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Abstract  

 Ketoconazole is no longer available for clinical determination of worst-case victim DDI 

potential for CYP3A-substrate drugs; clarithromycin and itraconazole are the proposed 

replacements.  While ketoconazole DDIs are described by unbound systemic exposures due to 

absence of carrier-facilitated hepatic uptake, this aspect of clarithromycin and itraconazole 

disposition has not been investigated.  At present, transport of clarithromycin, itraconazole, and 

hydroxyitraconazole by hepatic OATPs and OCT1 was examined in vitro and in vivo.  As for 

ketoconazole, uptake of clarithromycin, itraconazole, and hydroxyitraconazole into OATP1B1, 

OATP1B3, OATP2B1, and OCT1 expressing HEK293 cells was not greater than in vector 

controls.  Uptake into these HEK293 cells and human hepatocytes was not impaired by the 

prototypical OATP, OCT, and NTCP inhibitors, bromosulfophthalein, imipramine, and 

taurocholate, respectively.  In contrast, uptake of the positive controls, atorvastatin for OATPs 

and metformin for OCT1, was significantly enhanced by relevant transporter expression, and 

uptake into both these HEK293 cells and human hepatocytes was significantly impaired by 

prototypical inhibitors.  In Oatp1a/1b gene cluster knockout mice, which lack the major hepatic 

Oatps, and in Oct1/2 knockout mice, ketoconazole, clarithromycin, itraconazole, and 

hydroxyitraconazole oral exposure was not increased and liver-to-blood partition coefficient 

(Kp) was not decreased.  By contrast relative to wild-type mice, in Oatp1a/1b- and Oct1/2-

knockout mice, atorvastatin and metformin oral exposure was significantly increased and liver 

Kp was significantly decreased.  The present studies provide in vitro and in vivo evidence that 

like ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole, are not transported 

into the liver by hepatic uptake transporters, including OATPs and OCT1. 
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Introduction 

High-dose ketoconazole (400mg PO, QD for ≥5 days) has long been the “gold-standard” 

CYP3A inhibitor in clinical drug-drug interaction (DDI) studies (Zhao et al., 2009).   In 2013, 

based on emerging clinical safety reports, both the FDA and EMA advised against using 

ketoconazole in DDI studies (http://www.fda.gov/Drugs/DrugSafety/ucm371017.htm).  

Withdrawal of oral ketoconazole from the market triggered a comprehensive search for 

alternatives that could be used for evaluation of victim DDI potential for drugs cleared by 

CYP3A.  Ke et al. (2014) reviewed available CYP3A-inhibitor drugs and proposed 

clarithromycin and itraconazole as the best clinical alternatives.   

 Ketoconazole has been favored due to nearly complete CYP3A inhibition in humans at 

clinically-relevant doses, selectivity, and predictability of DDIs based on unbound plasma 

concentrations (Zhao et al., 2009; Han et al., 2013).  The ability to predict DDIs based on 

unbound circulating exposures is of particular practical importance.  Steady-state ketoconazole 

concentrations available for interaction with hepatic CYP3A enzyme are in equilibrium with 

plasma unbound concentrations, due to ketoconazole’s high passive membrane permeability 

(Clarysse et al., 2009) and absence of carrier-facilitated hepatic uptake (Zhao et al., 2009).  As 

such, ketoconazole DDIs are accurately predicted by circulating (blood, plasma, serum) 

concentrations (Smith et al., 2010), which are easily sampled, unlike intracellular unbound liver 

concentrations, which are practically impossible to sample directly in humans. 

 Although clarithromycin and itraconazole are the best available clinical CYP3A inhibitor 

alternatives to ketoconazole, both drugs exhibit properties which may be indicative of carrier-

facilitated uptake into the liver (Ke et al., 2014).  Clarithromycin is a known in vitro and clinical 

inhibitor of OATP hepatic uptake (Jacobson, 2004; Hirano et al., 2006).  OATP inhibition can be 
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competitive (Zamek-Gliszczynski et al., 2013), which begs the question whether clarithromycin 

also is an OATP substrate?  At a kinetic level, clarithromycin preferentially partitions into 

suspended rat hepatocytes, with an unbound liver-to-buffer partition coefficient of 6 (Yabe et al., 

2011), an observation which could be explained by hepatic uptake (Smith et al., 2010; Kalvass et 

al., 2013).  No mechanistic evidence exists for hepatic uptake of itraconazole or its major 

metabolite hydroxyitraconazole, which also is an inhibitor of CYP3A (Templeton et al., 2008).  

However, physiologically-based pharmacokinetic model DDI simulations, in which the unbound 

itraconazole and hydroxyitraconazole hepatic concentrations paralleled unbound plasma 

concentrations, slightly, but consistently, underestimated the clinically observed DDI magnitude, 

raising the possibility of hepatic uptake of parent and/or metabolite (Ke et al., 2014).   

 CYP3A inhibitors can be taken up into the liver by OATPs (Liu and Unadkat, 2013), in 

which case hepatic unbound inhibitor concentrations are higher than plasma unbound 

concentrations (Smith et al., 2010), and the DDI based on systemic inhibitor exposure is 

underpredicted without accounting for hepatic uptake (Maeda et al., 2011).  In addition to 

OATPs, OCT1 is a hepatic uptake mechanism for small type I organic cations, such as 

metformin; however, it is unlikely to transport drugs with physicochemical properties such as 

these CYP3A inhibitors (Giacomini et al., 2010).  Nonetheless, investigation of OCT1 was 

included in the present study for the sake of completeness.  Likewise, potential uptake by the 

sodium/taurocholate co-transporting polypeptide (NTCP) was investigated in hepatocytes. 

To enable quantitative predictions of the DDI magnitude with proposed clinical CYP3A 

inhibitor replacements for ketoconazole (Ke et al., 2014), the possibility of clarithromycin, 

itraconazole, and hydroxyitraconazole uptake into the liver is an important issue to investigate 

and document in the literature.  The present studies provide convincing in vitro and in vivo 
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evidence that like ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole, are not 

transported into the liver by hepatic OATPs or OCT1. 
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Materials and Methods  

Materials.  Ketoconazole, clarithromycin, itraconazole, hydroxyitraconazole, and 

atorvastatin, as well as their deuterated internal standards, bromosulfophthalein, and imipramine 

were purchased from Sigma-Aldrich (St. Louis, MO) and Toronto Research Chemicals (North 

York, ON, Canada).  [14C]metformin and [14C]tetraethylammonium were purchased from 

American Radiolabeled Chemicals (St. Louis, MO); [3H]estrone-3-sulfate, [3H]cholecystokinin 

octapeptide, and [3H]taurocholate were obtained from Perkin Elmer, Inc. (Waltham, MA).  

Cryopreserved human hepatocytes [lot NRJ (female), lot KQN (female), and lot YUA (male)] 

and all hepatocyte thawing and plating media were procured through Celsis IVT (Baltimore, 

MD).  

Expressed Transporter Studies.  SLCO (OATP) 1B1, 1B3, 2B1, SLC22A1 (OCT1) 

cDNA (Thermo, Waltham, MA) were individually inserted into EW1969 plasmid vectors.  HEK-

293 cells stably expressing the EBNA1-gene (i.e. PEAKSTABLE cells; Edge Biosystems, 

Gaitherburg, MD) (Godinot et al., 2003) were transfected with DNA vector (1 µg DNA/5x106 

cells) following the standard Effectene protocol (Qiagen, Venlo, Netherlands).  The following 

day, cells were lifted with trypsin and moved to a flask for selection in complete medium: 10% 

FBS DMEM (Hyclone, Logan, UT) with 50 µg/ml gentamicin and 0.5 µg/ml puromycin.  After 

selection, vector control, OATP2B1 and OCT1 cells were utilized as pooled stable transfections, 

while OATP1B1 and OATP1B3 cells were dilution cloned and selected for optimal activity.  All 

cell types were plated at 75,000 cells/cm2 in 12-well BioCoat™ poly-D-lysine plates (Corning, 

Tewksbury, MA) and cultured for 3 days in complete media with the addition of 5mM Sodium 

Butyrate in medium on the final day of culture.   
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Cells were incubated with 0.5 µM test article in the absence or presence of prototypic 

inhibitor (25µM bromosulfophthalein for OATPs; 100µM imipramine for OCT1) in uptake 

buffer (HBSS supplemented with 10mM HEPES, pH 7.4, 37oC) for 2.5 min.  Uptake reactions 

were stopped by addition of ice cold PBS, and cells were washed 3 times prior to lysing with a 

50:50 methanol:water (v/v) solution containing internal standard for LC-MS/MS analysis.  Cells 

incubated with [14C]metformin were lysed in 1% Triton X (Sigma-Aldrich, St. Louis, MO) and 

mixed with scintillation fluid (ScintSafe 30%, Fisher Scientific, Waltham, MA) for scintillation 

counting.  Protein concentrations were determined using standard BCA assay methodologies 

(Sigma-Aldrich, St. Louis, MO).  Uptake velocities were calculated as the accumulation of test 

article per well normalized to total protein and incubation time. 

Hepatocyte Uptake Studies.  Cryopreserved human hepatocytes were thawed per 

vendor protocol and plated at 350,000 cells/1.9 cm2 in 24-well collagen-coated plates.  Cells 

were incubated for 2 hours at 37oC with 5% CO2 and 95% relative humidity in plating medium 

to allow cells to attach.  Prior to uptake study initiation, cells were rinsed twice with pre-warmed 

37oC uptake buffer (HBSS supplemented with 10mM HEPES, pH 7.4).  Uptake reactions were 

initiated by the addition of uptake buffer containing 0.5 µM test article in the absence or 

presence of prototypic inhibitors (5 µM bromosulfophthalein for OATPs, 100 µM imipramine 

for OCTs, 25 µM taurocholate for NTCP).  Bromosulfophthalein 5 µM concentration was used 

for pan OATP inhibition (Sai et al., 2006; Izumi et al., 2013), while minimizing the inhibition of 

other transporters (e.g. NTCP) in human hepatocytes (Kim et al., 1999).   Uptake studies in 

hepatocytes from each donor were performed in triplicates at the 1.5 minute time point.  Uptake 

reactions were stopped with the addition of ice cold PBS, and washed 2 times prior to quench 

with a 50:50 methanol:water (v/v) solution containing internal standard.  Uptake of radiolabeled 
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positive control substrates (4.4 nM [3H]estrone-3-sulfate for OATP1B1, 2.5 nM 

[3H]cholecystokinin octapeptide for OATP1B3, 3.6 µM [14C]tetraethylammonium for OCT1, 

and 13.0 nM [3H]taurocholate for NTCP) were parallel tested in each lot of hepatocytes in the 

absence or presence of inhibitors (5 µM bromosulfophthalein for OATPs; 100 µM imipramine 

for OCTs; 25 µM bromosulfophthalein for both NTCP and OATPs).  Uptake reactions were 

stopped with the addition of ice cold PBS, and cells were washed twice prior to cell lysis with 

1% Triton-X in PBS.  Uptake velocities were determined as the total accumulation of test article 

per well normalized to average total protein and reaction duration. 

In Vivo Transport Studies.  Age-matched Oatp1a/1b cluster-knockout, Oct1/Oct2 

double-knockout, and wild-type FVB male mice were purchased from Taconic Farms 

(Germantown, NY).  Mouse 100 mg/kg oral doses ketoconazole, itraconazole, clarithromycin, 

atorvastatin, and metformin were selected to fall within the human dose range based on body 

surface area scaling.  Drugs were administered by oral gavage as suspensions (10 ml/kg of 1% 

hydroxyethylcellulose, 0.25%, polysorbate-80, 0.05% antifoam in water).  Blood spots were 

collected via tail bleeds at 0.08, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, and 6 hours postdose (blood was 

sampled up to 4 hours for ketoconazole and clarithromycin); livers were collected at the final 4 

or 6 hour time point.  Following metformin administration, plasma samples were collected at the 

following time points: 5, 10, 20, 30, 45, 60, 90, 120, and 150 min; liver-to-plasma concentration 

ratios were determined 1.5 hours following oral metformin administration.  

Bioanalysis.  Ketoconazole, clarithromycin, itraconazole, hydroxy-itraconazole, 

metformin, and atorvastatin in relevant matrices [blood spots (3-mm punch), plasma, liver 

homogenates, cell buffers and lysates] were quantified by LC-MS/MS.  All samples were mixed 

with an organic internal standard solution to precipitate protein, centrifuged, and the resulting 
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supernatants were directly analyzed.  Analytes and their deuterated internal standards were 

separated using reverse-phase chromatography with gradient elution and detected using selected 

reaction monitoring [Sciex API 4000 triple quadrupole mass spectrometer equipped with a 

TurboIonSpray interface (Applied Biosystems/MDS; Foster City, CA)]: ketoconazole, [M+H]+ 

m/z 531.1 → 489.2; clairthromycin, [M+H]+ m/z 748.3 → 158.3; itraconazole, [M+H]+ m/z 705.3 

→ 392.3; hydroxyitraconazole, [M+H]+ m/z 721.2 → 408.2; atorvastatin, [M+H]+ m/z 560.1 → 

440.1; metformin metformin [M-H]- m/z 130.1 3 → 71.1.  The dynamic range of the assays was 

1-5,000 ng/mL for in vitro samples and plasma, 1-10,000 ng/mL in blood spot samples, and 1-

50,000 ng/mL in liver homogenate samples.   

Data Analysis.  Statistical significance was determined by the Student’s t-test, corrected 

for unequal variance, where applicable.  In all cases, the criterion for significance was p < 0.05.  

Data are reported as mean ± SEM, with the associated n reported in all cases, unless otherwise 

indicated. 
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Results/Discussion 

 Uptake of ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole was 

examined in HEK293 cells expressing OATP1B1, OATP1B3, OATP2B1, or OCT1 (Figure 1A-

D).  OATP uptake of the positive control, atorvastatin, was 4.5-7.7-fold enhanced in OATP-

transfected cells relative to vector controls and was significantly 55-60% inhibited by 

bromosulfophthalein.  Likewise, uptake of the OCT1 positive control, metformin, was 6.9 ± 0.2 

fold enhanced in OCT1 cells and was significantly 82% impaired by imipramine.  In contrast, 

uptake properties of CYP3A inhibitors were generally consistent with compounds not 

transported by hepatic OATPs and OCT1: 1) uptake activity in transporter-expressing cells was 

not enhanced relative to vector controls, and 2) prototypical OATP and OCT inhibitors did not 

impair uptake.  Raw uptake velocity values are summarized in Supplemental Table 1.   

Hepatic uptake of ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole 

was subsequently examined in cryopreserved human hepatocytes from three donors (Figure 1E-

F).  Uptake of the positive controls, estrone-3-sulfate for OATP1B1, cholecystokinin octapeptide 

for OATP1B3, tetraethylammonium for OCT1, and taurocholate for NTCP, was significantly 

inhibited to 83±7%, 71±12%, 32±23%, 74±15% of control values by OATP1B1 and 1B3 

inhibitor, bromosulfophthalein (5µM), the OCT1 inhibitor, imipramine (100 µM), and NTCP 

inhibitor bromosulfophthalein (25 µM), respectively.  In contrast, uptake activity of CYP3A 

inhibitors ketoconazole, itraconazole, and hydroxyitraconazole were not significantly impaired 

by prototypical OATP, OCT or NCTP inhibitors, with the exception of clarithromycin, whose 

uptake activity was, on average, 37±10% decreased by 5 µM bromosulfophthalein (statistically 

significant in hepatocyte preparations from 2/3 donors).    
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In order to confirm the in vivo relevance of these negative in vitro transport finding, oral 

pharmacokinetics and hepatic distribution of the CYP3A inhibitors were studied in Oatp1a/1b 

gene cluster knockout mice, which lack the three major hepatic OATPs (Higgins et al., 2014), 

and in Oct1/2 knockout mice, which are deficient in both hepatic and renal OCT function 

(Higgins et al., 2012).  Atorvastatin and metformin oral exposure was significantly increased 

(2.4-2.9-fold) and liver Kp was significantly decreased (84-99%) in Oatp1a/1b or Oct1/2 

knockout mice relative to wild-type controls, respectively (Figure 2).  In contrast, ketoconazole, 

clarithromycin, itraconazole, and hydroxyitraconazole oral exposure (AUC0-last and Cmax) was not 

increased and the liver-to-blood partition coefficient (Kp) was not decreased in either Oatp1a/1b 

or Oct1/2 knockout mice (Figure 2; Supplemental Figures 1-3) 

For the first time, the present studies provided direct in vitro and in vivo evidence that 

like ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole, are not transported 

into the liver via OATPs or OCT1.  These data are of fundamental importance to quantitative 

DDI predictions as clarithromycin and itraconazole replace ketoconazole as the default clinical 

CYP3A inhibitors, particularly in light of reports which suggested the possibility of carrier-

facilitated hepatic uptake for these replacement inhibitors (Ke et al., 2014).  Specifically, 

clarithromycin is a known hepatic OATP inhibitor (Hirano et al., 2006; Markert et al., 2014), and 

it exhibits preferential distribution into suspended rat hepatocytes, with an unbound liver-buffer 

partition coefficient of 6 (Yabe et al., 2011).  The current dataset directly demonstrated that 

clarithromycin is neither transported by hepatic OATPs or OCT1 in vitro, nor taken up into the 

liver by hepatic Oatps or Oct1 in vivo. 

Analysis by Ke et al. (2014) demonstrated that all clinical trials involving multiple dosing 

of itraconazole slightly(<2-fold), but consistently, underpredicted the victim DDI magnitude.  
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Carrier-mediated hepatic uptake of itraconazole and/or hydroxyitraconazole was one potential 

explanation for this underprediction.  However, hepatic uptake of parent and/or metabolite would 

have also resulted in underprediction of acute DDIs, which was not observed (Ke et al., 2014).  

These gross pharmacokinetic findings, combined with the present data rule out hepatic uptake of 

itraconazole and hydroxyitraconazole as the reason for the steady-state DDI underprediction.  

Instead, DDI underprediction more likely reflects that Ke et al. (2014)  did not account for 

metabolites like N-desalkylitraconazole, which has a longer half-life and accumulates upon 

multiple dosing and contributes up to 20% of steady-state itraconazole CYP3A inhibition 

(Templeton et al., 2010).   

 In summary, the present studies provide in vitro and in vivo evidence that like 

ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole, are not transported into the 

liver by hepatic OATPs or OCT1.  Clarithromycin is an inhibitor of hepatic OATP uptake 

(Hirano et al., 2006; Markert et al., 2014), but it is not taken up into the liver by hepatic OATPs.  

Steady-state itraconazole DDI underprediction is not caused by hepatic OATP or OCT uptake of 

parent or hydroxyl metabolite, and is instead more likely due to the accumulation of other 

inhibitory itraconazole metabolites (Templeton et al., 2010; Ke et al., 2014).  In conclusion, like 

ketoconazole, clarithromycin, itraconazole, and hydroxyitraconazole are not transported or taken 

up into the liver by hepatic OATPs or OCT1. 
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Figure Legends 

Figure 1.  In vitro uptake of CYP3A inhibitors by OATP1B1 (A), OATP1B3 (B), OATP2B1 

(C), OCT1 (D), and human hepatocytes (E-F).  In panels A-D, transport activity is presented as 

the transporter-to-vector control transfected cell ratio of uptake velocity and is shown in the 

absence (open bars) or presence of uptake inhibitors (grey bars): the OATP inhibitor, 

bromosulfophthalein (A-C; 25μM), or the OCT inhibitor, imipramine (D, 100 μM); 

corresponding raw uptake velocity values are reported in Supplemental Table 1.  The dashed line 

of unity denotes the same uptake velocity in transporter and vector control transfected cells, and 

the solid line at uptake ratio of 2 is the commonly-accepted transport activity exceeded by 

substrate drugs.  Mean ± SEM, n = 3, †p < 0.05: enhanced uptake in transporter-expressing cells 

relative to vector controls when the uptake ratio is >2; *p < 0.05: inhibition of uptake by the 

relevant transport inhibitor.  Panels E-F summarize uptake of CYP3A inhibitors (E) and positive 

control substrates (F) in cryopreserved primary human hepatocytes (n = 3 donors, triplicate 

measurements/donor).   Uptake velocity of CYP3A in the absence of uptake inhibitors (open 

bars), or in the presence of 5 μM bromosulfophthalein (light grey bars), 100 μM imipramine 

(dark grey bars), or 25 μM taurocholate (black bars) (E).  Uptake of positive control substrates in 

the absence (open bar) or presence (dashed bar) of prototypic inhibitors:  OATP1B1 substrate, 

4.4 nM estrone-3-sulfate ± 5 μM bromosulfophthalein; OATP1B3 substrate, 2.5 nM 

cholecystokinin octapeptide ± 5 μM bromosulfophthalein; OCT1 substrate, 3.6 μM 

tetraethylammonium ± 100 μM imipramine; NTCP substrate, 13 nM taurocholate ± 25 μM 

bromosulfophthalein (F).  Mean ± SEM, n = 3 donors, *p < 0.05: inhibition of uptake by the 

relevant transport inhibitor.  ap < 0.05: inhibition of tetraethylammonium uptake by imipramine 

in hepatocyte preparation from 2/3 donors. 
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Figure 2.  Oral exposure (A, C, E) and liver-to-blood partition coefficient (Liver Kp; B, D, E) of 

CYP3A inhibitors in Oatp1a/1b gene cluster knockout mice lacking the major hepatic Oatps (red 

bars), Oct1/2 knockout mice (green bars), and wild-type male FVB control mice (open bars).  

The positive-control substrates, atorvastatin and metformin, exhibited significantly increased oral 

exposure (2.4-2.9-fold) and significantly decreased liver Kp (84-99%) in Oatp1a/1b- and Oct1/2-

knockout mice, respectively.  In contrast, CYP3A inhibitor oral exposure was not increased and 

liver Kp was not decreased in either Oatp1a/1b- or Oct1/2-knockout mice.  Mean ± SEM, n = 4-

6, *p < 0.05: oral exposure increase or liver Kp decrease in knockout versus wild-type mice. 
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Supplemental Figures 

Supplemental Figure 1.  Cmax of CYP3A inhibitors in Oatp1a/1b gene cluster knockout mice 

lacking the major hepatic Oatps (red bars), Oct1/2 knockout mice (green bars), and wild-type 

male FVB control mice (open bars).  The positive-control substrates, atorvastatin and metformin, 

exhibited significantly increased Cmax (2.9-4.1-fold) in Oatp1a/1b- and Oct1/2-knockout mice.  

In contrast, CYP3A inhibitor Cmax was not increased in either Oatp1a/1b- or Oct1/2-knockout 

mice.  Mean ± SD, n = 3-6, *p < 0.05: Cmax increase in knockout versus wild-type mice.   
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Supplemental Figure 2.  Blood concentration-time profiles of CYP3A inhibitors in Oatp1a/1b 

gene cluster knockout mice lacking the major hepatic Oatps (full symbols), and wild-type male 

FVB control mice (open symbols).  Mean ± SD, n = 6 
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Supplemental Figure 3.  Blood concentration-time profiles of CYP3A inhibitors in Oct1/2 

knockout mice (full symbols) and wild-type male FVB control mice (open symbols).  Mean ± 

SD, n = 6 
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Supplemental Table 1.  Uptake velocity in the absence or presence of uptake inhibitors in 

OATP1B1, 1B3, 2B1, and OCT1 over-expressing cells and vector controls. 

Compound 

Uptake Velocity  

(- inhibitor)  

Uptake Velocity 

 (+ inhibitor)  

 (pmol/mg/min)  (pmol/mg/min) 

Positive Controls Mean SEM Mean SEM 

Vector Control for OATP1B (Atorvastatin) 1599.9 189.3 1061.4 107.6 

OATP1B1(Atorvastatin) 12319.1 1183.2 3266.0 98.4 

OATP1B3(Atorvastatin) 8730.6 571.2 2336.0 68.3 

Vector Control for OATP2B (Atorvastatin) 468212.9 9640.1 550333.3 12332.0 

OATP2B1(Atorvastatin) 2084581.2 58759.9 1108472.3 26763.0 

Vector control (Metformin) 0.26 0.02 0.18 0.03 

OCT1 (Metformin) 1.83 0.05 0.22 0.02 

Ketoconazole         

Vector control for OATP1B 27625.1 1064.9 14717.3 403.2 

OATP1B1 35722.3 2523.6 15819.0 698.9 

OATP1B3 27443.0 1064.9 8428.7 489.4 

Vector control for OATP2B 118325.1 6840.5 118046.2 5675.1 

OATP2B1 137167.5 5511.1 155635.7 5637.2 

Vector control for OCT1 25727.8 778.7 23982.3 1485.0 

OCT1 25839.6 728.4 27728.4 976.8 

Itraconazole         

Vector control for OATP1B 13157.9 532.7 13398.4 497.0 

OATP1B1 13812.4 345.5 15100.1 376.0 

OATP1B3 4390.8 424.4 5099.6 390.0 

Vector control for OATP2B 86514.3 3293.9 72836.7 4843.3 

OATP2B1 150777.1 2560.2 149009.4 2621.3 

Vector control for OCT1 25912.3 3753.8 21250.5 882.5 

OCT1 17757.2 1228.9 14125.8 1154.4 

Hydroxy-itraconazole         

Vector control for OATP1B 18407.0 548.3 8998.8 256.6 

OATP1B1 13041.6 475.0 6767.6 400.2 

OATP1B3 9924.9 719.3 5341.1 342.6 

Vector control for OATP2B 74408.1 2190.5 82248.5 3232.4 

OATP2B1 99082.4 6241.1 104949.2 7051.6 

Vector control for OCT1 21014.4 605.8 22928.2 712.3 

OCT1 16613.4 244.5 22110.9 834.5 

Clarithromycin     

 

  

Vector control for OATP1B 10093.3 560.2 8022.0 236.0 

OATP1B1 9246.4 680.9 5941.6 433.4 

OATP1B3 9059.9 544.0 6042.7 123.9 

Vector control for OATP2B 34327.7 483.0 33867.0 1146.3 

OATP2B1 48772.9 2326.1 46257.2 1970.6 

Vector control for OCT1 6744.3 531.6 6549.8 638.6 

OCT1 9113.3 390.7 8297.3 770.7 


