 2012; Zhao and Goldman, 2003).  For LMX which is an  

especially good substrate for FPGS and is extensively converted to polyglutamates (far 

exceeding levels for MTX; below), sensitivity can be preserved toward MTX resistant 

cells in spite of substantial losses of hRFC, as long as FPGS activity is preserved 

(Matherly et al., 1993).   

In the following sections, we describe the biological and pharmacologic principles 

behind the major antifolate drugs, including clinically relevant agents and experimental 

prototypes in various stages of clinical and preclinical development, for which drug 

efficacy can be attributed to their membrane transport by the major facilitative folate 

transporters, RFC and PCFT.  

DHFR inhibitors  

Based on observations establishing the importance of folate cofactors to cancer 

progression, Farber and colleagues hypothesized that folate antagonists could inhibit the 

proliferation of cancer cells (Farber et al., 1947). A series of folate analogs was 

synthesized, one of which (AMT) (Figure 1) was administered to children with ALL and 

induced clinical remissions (Farber and Diamond, 1948). Thus, AMT was the first drug 

to induce remissions in this devastating disease. MTX (Figure 1) was subsequently tested 
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and found to induce remissions with less toxicity than was encountered with AMT 

(Farber, 1949). Today, MTX continues to be used throughout the world as an essential 

component of multidrug regimens for treating ALL, lymphomas, and solid tumors 

(Gonen and Assaraf, 2012; Monahan and Allegra, 2011; Visentin et al., 2012a). MTX is 

also used for treating other conditions ranging from rheumatoid arthritis and psoriasis, to 

Crohn’s disease (Chladek et al., 1998; Feagan et al., 1995; Wessels et al., 2008).   

Both AMT and MTX are potent inhibitors of DHFR (Gonen and Assaraf, 2012; 

Monahan and Allegra, 2011; Visentin et al., 2012a; Zhao and Goldman, 2003).   

Inhibition of DHFR results in accumulation of dihydrofolate from 5,10-methylene THF, 

generated during synthesis of thymidylate by TS (Figure 2). Dihydrofolate is reduced to 

THF by DHFR such that in the absence of DHFR the build-up of dihydrofolate results in 

“depletion” of unsubstituted THF and C1-substituted THF pools, and cessation of THF-

dependent biosynthesis of thymidylate, purine nucleotides, serine and methionine. The 

magnitude of this net loss of THF cofactors varies for different THF forms and for 

different cell types (Allegra et al., 1986; Matherly et al., 1987; Trent et al., 1991b) and is 

attributable to binding of folates to cellular proteins and sequestration of folate cofactors 

in cellular organelles (e.g., mitochondria) (Matherly and Muench, 1990; Tibbetts and 

Appling, 2010; Trent et al., 1991a).  

AMT is better substrate than MTX for RFC transport and polyglutamylation by 

FPGS (Matherly et al., 1985). In tumor cells, high levels of AMT polyglutamates 

accumulate, far exceeding levels of MTX polyglutamates. Reflecting its high levels of 

transport and polyglutamylation, AMT also exhibits more potent antitumor activity than 

MTX (Goldin et al., 1955; Moccio et al., 1984). This may also explain increased toxicity 
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of AMT over MTX seen clinically. In recent years, there has been renewed clinical 

interest in AMT for treating cancer and inflammatory diseases (Cole et al., 2008; Menter 

et al., 2012).  

PDX (Figure 1) or 10-propargyl-10-deaza-AMT was a result of the collaboration 

between F.M. Sirotnak (Memoral Sloan Kettering Cancer Center) and J.I. Degraw 

(Southern Research Institute) to identify novel antifolates with improved cellular 

pharmacology over MTX.  In preclinical studies, 10-deaza-AMT was more potent than 

MTX (Sirotnak et al., 1984a) and 10-ethyl-10-deaza-AMT (edatrexate) was even more 

potent (Schmid et al., 1985; Sirotnak et al., 1993). PDX, a 3rd generation analog of this 

series, was a less potent DHFR inhibitor than AMT, MTX, or edatrexate but exhibited 

better RFC-mediated transport and polyglutamylation than these compounds (Sirotnak et 

al., 1998; Visentin et al., 2013).  The net result was increased drug efficacy toward 

leukemia, breast cancer, and non-small cell lung cancer cell lines in vitro and in vivo.  In 

phase I and phase II trials, including patients with non-small cell lung cancer (Krug et al., 

2003) and peripheral T-cell lymphoma (Marchi et al., 2013; O'Connor et al., 2009), PDX 

showed efficacy and safety. The FDA approved the use of PDX in 2009 for the treatment 

of relapsed, refractory peripheral T-cell lymphoma (Thompson, 2009).  

PT523 (Talotrexin) is a hemiphaloylornithine antifolate (Figure 1) synthesized by 

A. Rosowsky and colleagues (Dana Farber) (Rosowsky et al., 1988). PT523 is a potent 

DHFR inhibitor (Rhee et al., 1994; Rosowsky et al., 1988) and is among the best 

substrates for RFC with a sub-micromolar Kt for the human carrier (Rhee et al., 1994; 

Rosowsky et al., 1994; Wright et al., 2000). PT523 is a very poor substrate for PCFT 

(Kugel Desmoulin et al., 2010; Wang et al., 2010; Zhao and Goldman, 2007).  Reflecting 
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the absence of a terminal glutamate, PT523 is not a substrate for polyglutamylation and is 

less impacted by levels of intracellular THF cofactors than is MTX. PT523 was tested in 

a phase I study in 18 patients with relapsed or refractory non-small cell lung cancer 

where it showed acceptable toxicity and efficacy (2 partial responses, 9 stable disease) 

after multiple (median 3-4) chemotherapy cycles (Roca Lima et al., 2006).  

Thymidylate synthase inhibitors  

RTX (Tomudex, ZD1694) (Figure 1) is a quinazoline antifolate inhibitor of TS 

that was the result of rational drug design by scientists at the Institute for Cancer 

Research and Astra Zeneca (Hughes et al., 1999; Jackman and Calvert, 1995). Early 

efforts to develop a TS-targeted antifolate resulted in N10-propargyl-5,8-didazafolic acid 

(CB3717).  In phase I/II clinical trials, CB3717 showed efficacy against ovarian, liver, 

and breast cancers but also resulted in hepatic toxicity and dose-limiting nephrotoxicity 

(Jackman and Calvert, 1995). To reduce toxicity, modifications were introduced 

including substitution at the 2-amino group by a 2-desamino-2-methyl, replacement of 

the benzoyl ring by a thiophene, and the replacement of the N10-propargyl by a methyl 

(Jackman et al., 1991). The resulting compound, RTX, is less potent than CB3717 as a 

TS inhibitor but is a far better substrate for RFC transport and polyglutamylation by 

FPGS. These properties resulted in more potent anti-tumor efficacy in vitro and in vivo 

(Hughes et al., 1999; Jackman et al., 1991). RTX can also be transported by FRs and 

PCFT, although RFC is the major  transport route. RTX was approved for treatment of 

advanced colorectal cancer in Europe, Canada, and Australia (Chu et al., 2003). Based on 

evidence of efficacy of combined RTX and cisplatin toward malignant pleural 
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mesothelioma, RTX was approved for treatment of this disease in a number of European 

countries (Surmont and van Meerbeeck, 2011).  

ZD9331 (Plevitrexed, BGC9331) (Figure 1) is a water-soluble quinazoline 

antifolate with a γ tetrazole that lacks FPGS substrate activity but retains high affinity for 

RFC. ZD9331 is a potent inhibitor of TS (Jackman and Calvert, 1995; Jackman et al., 

1997).  While its principal mode of transport is by RFC, ZD9331 is also a substrate for 

FRs (Jansen, 1999) and PCFT (Matherly and Gangjee, 2011).  The rationale for 

developing non-polyglutamylated antifolates was that such compounds would be active 

against tumors expressing low FPGS or high γ-glutamyl hydrolase activities, both of 

which can confer resistance to polyglutamylated antifolates (Zhao and Goldman, 2003). 

In addition, this property was believed to result in reduced toxicity due to decreased drug 

retention.  ZD9331 inhibitory activity was preserved in murine L1210 leukemia cells 

resistant to RTX due to reduced FPGS activity (Jackman et al., 1997) . Based on 

promising preclinical results, phase II clinical trials were conducted with ZD9331 with 

advanced and metastatic colorectal cancer, ovarian cancer, pancreatic cancer, as well as 

other solid tumors (Hainsworth et al., 2003; Louvet et al., 2004; Rader et al., 2003; 

Schulz et al., 2004; Smith and Gallagher, 2003).  ZD9331 showed a manageable toxicity 

profile and some evidence of activity in patients with relapsed or refractory disease.  

GW1843U89 (Figure 1) was an outgrowth of a program at the Burroughs 

Welcome Company to discover folate inhibitors as anti-microbial agents (Smith et al., 

1999). This resulted in a series of benzo[f]quinazolin-1(2H)-ones including 

GW1843U89. GW1843U89 is an extremely potent non-competitive inhibitor of human 

TS with a Ki of 0.09 nM (Duch et al., 1993).  TS binds GW1843U89 in a binary complex 
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which is further stabilized upon binding of its dUMP substrate. GW1843U89 was 

reported to be an excellent substrate for hRFC with a Kt of 0.33 µM, whereas unlike other 

RFC substrates, RFC transport of GW1843U89 by rodent cells is poor (Duch et al., 

1993). GW1843U89 is a good substrate for FPGS with the major cellular metabolite 

being the diglutamate (Duch et al., 1993; Hanlon and Ferone, 1996). This reflects the 

poor FPGS substrate activity of diglutamyl GW1843U89 (Hanlon and Ferone, 1996). TS 

inhibition was unaffected by polyglutamylation such that antitumor activity was 

preserved in tumors with defective polyglutamylation. GW1843U89 showed potent 

inhibitory activity against a number of human tumor cell lines including human tumor 

xenografts engrafted into mice (Smith et al., 1995; Smith et al., 1999). A phase I clinical 

trial was performed in patients with advanced solid tumors (Schwartz et al., 2001). 

GW1843U89 was reformulated by encapsulation into liposomes and renamed OSI-

7904L. OSI-7904L showed better bioavailability and superior antitumor effects than free 

GW1843U89, prompting phase I trials conducted in patients with advanced cancers 

(Beutel et al., 2005; Clamp et al., 2008; Ricart et al., 2008). In Phase II trials OSI-7904L 

was well tolerated. Clinical responses were seen in patients with advanced gastric or 

gastroesophageal cancers (Falk et al., 2006) but not in patients with advanced biliary 

cancer (Ciuleanu et al., 2007).   

De novo purine nucleotide biosynthesis inhibitors  

Purines are critical for the synthesis of DNA and RNA, and as components of 

ATP, cyclic AMP, NAD/NADP, and coenzyme A. Differentiated cells frequently obtain 

purines through purine salvage reactions, whereas proliferating cells achieve their 

requirements for purine nucleotides primarily by de novo synthesis (Howell et al., 1981; 
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Jackson and Harkrader, 1981). Both salvage and de novo pathways use phosphoribosyl 

pyrophosphate or PRPP. For purine salvage, hypoxanthine phosphoribosyl transferase 

converts hypoxanthine and guanine to IMP and GMP respectively; adenine is 

incorporated into AMP by adenosine phosphoribosyl transferase.  In de novo purine 

biosynthesis, PRPP is converted in 10 steps to IMP, a precursor of GMP and AMP. There 

are two folate-dependent reactions, catalyzed by the multifunctional proteins GARFTase 

and AICARFTase (Figure 6).   

In a collaboration between academic and pharmaceutical sectors designed to 

develop antifolates which inhibit enzyme targets other than DHFR, E.C. Taylor 

(Princeton University) and Chuan (Joe) Shih (Eli Lilly) collaborated to synthesize the 

(6R) diastereomer of 5,10-dideaza THF known as LMX (Mendelsohn et al., 1999; Moran 

et al., 1989; Taylor et al., 1985) (Figure 1). LMX is a substrate for RFC (Jansen, 1999; 

Matherly et al., 1993), although it can also be transported by both FRs and PCFT (Jansen, 

1999; Kugel Desmoulin et al., 2012a). Following internalization, LMX is extensively 

polyglutamylated (Matherly et al., 1993; Moran et al., 1989). Polyglutamyl forms of 

LMX are potent inhibitors of GARFTase, and result in ATP and GTP depletion 

(Beardsley et al., 1989; Mendelsohn et al., 1999; Moran et al., 1989).  Interestingly, loss 

of ATP renders p53 transcriptionally inert such that LMX showed cytotoxic activity 

independent of p53 status (Bronder and Moran, 2003).  LMX showed promising 

preclinical antitumor activity in vitro and in vivo with assorted tumor models (Beardsley 

et al., 1989; Mendelsohn et al., 1999; Moran et al., 1989; Taylor et al., 1985). In a phase I 

clinical trial, LMX caused severe cumulative toxicity, including dose-limiting 

myelosuppression and mucositis (Ray et al., 1993). Toxicity was reduced if LMX was 
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administered with folic acid, permitting a 10-fold dose escalation over the dose 

administered without folic acid supplementation (Roberts et al., 2000).  

Second generation GARFTase inhibitors were synthesized and tested, including 

LY309887, AG2034, and AG2037 (Figure 1 shows structures of LY309882 and 

AG2034), as a step toward reducing the toxicity encountered with LMX (Boritzki et al., 

1996; Mendelsohn et al., 1999). All these newer compounds were substrates for RFC and 

were potent inhibitors of GARFTase. LY309887 had a lower affinity for FRs than LMX 

(Mendelsohn et al., 1999). AG2034 differed from AG2037 in its lower affinity toward 

FRs (Boritzki et al., 1996). In phase I studies, AG2034 and LY309887 showed similar 

cumulative toxicities to those encountered with LMX (Bissett et al., 2001; Budman et al., 

2001).  

Pemetrexed, a multitargeted antifolate  

PMX (LY231514, Alimta)  (Figure 1) was synthesized by Eli Lilly and Company 

in an attempt to meet FDA requirements for purity and to eliminate chirality at the 6 

position of the 5-deazapteridine ring of LMX (Taylor et al., 1992). PMX is an excellent 

transport substrate for RFC and PCFT (Chattopadhyay et al., 2007; Kugel Desmoulin et 

al., 2012a; Matherly et al., 2007; Zhao and Goldman, 2007). For PCFT, PMX is among 

the best substrates and its transport is much less sensitive to pH than other (anti)folate 

substrates. Within cells, PMX is extensively polyglutamylated and its polyglutamylation 

is negatively impacted by cellular folate status (Kugel Desmoulin et al., 2011; Shih et al., 

1997; Zhao et al., 2001a; Zhao et al., 2004b). In contrast to antifolates such as MTX or 

RTX, anti-tumor effects of PMX are maintained or even enhanced in RFC-deficient cells, 

as long as PCFT is present (Zhao et al., 2008).  In initial cell culture experiments, TS 
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appeared to be the primary cellular target, although secondary targets were implied, 

including the folate-dependent enzymes in de novo purine nucleotide biosynthesis, 

GARFTase and AICARFTase (Shih et al., 1997; Taylor et al., 1992). PMX has a very 

low affinity for DHFR. Further, the impact of DHFR inhibition would be nominal since 

primary inhibition of TS would obviate DHFR as a secondary target since dihydrofolate 

would not be generated. These results were confirmed by studies with isolated enzyme 

preparations. PMX polyglutamates were especially potent inhibitors of TS, with a Ki for 

PMX pentaglutamate of 1.3 nM, compared to a Ki of 109 nM for unmetabolized PMX 

(Shih et al., 1997). Inhibitions of GARFTase, AICARFTase, and DHFR were all 

confirmed, albeit less than for TS.  PMX was originally termed a “multi-targeted 

antifolate” to reflect its inhibition of multiple folate-dependent enzyme targets. In 2004, 

PMX was approved by the FDA for use (with cisplatin) in treating malignant pleural 

mesothelioma (Hazarika et al., 2005). In 2008, PMX was approved as a first-line 

treatment for non-squamous non-small cell lung cancer in combination with cisplatin 

(Cohen et al., 2009), and in 2009, PMX was approved for maintenance therapy of 

patients with locally advanced or metastatic non-squamous non-small cell lung cancer 

(Cohen et al., 2010). 

R.G. Moran (Virginia Commonweath University) presented interesting evidence 

that AICARFTase may be a more important secondary therapeutic target for PMX than 

previously realized (Racanelli et al., 2009; Rothbart et al., 2010).  Thus, treatment of 

CCRF-CEM T-cell ALL cells and several solid tumor cell lines with PMX resulted in 

accumulations of ZMP, the substrate of the AICARFTase reaction. In contrast to results 

with the GARFTase inhibitor LMX, PMX treatment did not deplete cellular ATP pools. 
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ZMP acts as an AMP mimetic that activates AMPK which, in turn, phosphorylates target 

proteins involved in initiation of cap-dependent translation, lipid synthesis, and energy 

metabolism. Tuberous sclerosis complex 2 and raptor (component of mTORC1 complex) 

proteins are AMPK targets, such that AMPK activation results in inhibition of mTOR 

signaling (Gwinn et al., 2008; Inoki et al., 2003).  While this could contribute to the  anti-

tumor efficacy of PMX, particularly in the absence of a primary inhibition on TS, in KB 

tumor cells, AMPK activation in response to PMX or direct AMPK activators (e.g., 

metformin) did not result in anti-proliferative effects (Mitchell-Ryan et al., 2013).  

Development of tumor-targeted antifolates with selective membrane transport by PCFT  

The extracellular pH (pHe) of the microenvironment of solid tumors has been 

reported to be as low as pH ~6.7 to ~7.1, whereas the intracellular pH (pHi) is ≥ 7.4 

(Gallagher et al., 2008; Gillies et al., 2002; Webb et al., 2011). By comparison, the pHe is 

~7.3 and the pHi is ~7.2 for normal differentiated cells. hPCFT is detected at substantial 

levels in many human tumors (Kugel Desmoulin et al., 2011) and can show appreciable 

transport activity at pH 6.5 to 6.8, depending on the substrate, although maximal 

transport occurs at pH 5 to pH 5.5 (Deng et al., 2009; Zhao and Goldman, 2007). It was 

this reasoning, following upon evidence of clinical efficacy with PMX (likely due in part 

to its tumor uptake by PCFT), that prompted intensive efforts to develop novel cytotoxic 

folate analogs with transport specificity for PCFT over RFC (Kugel Desmoulin et al., 

2012a). It was reasoned that should PCFT-targeted agents be developed without substrate 

activity for RFC, these would exhibit greater anti-tumor selectivity and less toxicity 

toward normal tissues than drugs such as PMX or MTX, since PCFT is expressed at 

modest levels in normal tissues other than liver, kidney and the upper GI, and most 
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normal tissues are unlikely to experience the acidic pH conditions conducive to PCFT 

transport (Kugel Desmoulin et al., 2012a).  

PMX is a 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolate with a 

2-carbon bridge attached to a p-aminobenzoyl glutamate (Figure 1). The 6-pyrrole 

regioisomer of PMX is inert, although when the bridge region was lengthened to 3- 

(compound 3) or 4- (compound 4) carbons so as to provide greater conformational 

flexibility (Figure 5), compounds with anti-tumor activities at nanomolar concentrations 

and PCFT-selectivity over RFC resulted (Kugel Desmoulin et al., 2010). Longer bridge 

lengths (Figure 5) resulted in reduced antitumor effects.  Synthesis of 6-substituted 

pyrrolo[2,3-d]pyrimidines analogous to compounds 3 and 4 with a thienoyl-for-benzoyl 

replacement (based in part on earlier GARFTase inhibitors LY309887 and AG2034) 

afforded the most potent PCFT-selective agents yet described (compounds 9 and 10, 

respectively) (Figure 5) (Cherian et al., 2013; Kugel Desmoulin et al., 2011; Kugel 

Desmoulin et al., 2012b; Wang et al., 2010; Wang et al., 2011). hPCFT selectivity over 

hRFC was confirmed in HeLa sublines expressing hPCFT or hRFC, and direct transport 

assays with radiolabeled compounds 9 and 10 established detailed kinetics and pH 

dependencies consistent with those expected for hPCFT (Cherian et al., 2013; Kugel 

Desmoulin et al., 2011; Kugel Desmoulin et al., 2012b). Substrate activities with 9 and 

10 were at least equivalent to those for PMX. Further, compounds 9 and 10 were 

metabolized to polyglutamyl conjugates in HeLa cells incubated with the radiolabeled 

compounds, with 7- to 8-fold higher levels of polyglutamates for compound 9 over 

compound 10 (Cherian et al., 2013; Kugel Desmoulin et al., 2011; Kugel Desmoulin et 

al., 2012b).  In hRFC-null HeLa cells expressing hPCFT, the antiproliferative effects of 9 
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and 10 were greater compared to wild-type HeLa cells expressing hPCFT with intact 

hRFC, due to the depletion of intracellular folate cofactors (Kugel Desmoulin et al., 

2012b).  

Additional studies confirmed that compounds 3, 4, 9 and 10 all targeted de novo 

purine nucleotide biosynthesis with potent inhibition of GARFTase and a dramatic fall in 

ATP levels (Cherian et al., 2013; Kugel Desmoulin et al., 2011; Kugel Desmoulin et al., 

2010; Wang et al., 2010; Wang et al., 2011). Compounds 9 and 10 were cytotoxic. 

Further, for compound 10, treatment of HeLa cells resulted in time-and dose-dependent 

accumulation in late S-phase, accompanied by cell death, in part by an apoptotic 

mechanism (Kugel Desmoulin et al., 2011). These compelling in vitro results with 

compounds 9 and 10 were extended in vivo in severe combined immunodeficient mice 

bearing human tumor xenografts (HepG2, HeLa, H2452) (Cherian et al., 2013; Kugel 

Desmoulin et al., 2011; Kugel Desmoulin et al., 2012b). These results provide definitive 

proof-of-concept of in vivo tumor targeting via PCFT.  

 

FUTURE DIRECTIONS  

This review summarizes the biology and therapy of the major facilitative folate 

transporters, RFC and PCFT. While the advances in the understanding of the biology of 

the major facilitative folate transporters have been substantial, there remain important 

unresolved issues.  

For instance, further characterization of the transcriptional and posttranscriptional 

regulation of hPCFT is certainly warranted in order to clarify the basis for differential 

hPCFT expression levels between many tumors and normal tissues, or among tumors 
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with vastly differing hPCFT levels. Likewise, the role of  hPCFT promoter methylation 

to differential expression of hPCFT among tumors must be established. Better 

understanding of critical determinants of hPCFT transcriptional regulation may spur 

development of strategies for modulating hPCFT levels in tumors, including combined 

therapies that include hPCFT-targeted antifolates and demethylating agents. For hRFC, 

the physiologic significance of differential 5’UTR usage on hRFC translational efficiency 

or transcript stabilities, or the role of N-terminally modified hRFC proteins needs further 

clarification. For both hRFC and hPCFT, this should extend to characterizing 

posttranslational mechanisms that regulate carrier levels and function.  

The finding that both hRFC and hPCFT can form homo-oligomers implies yet 

another level of regulation, namely the possibility that heterozygous hPCFT mutants from 

HFM patients or heterozygous mutant hRFC in MTX resistant tumors may impact 

trafficking and function of the wild-type transporter secondary to formation of 

mutant/wild-type oligomers.  In future studies, it will be important to further identify the 

functional impact and structural determinants of transporter oligomerization, as this may 

foster development of approaches for biochemically modulating this process with small 

molecule “pharmacologic chaperones” or peptidomimetics that will enhance transporter 

levels and activity.  

Of additional importance will be better understanding the impact of exogenous 

factors that could regulate transporter levels and function in vivo, including dietary 

components (e.g., folates) and the tissue/tumor microenvironment. In spite of extensive 

research, the functional or clinical significance of high frequency hRFC polymorphisms 

remains largely unresolved and at best controversial.  
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Although novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with selectivity 

for hPCFT over hRFC and potent antitumor efficacies have been developed, it will be 

essential to better understand the structure-activity relationships for binding and 

translocation of (anti)folate substrates by these transporters. Given the challenges in the 

structural biology of membrane transporters, the focus will continue to be on multi-

parameter optimization of novel analogs based on medicinal chemistry and 

experimentally tested molecular homology models.  As the most promising of these 

agents are GARFTase inhibitors, it will be especially important to definitively establish 

the therapeutic potential of targeting GARFTase by these non-RFC PCFT-specific 

antifolates. This extends to other determinants likely to impact drug efficacy including 

purine salvage and substrate activities for the major folate efflux pumps such as MRP1 

and ABCG2, since these could significantly affect their in vivo pharmacology and 

antitumor efficacies. Finally, it will be important to better understand resistance to these 

novel hPCFT-selective antifolates that will invariably arise, the extent to which resistance 

involves molecular alterations to hPCFT, and the potential that hPCFT transport 

resistance can be circumvented by structurally distinct cytotoxic hPCFT substrates  or the 

presence of other non-RFC uptake mechanisms such as FRs for which these agents also 

have high affinity.  
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FIGURE LEGENDS  

Figure 1. Established Antifolate Drugs.  Structures are shown for clinically relevant 

antifolates including methotrexate (MTX), pemetrexed (PMX), raltitrexed (RTX), and 

pralatrexate (PDX), the original antifolate, aminopterin (AMT), and antifolates that were 

advanced to clinical trials [lometrexol (LMX), ZD9331, GW1843U89, PT523, 

LY309887, AG2034], as described in the text.  

Figure 2. Folate metabolism and targets of antifolate drugs.  The schematic shows 

folate interconverting and biosynthetic steps.  Intracellular folates include 

tetrahydrofolate (THF), dihydrofolate (DHF), 10-formyl tetrahydrofolate (10-CHO-THF), 

5, 10-methylene tetrahydrofolate (5,10-CH2-THF), 5,10-methenyl tetrahydrofolate (5,10-

CH+-THF), and 5-methyl tetrahydrofolate (5-CH3-THF). Biosynthetic steps are catalyzed 

by dihydrofolate reductase (DHFR), thymidylate synthase (TS), serine 

hydroxymethyltransferase (SHMT), glycinamide ribonucleotide formyltransferase 

(GARFTase), and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase 

(AICARFTase), and methionine synthetase (MS). Folate-dependent enzyme targets for 

cytotoxic antifolates, as described in the text, are indicated.   

Figure 3. Membrane Topology of the Human Reduced Folate Carrier.  The predicted 

membrane topology for the human reduced folate carrier or hRFC is shown. Much of this 

has been experimentally validated. Functionally important residues, as described in the 

text, are highlighted in blue, and the N-glycosylation consensus site is highlighted in 

green. Undefined abbreviations include: EL, extracellular loop; IL, intracellular loop. 

Figure 4.  Membrane Topology of the Human Proton Coupled Folate Transporter. 

The predicted membrane topology of the human proton-coupled folate transporters or 
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hPCFT is shown. Functionally important residues as described in the text are highlighted 

in blue. The β-turn formed by residues 109-114 is highlighted in orange. Cys229 which is 

important for crosslinking PCFT monomers is highlighted in yellow. The two N-

glycosylation consensus sites, Asn58 and Asn68, are highlighted in green. 

Figure 5. Development of Solid Tumor-Targeted Antifolate Drugs.  The structures of 

novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates, including compounds with 

hPCFT selectivity over hRFC (compounds 3, 4, 9 and 10), as described in the text, are 

shown.   

Figure 6. The de novo Purine Nucleotide Biosynthesis Pathway. The ten steps from 

phosphoribosyl pyrophosphate (PRPP) to inosine monophosphate (IMP) are shown. 

Antifolate drugs that inhibit the folate-dependent enzymes, GARFTase and AICARFTase, 

are noted in red, as described in the text.  Undefined abbreviations: AICAR, 5-

aminoimidazole-4-carboxamide ribonucleotide; AIR, aminoimidazole ribonucleotide; 

CAIR, carboxyaminoimidazole ribonucleotide; FAICAR, formyl 5-aminoimidazole-4-

carboxamide ribonucleotide; FGAM, N-formylglycinamidine ribonucleotide; FGAR, 

formyl glycinamide ribonucleotide; GAR, β-glycinamide ribonucleotide; SAICAR, 5-

aminoimidazole-4-(N-succinylocarboxamide.   
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