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Abstract

Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of
MRP4, in addition to BSEP, might be arisk factor for the development of cholestatic DILI.
Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be arisk factor
for the development of cholestatic DILI. Here, we aimed to develop computational models to
delineate molecular features underlying MRP4 and BSEP inhibition. M odels were devel oped
using 257 BSEP and 86 MRP4 inhibitors and non-inhibitors in the training set. Models were
externally validated and used to predict the affinity of compounds towards BSEP and MRP4 in
the DrugBank database. Compounds with a score above the median fingerprint threshold were
considered to have significant inhibitory effects on MRP4 and BSEP. Common feature
pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a
training set of 9 well-characterized MRP4 inhibitors and 9 potent BSEP inhibitors. Bayesian
models for BSEP and MRP4 inhibition/non-inhibition were devel oped with cross-validated
Receiver Operator Curve (ROC) values greater than 0.8 for the test sets, indicating robust models
with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP
inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond
acceptor features, albeit in distinct spatial arrangements,; ssimilar molecular features between
MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both
transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models

demonstrated significant classification accuracy and predictability.
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I ntroduction

Drug-induced liver injury (DILI) is an important cause of drug toxicity and a maor
reason for withdrawal of drugs from the market (Abboud and Kaplowitz, 2007) or attrition of
drug candidates in late development stages, which can be extremely costly. Unfortunately,
current in vitro screens or in vivo preclinical studies cannot accurately predict the potential of
compounds to cause hepatotoxicity. DILI remainsamajor concern in drug discovery and
clinical development. This obstacle has necessitated a search for alternative technologies, such as
computational approaches to decrease the risk of DILI-associated late-stage failures.

Despite extensive research, the underlying mechanisms of DILI are not well understood.
However, it isclear that compound-related properties as well as individual patient characteristics
affect the occurrence of DILI. Formation of reactive metabolites, mitochondrial impairment, and
inhibition of canalicular bile acid transport mediated by the bile salt export pump (BSEP) (e.g.
troglitazone, bosentan, erythromycin) (Stieger et al., 2000; Fattinger et al., 2001; Kostrubsky et
al., 2003) are known risk factors for the development of DILI in humans. This has been
substantiated by large scale in vitro screening studies revealing that drugs that cause cholestatic
DILI have higher potencies as well as frequencies of BSEP inhibition compared to drugs that are
not liver toxic or that cause hepatocellular DILI. (Morgan et al., 2010; Dawson et a., 2012)
BSEP islocated at the canalicular membrane of the hepatocyte where it isinvolved in the
excretion of bile acidsinto bile under physiological conditions. (Noe et al., 2002) The
importance of this protein in bile acid homeostasis is emphasized by the observation that
mutationsin the BSEP gene ABCB11 have been associated with progressive familial intrahepatic
cholestasis type 2 (PFIC 2). Although BSEP inhibition may explain bile acid-mediated DILI
liability for alarge proportion of compounds, a subset of hepatotoxic drugs remains that cannot

be explained by BSEP inhibition alone.
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In addition to canalicular BSEP, multidrug resistance protein 4 (MRP4) isabile acid
efflux protein localized at the basolateral membrane of hepatocytes. While hepatic expressionis
low under normal physiological conditions, MRP4 up-regulation has been demonstrated under
cholestatic conditions. MRP4 is hypothesized to serve as a back-up system for bile acid efflux
from hepatocytes into sinusoidal blood when the normal vectorial transport of bile acids from
hepatocytes into bile is compromised. (Scheffer et al., 2002; Teng and Piquette-Miller, 2007;
Gradhand et al., 2008; Chai et al., 2012) Recently, we screened 88 drugs (BSEP inhibitors and
non-inhibitors) for inhibition of MRP4-mediated transport of the prototypical substrate [*H]-
dehydroepiandrosterone sulfate (DHEAS) and discovered potent MRP4 inhibition among
cholestatic BSEP non-inhibitors. A statistically significant relationship was observed between
the potency of MRP4 inhibition and the probability of cholestatic classification: for each 1%
increase in MRP4 inhibition, the probability that a drug was cholestatic increased by 3.1%.
Interestingly, many BSEP inhibitors also were MRP4 inhibitors. These data suggested that
MRP4 inhibition may serve as a confounding factor in BSEP-mediated DILI, or in some cases
lead to DILI in the absence of BSEP inhibition. Thus, MRP4 inhibition may be an additional risk
factor for the development of cholestatic DILI.

Therole of hepatic bile acid transport inhibition in the etiology of DILI emphasizes the
urgent need to devel op screening tools to accurately predict drug-bile acid transporter
interactions. While in vitro membrane vesicle assays have been developed for BSEP and MRP4
screening, use of these assays early in drug development is time consuming, labor- and resource-
intensive, and requires the physical availability of compounds (including metabolites) for testing.
An alternative approach to in vitro testing is the use of computational models to predict drug-bile

acid transporter interactions and aid in identifying transporter-associated DILI early in the drug
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discovery process. For example, pharmacophore models have been used in ligand-based drug
design to define the key structural characteristics that a molecule must possessin order to bind to
the biological target (Ekinset al., 2012). Since models for BSEP have been reported recently
(Pedersen et al., 2013; Ritschel et al., 2014), the aim of the current study was to develop a
comprehensive model for MRP4 inhibition and evaluate its predictive ability. In addition, we
devel oped Bayesian models to delineate molecular features underlying both MRP4 and BSEP
inhibition. These in silico models were used to identify potential novel MRP4 inhibitors by
virtual screening of an existing database, and to classify drugs as BSEP and MRP4 inhibitorsin

an effort to corrdate these features with DILI incidence.
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Materialsand Methods

Dataset Composition. A dataset of 86 compounds derived from Kéck and co-workers (Kock
et a., 2014) was used for MRP4 inhibition modeling and a dataset of 257 compounds derived
from Dawson et al. and Morgan et al. (Morgan et al., 2010; Dawson et al., 2012) was used for
developing BSEP inhibition models. The compounds in these datasets were structurally diverse
and from various therapeutic classes. They were classified as “cholestatic” or “non-cholestatic,”
according to DILI type reported in the literature. The compounds were further classified as
“active” for the specified transporter if they had an 1Csp < 135 uM for BSEP or a percent
inhibition > 21% compared to control at 100 uM for MRP4, otherwise they were classified as
“Inactive’ againgt that transporter. The MRP4 classifications are based on findings by the Kack
and co-workers that compounds that inhibit by at least 21% have a 50% chance of being
cholestatic and the rationale for the BSEP classifications is to identify inhibitor compounds with
both potent and moderate cholestatic risk, smilar to Morgan et al. These classifications enable
the identification of compounds that should be investigated further for their potential to cause
cholestasis.

In addition to MRP4 and BSEP datasets, a database of 1,510 FDA-approved drugs was
retrieved from DrugBank (http://www.drugbank.ca) (Law et al., 2014). The database was
modified by removing ionic salts and large polymeric drugs and proteins, resulting in a catalogue
of 1,488 drugs.

Training and Test Set Generation. The MRP4 and BSEP databases were separated into
training and test sets by randomly dividing two-thirds of the compounds into the training set and

the other third into the test set (Supplemental Table 1). Table 1 enumerates the number of
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compounds in each set based on the respective transporter as well as the number of compounds
that were classified asinhibitors and non-inhibitors.

The Bayesian modeling of MRP4 and BSEP used all the compounds in their respective
training sets. In contrast, the pharmacophore models were developed using a subset of
compounds from the training set. The MRP4 pharmacophore subset was based on clustering of
the training set, which produced a subset of 9 compounds, analogously, the BSEP
pharmacophore subset contained the strongest inhibitors, also producing a subset of 9
compounds. Details of subset generation and composition are explained further within the
pharmacophore creation methods section.

The conformational models for pharmacophore creation were produced in LigandScout using
the OMEGA conformer generator with the default best quality settings that produced a
maximum of 500 conformations per molecule with an energy window of 10kcal/mol and RMS
threshold difference of 0.4 to identify unique conformers. The common feature pharmacophore
was generated using the default settings in LigandScout for ligand-based shared-feature
pharmacophore creation with a feature tolerance scale of 1.0.

Principal Component Analysis (PCA) of Training, Test Set and DrugBank Molecules. The 3D
molecular structures of 86 MRP4 inhibitors and non-inhibitors and the 257 BSEP inhibitors were

obtained from PubChem (http://www.ncbi.nim.nih.gov/pccompound). PCA plots of each

transporters’ training and test sets were produced in order to ensure that the two sets were
representative of each other in terms of molecular descriptors. In addition, the training sets were
compared to the modified DrugBank database (see above) to ensure that the training set was
representative of currently approved drugs and had predictive power in that chemical space. The

PCA plots were generated based on 8 molecular descriptors for each drug: ALogP, molecular
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weight, number of hydrogen bond donors, number of hydrogen bond acceptors, number of
rotatable bonds, number of rings, number of aromatic rings, and molecular fractional polar
surface area. The molecular descriptors and PCA plots were generated within Discovery Studio
4.0 (DS 4.0; Accdrys, Inc. San Diego, CA). The two-dimensional plots (Fig. 2A-D) represent
only thefirst two principal components of each comparison for visual clarity.

Common Feature Pharmacophore Generation and Validation. Ligand-based pharmacophores
and conformational models were generated using LigandScout (version 3.12 build 20130912,
InteLigand, Vienna, Austria) [1,2] with default settings. The pharmacophore models for MRP4
inhibition were generated from a subset of drugs produced by clustering the training sets based
on similarity of the pharmacophore radia distribution function. Drugs with similar
pharmacophore features were clustered together and the most potent inhibitors of each cluster
were included in the subset to train the pharmacophore model. The rationale of clustering is to
generate a pharmacophore from a smaller training set while still maintaining the structural
diversity of the original training set. If the common pharmacophore creation failed or produced a
pharmacophore with less than 3 features, the drug that failed to align was removed from the
training set. Of the 10 pharmacophores generated per training set, the pharmacophore that
aligned with the most compounds in the training and test set, and had the highest score, was
selected for further testing.

The MRP4 common feature pharmacophore was validated within LigandScout through
virtually screening the test set for its ability to distinguish actives (i.e. drugs with >21% MRP4
inhibitory activity) from inactives (i.e. drugs with <21% MRP4 inhibitory activity). The

conformational models of the test set were generated in an identical manner as the training set.
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Drugs that aligned with all 3 pharmacophore features were predicted to be active MRP4
inhibitors.

The pharmacophore models for BSEP inhibition were generated from a subset of drugs from
the BSEP training set that were the strongest inhibitors (<25 uM 1Css) among the Morgan
dataset (Morgan et al., 2010). This dataset was chosen because it contained the largest number
of BSEP inhibitors. The clustering method utilized for the MRP4 inhibition pharmacophore was
used initially; however, this resulted in a pharmacophore with poor predictive ability which is
why the strongest inhibitors were used instead. The BSEP common feature pharmacophore was
validated using the same methods as the MRP4 pharmacophore except that actives were drugs
with an 1Csp < 135 pM.

Building and Validation of Bayesan Models. Bayesian categorization involves simple and
straightforward probabilistic classification by evaluating the frequency of structural features
associated with ahypothesis of interest (Xiaet al., 2004). The protocol “Create Bayesian Model”
in DS4.0 was applied for model generation with the number of bins set to 10. In addition to 7
molecular descriptors, ‘extended-connectivity fingerprints maximum diameter 6' (ECFP_6) and
‘functional-class fingerprints maximum diameter 6° (FCFP_6) (Rogers et al., 2005) were
calculated for all compounds. ECFP and FCFP differ such that, for example, a chlorine atom and
a bromine atom, which are substituents in the same position on an aromatic ring, would be
differentiated as different fingerprints with ECFP but not with FCFP. The models were built by
using combinations of iterative sets of varying descriptors and cutoff values. Bayesian models
were validated with 10-fold cross-validation-based ‘ receiver operator curve' area under the curve
(XV ROC AUC) (zZweig and Campbell, 1993) associated with training set compounds. The

predictive capacity of Bayesian models was validated with the same test set described for

10
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pharmacophore generation above. The activities of the test set compounds were predicted by the

“Calculate Molecular Properties’ protocol in D$4.0.

Evaluation of Model Performance. The Matthews correlation coefficient (MCC) was used to
determine the relative predictive ability of the pharmacophore and Bayesian models. MCC

ranges from —1 (no correlation) to +1 (full correlation) and is calculated as follows:

TPXTN—FPXFN
Mee = J(TP+FP)(TP+FN)(TN+FP)(TN+FN) (Eq.1)

where TP= number of true positives, FP=number of false positives, TN=number of true
negatives, and FN=number of false negatives. Positive predictive value = TP/(TP+FP),
sensitivity = TP/(TP+FN), and specificity = TN/(TN+FP).

The ROC curve is another method of evaluating models. It is a 2D plot that graphs the
sensitivity of amodel, its true positive rate, versus the reverse percentage of the specificity of the
model, its false positive rate, by the ranked order of the pharmacophore-fit scores. One of the
abilities of the ROC curve is the use of the area under the curve (AUC) when comparing the
ability of different models to correctly classify true positives above false positives. Starting from
the bottom left corner, the graph plots the percentage of the actives in the test set properly
classified as active, which is defined as the sensitivity or true positive rate, versus the percentage
of the inactives improperly classified as active, which is defined as the reverse specificity or false
positive rate. In addition to the AUC, the ROC can be used to set a score cutoff which optimizes

the tradeoff between sensitivity and specificity.

11

202 '6 1Udy U0 SfeuINOr 1 3dSY e B10'SfeuIno fiadse"puup WwoJj papeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on March 3, 2015 as DOI: 10.1124/dmd.114.062539
This article has not been copyedited and formatted. The final version may differ from this version.

DMD # 62539

RESULTS

Characteristics of the data set. The MRP4 inhibitor data were obtained from data previously
generated in our laboratories (Kock et al., 2014) and the BSEP inhibitor data were compiled
from two high-throughput screening studies (Morgan et a., 2010; Dawson et al., 2012). The
BSEP studies were selected due to the large number of screened compounds from various
therapeutic areas (Supplemental Table S1). Venn diagrams reveal the composition of the MRP4
inhibitor dataset contrasted with the BSEP data from Morgan and colleagues to illustrate
compounds in the dataset that uniquely inhibit MRP4 or BSEP as well as compounds that inhibit
both transporters simultaneously (Fig. 1). These diagrams demonstrate that most of the
previously identified BSEP inhibitors tested by our laboratories were also MRP4 inhibitors (Fig.
1A). Among cholestatic compounds, most were dual BSEP and MRP4 inhibitors or MRP4-only
inhibitors; only one BSEP-only inhibitor had been identified as cholestatic (Fig. 1B).

Structure Generation and Validation. The PCA plot isa useful tool to predict potential outliers
by assessing similarity among training and test set compounds (Khandelwal et al., 2007). For the
MRP4 dataset, PCA of 86 training and test set drugs with at least three principal components was
performed based on 8 descriptors. There were 57 compounds from the training set and 29 from
the test set. The first and second components accounted for 36.6% and 27.2% of the total
variance. For the BSEP dataset, PCA of 257 compounds compared 171 and 86 compoundsin the
training and test sets, respectively. The first and second components accounted for 39.1% and
34.4% of the total variance, indicating that these components represented the majority of overall
descriptor space occupied by the molecules. Figures 2A-B demonstrate that the test set drugs
accommodate similar space compared with the training set compounds for their respective

transporter. PCA plots of compoundsin the training sets are overlaid on a PCA plot of DrugBank

12
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drugs in Figures 2C-D, illustrating that training set compounds cover most of the descriptor
space occupied by the compounds featured in the DrugBank database.
Building and Validation of Bayesian Models. Bayesian models for MRP4 inhibition were
developed with atraining set of 57 MRP4 inhibitors and non-inhibitors and the Bayesian models
for BSEP inhibition were developed with a training set of 171 inhibitors and non-inhibitors.
Eight structural descriptors as well as structural extended-connectivity or functional-class
fingerprints (ECFP_6 or FCFP_6, see Methods) were incorporated for model development. Four
Bayesian models were generated for MRP4 and BSEP inhibitors and non-inhibitors based on
specified atom-type (ECFP) and functional class (FCFP) 2-dimensional substructure fingerprints.

The predictive performance of Bayesian models was evaluated by XV ROC AUC based on 10-
fold cross-validation of training set compounds. XV ROC AUC reflects the relationship between
sensitivity and specificity, ranging from 0O to 1, with a higher number indicating a better model
(Zweig and Campbell, 1993; Obuchowski and Lieber, 1998). The Bayesian models also were
validated with their respective test set, consisting of 29 drugs for the MRP4 model and 86 drugs
for the BSEP mode. Their predicted performance was established by sensitivity (SE), specificity
(SP), overall prediction accuracy (Q) and Matthew’s correlation coefficients (MCC values; a
measure of the quality of binary classifications) calculated from the empirical true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) values (Ung et a., 2007
Khandelwal et a., 2008) (Table 2).

Table 2 shows the AUCs of Bayesian models based on the 10-fold cross-validation with
training set compounds. AUC values range between 0 and 1, with 0.5 indicating 50% correct
prediction and 1 indicating a perfect match between observed and predicted data (Fawcett,

2006). The AUC values associated with the four individual models indicated good internal

13
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consistency and prediction accuracy. While both the MRP4 inhibitor and the BSEP inhibitor
Bayesian classification had ssimilar ROC AUC scores for both the internal, leave-one-out cross-
validation, and the external test set validation, the sensitivity and specificity varied more between
the models. The MRP4 inhibitor models had significantly lower sensitivity, especialy the
MRP4 ECFP model, compared to the BSEP inhibitor models, but the trade-off was a higher
specificity, minimizing false positives. Bayesian classfication modeling of BSEP inhibitors
resulted in more predictive models as demonstrated by their relatively higher Matthews'
correlation coefficient compared to MRP4 inhibitor models, which could be dueto the larger size
of the training set (171 BSEP compounds vs. 59 MRP4 compounds). In addition to the external
validation performed here, the BSEP Bayesian FCFP model was used to predict the classification
of 5 strong inhibitors and 5 non-inhibitors from previous screen for BSEP inhibitors (Pedersen et
al., 2013). The model was able to correctly classify nine of the ten compounds, only incorrectly
classifying MK571 as a non-inhibitor.

Fingerprints can be defined as molecular fragments that characterize the structural features of
drug molecules. Figure 3 and 4 displays the five most predictive structural fragments for both
favorable and unfavorable inhibitory activity against MRP4 and BSEP usng FCFP_6
fingerprints. Supplemental figure S2 contains an expanded figure of structural fragments
favorable and unfavorable for inhibition of MRP4 and BSEP using both FCFP_6 and ECFP_6
fingerprints. Structural elements depicted in Figure 3 and 4 were identified in inhibitors and
non-inhibitors amongst training set compounds, respectively. Oxygen atoms tended to be
predictive of favorable inhibitory activity for both MRP4 and BSEP, however, negatively ionized
oxygen atoms frequently occurred in the MRP4 model but not in the BSEP model even though

both are considered anion transporters. This is in agreement with the study by Pedersen and
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colleagues (Pedersen et al., 2013), who reported that BSEP substrates tend to be anionic but
inhibitors were more likely to be neutral at physiological pH. Accordingly, positively charged
secondary and tertiary amines frequently occur among the MRP4 fingerprints associated with
non-inhibition. Thus, the identified fingerprints could be helpful in distinguishing inhibitors and
non-inhibitors of MRP4 amongst novel compounds.

MRP4 Pharmacophore Development. The MRP4 training set of 57 drugs was imported into
LigandScout 3.12 and clustered according to pharmacophore radial distribution function-code
similarity with the maximum conformations set to 3 and the cluster distance set to 0.5. This
algorithm clusters compounds that have similar individual 3D pharmacophore characteristics.

The following 9 drugs that represent the strongest inhibitors in their respective cluster were
used to generate MRP4 inhibition pharmacophores: nitrenedipine, sulindac, sorafenib, clobetasol
propionate, benzbromarone, glafenine, furosemide, finasteride, and simvastatin. The remaining
77 compounds not selected for the training set were moved to the test set for pharmacophore
validation. The ligand-based common feature pharmacophore produced from the 9 compounds
had 2 hydrophobic features and a hydrogen bond acceptor feature (Fig 5A). The two
hydrophobic features were 5.01A apart, while the hydrogen bond acceptor was 4.81A from the
neighboring hydrophobic feature, and 8.86A from the distal hydrophobic group. All 9 drugsin
the training set aligned with all 3 pharmacophore features. Two representative compounds were
aligned to the pharmacophore to illustrate scale and similarity in how the molecules align with
the respective molecular features comprising the pharmacophore (Fig 5B). These compounds
were chosen because their steroid backbone renders them particularly rigid, increasing the
likelihood that the representative conformer is close to its bioactive conformation; additionally,

they contain few atoms that can engage in intermolecular interactions, which further confirms
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that these are the requisite features for MRP4 recognition. Exclusion volumes, i.e. spheres that
cannot be occupied and represent steric hindrance, were generated initially using the non-
inhibitors in the 57 compound training set; however, consideration of exclusion volumes
rendered the models more likely to incorrectly classify MRP4 inhibitors as non-inhibitors during
external validation and were subsequently omitted during database screening.

Quantitative validation of the MRP4 pharmacophore model. The MRP4 pharmacophore model
was ableto correctly classify 30 of the 42 activesin thetest set and 22 of the 35 inactives,
featuring model sensitivity of 71.4% and specificity of 62.8%. The area under the receiver
operating characteristic curve was 0.70, which is considered afair quality model (Fig 6).

Based on the virtual screening results from the external test set validation, the model hasits
highest positive predictive value, the number of true positives over the sum of true and false
positives, at a pharmacophore-fit score cutoff of 37.75. The positive predictive value of the
model at this cutoff is 0.826, selecting 19 true positives, 45.2% of total activesin the set, but

only 4 false positives, 11.4% of total inactives in the set. The pharmacophore-fit score cutoffs
allow for selecting drugs with a higher likelihood of being classified correctly beyond those
which align to the pharmacophore within the tolerance of the features.

The inactives that were incorrectly classified included dexamethasone, naloxone, clopamide,
vinblastine, tolbutamide, probenecid, indinavir, flupirtine, chorpropamide, aprenolol,
chlorpheniramine, fluorescein, and timolol. Interestingly, the false positive with the highest
pharmacophore-fit score was dexamethasone, a glucocorticoid that had no significant inhibitory
activity (5 = 34%). Thiscompound was aligned with clobetasol propionate, another
glucocorticoid included in the 9 training set compounds, which was a strong inhibitor (101 +

23%) (Fig 7).
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As can be seen in Fig. 7, clobetasol propionate (orange) and dexamethasone (gray) have a high
degree of structural similarity. From this observation, molecular properties that could be
mediating the significant difference in inhibitory activity were investigated. The molecular
property that exhibited the most significant difference was calculated LogP which is 4.18 for
clobetasol propionate and 1.68 for dexamethasone, rendering clobetasol propionate a more
hydrophobic compound. The difference in calculated LogP values was evaluated for all 87
compounds tested by Kock and co-workers; actives trended towards higher LogP values than
inactives. A Pearson corréelation coefficient for the calculated LogP and a compound considered
active (>21% MRP4 inhibition) was 0.634 and the correlation coefficient for the percent MRP4
inhibition and calculated LogP was 0.508. Figure 8 represents a box plot of the calculated LogP
values for the compounds classified as inactives and actives; the mean and median of the
inactives’ calculated LogP values were 0.38 and 0.69, respectively, and the actives' calculated
LogP values were 3.64 and 3.84, respectively. It isinteresting to note that numerous
sulfonamides or sulfamides, such as clopamide, tolbutamide, probenecid, and chlorpropamide
were classified as false positives. These molecules may either be a poor match to the models, or
their features are incorrectly parameterized within the Bayesian and pharmacophore modeling
algorithms.

The actives that were not properly classified as active by the model included 19-norethindrone,
clozapine, desipramine, diphenhydramine, etoposide, maprotiline, nitrofurantoin, nortriptyline,
oxybutynin, praziquantel, promethazine, and ticlodipine. Eight of these 12 drugs have similar
structures containing an amine group, which is predicted to be positively ionized at physiological
pH; in addition, six of these drugs contain two aromatic rings whose distance is comparable to

the distance observed between the two hydrophobic features in the MRP4 model. Compounds
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that fall into this category are clozapine, desipramine, diphenhydramine, maprotiline,
nortriptyline, and promethazine. Oxybutynin and ticlodipine contain an amine predicted to be
positively charged, but they have only one aromatic group. Nitrofurantoin is a compound that
continually failed to match any structural similarity search to other known inhibitors; therefore,
we speculate that it is binding in adifferent manner than any of the other inhibitors, perhaps at an
allosteric site of the transporter.

Qualitative Validation of the MRP4 Inhibitor Model. In addition to the quantitative validation
from virtually screening the test set, two compounds that qualitatively strengthen confidencein
the modedl are DHEAS, the substrate used to generate the data, and felbinac, a potent MRP4
inhibitor from a separate screening of MRP4 inhibitors (Morgan et al., 2013). DHEAS was not
included in either the training set or the test set, but the MRP4 pharmacophore model would be
expected to align to the substrate that was used experimentally to generate the inhibition data.
Figure 9A depicts how the two methyl groups on DHEAS align to the hydrophobic featuresin
the pharmacophore and one of the oxygen atoms from the sulfate group aligns with the hydrogen
bond acceptor feature. The alignment of the pharmacophore model to DHEAS is of particular
interest because of its structural rigidity due to the steroid backbone structure. The only
significant intramolecular motion that DHEAS can undergo is the rotation of the sulfate group.
In addition to itsrigidity, DHEAS contains few atoms that can participate in intermolecular
interactions. From the DHEAS pharmacophore (Fig 9B), it appears that the two methyl groups
can participate in hydrophobic interactions, while the ketone can be a hydrogen bond acceptor,
and all the oxygen atoms in the sulfate group, which is negatively ionized at physiological pH,

can act as hydrogen bond acceptors.
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Felbinac is of interest for the same reasons as DHEAS, namély its structural rigidity and
minimal possible intermolecular interactions. In addition, felbinac is a potent inhibitor of
MRP4-mediated transport of B-estradiol 17-(p-D-glucuronide) with an 1Csp of 8.2 uM. (17)
Felbinac aligns well with the MRP4 pharmacophore modd and, as shown in Figure 9D, engages
in only alimited number of intermolecular interactions; both hydrophobic and aromatic
interactions with the phenyl groups in the biphenyl compound, and the oxygen atoms of the
negatively ionized carboxylate group, are able to act as hydrogen bond acceptors. The two
phenyl groups are locked rigidly on perpendicular planes and, therefore, only the carboxylate
group is able to rotate.

LogP Filtering Improves Model Specificity. The MRP4 pharmacophore model’ s specificity can
be significantly improved if the test set were to be filtered after screening with a calculated LogP
cutoff of 2.92, which corresponds to the start of the lower quartile of the actives. The sensitivity
would decrease to 52.38% (22 true actives of 42 total actives) but the specificity would increase
t0 91.43% (3 false actives of 35 total inactives). This marked improvement in specificity

demonstrates the significant influence LogP plays in MRP4 inhibition.

BSEP Inhibitor Pharmacophore Development and Validation. The BSEP inhibitor
pharmacophore was produced with a subset of drugs from the training set that represented the
nine strongest BSEP inhibitors according to Morgan and co-workers that were also tested for
MRP4 inhibition by our group previously. This subset included: nitrenedipine, fenofibrate,
ritonavir, pioglitazone, rosiglitazone, valinomycin, simvastatin, benzbromarone, and lopinavir.
The common feature pharmacophore produced with this set of nine compounds had three
features. two hydrophobic features and one hydrogen bond acceptor (Supplemental Figure S1).

Thisissimilar to the MRP4 pharmacophore, which may explain the high degree of inhibition
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overlap, however, the distances between the features were different. The distance between the
two hydrophobic features was 6.29 A, the hydrogen bond acceptor and the proximal hydrophobic
feature was 4.67 A, and the hydrogen bond acceptor and the distal hydrophobic feature was 6.69

A. All nine drugs that were used to train the pharmacophore hit all three features.

The BSEP inhibitor pharmacophore was validated by virtual screening of the test set and
the model correctly classified 46 of the 56 inhibitors and incorrectly classified 120 of the 191
non-inhibitors. The model selectivity was 82.7% but the specificity was 37.2%. The poor model
specificity is partly due to the higher proportion of non-inhibitors to inhibitors in the test set (191
vs. 56) but also indicative of the difficulty of modeling BSEP through a pharmacophore

approach.

DISCUSSION

A ligand-based pharmacophore and Bayesian modeling approach is presented here, describing
the molecular properties and chemical features necessary for human MRP4 and BSEP
interaction. Since these transport proteins have been associated with DILI, these models may be
useful in predicting DILI liability of novel compounds. The models were developed from our
laboratories' previous work and data from other groups. An advantage of Bayesian classification
modeling isthe ability to easily interpret how the model weighs the various molecular properties,
and which molecular properties are most predictive for classification. The Bayesian
classification model was devel oped by creating up to 11 bins for each molecular property. For
discrete properties such as the number of rings or the hydrogen-bond acceptor atoms, all the
compounds with the same value were put into the same bin; for continuous properties such as
molecular weight or ALogP, a bin was assigned a value range and all the compounds that fell

within that range were put into that bin. The ranges for binning continuous values were created
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such that the number of compounds in each bin was evenly distributed. A normalized
probability was then calculated for each bin according to the fraction of compounds in the bin
that were active, i.e. if all the compoundsin abin were active, that bin was assigned a higher
probability. The probability was normalized by adjusting for bins with few compounds. A
Bayesian score was then calculated by summing the normalized probabilities of all the binsto

which a compound was assigned.

By inspecting the normalized probabilities of individual bins, the molecular properties that
contain bins with high probabilities indicate molecular properties that are well correlated with
either inhibition or non-inhibition. For example, with the MRP4 model, atrend was observed
with a higher ALogP correlating to MRP4 inhibition (14 of 15 drugs with an ALogP of 3.8 or
higher were inhibitors while only 2 of 12 drugs with a ALogP of 0.94 or lower were inhibitors).
A trend also was observed with large molecular weight drugs more likely to inhibit MRP4
compared to smaller drugs (23 of 25 drugs with molecular weight >356 Da). It should again be
noted that the value range of a bin, for molecular properties that are continuous, is aresult of
evenly dividing the ordered drugsinto 11 bins. In addition to those continuous properties, 23 of

25 drugs with 3 or 4 rings were inhibitors compared to 1 of 9 compounds with O or 1 ring.

Compared to the MRP4 Bayesian model, the BSEP Bayesian model was more predictive of
negative properties, thus predicting more non-inhibitors than inhibitors. Thisislikely dueto the
fact that the training set contained more non-inhibitors relative to inhibitors compared to the
MRPA4 training set. For the BSEP model, only 7 of 90 drugs with a molecular weight less than
337 Dawereinhibitors. Correspondingly, only 11 of 90 compounds with 4 or fewer rotatable
bonds were inhibitors and, similar to the MRP4 model, only 3 of 72 drugs with an ALogP of

2.03 or lower were inhibitors.
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Potential biological implications of the association between high calculated LogP values and
MRP4 inhibition were considered. These data lead to speculation that molecules must partition
first into the bilayer to be an inhibitor for MRP4, or that higher LogP values correspond with
increased hydrophobic interactions within the protein environment, thus rendering these

molecules stronger competitive inhibitors.

It is worth mentioning that these computational models are based on data collected from
membrane vesicle assays and thisin vitro system could have an influence on experimental
transport inhibition results. The methods generally involve short incubation periods with the test
compounds in which the degree of partitioning of the test compound into the membrane of the
vesicles could bein flux. If thetest compound exertsits inhibition while imbedded in the
membrane, this could cause a skew in the datain which compounds with higher LogP values
have a higher rate of partitioning into the membrane than those with lower LogP values.(Nagar

and Korzekwa, 2012)

Comparison to Previous Models. Previous studies identified important molecular features for
BSEP inhibition (Pedersen et al., 2013) and pharmacophore models have been proposed for
BSEP (Ritschel et al., 2014) and MRP4 (Fukuda et al., 2013). While there was good
corroboration between the important molecular features, there were several notable differences
between the pharmacophores previously reported and those devel oped here, which can be

ascribed primarily to differences in the training sets used to generate the pharmacophores.

Molecular properties that were reported previously to have a statistically significant difference
between strong BSEP inhibition (>50% inhibition) and non-inhibitors were LogD7 .4, molecular

weight, saturated nonpolar surface area, LogP, number of rotatable bonds, unsaturated nonpolar
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surface area, number of hydrogen-bond acceptors, and net charge at pH 7.4. The molecular
properties that remain statistically significant for weak inhibitors (27-50% inhibition) and non-
inhibitors were only molecular weight and saturated nonpolar surface area. In comparison, our
best Bayesian BSEP model (FCFP_6) ranked the top four feature bins based on their normalized
probability in descending order: molecular weight, FCFP_6 fingerprint, number of rotatable
bonds, and ALogP. However, since a compound can have only one value for a molecular
property but multiple fingerprints, the fingerprints tend to be the predominate factor influencing
the final Bayesian score for a compound. The pharmacophore model for BSEP isalsoin
agreement with these previously reported molecular properties since they consisted of 2
hydrophobic features and a hydrogen-bond accepting feature. The hydrophobic features were
associated with nonpolar surface area and high LogP while the hydrogen-bond accepting feature
was associated with the number of hydrogen bond acceptors correlated with inhibition. The
presence of only one hydrogen-bond accepting features in the pharmacophore model, however,
suggests that alarge number is not essential for inhibition, but could provide more opportunities

for hydrogen bonding in the correct spatial arrangement.

Two common feature MRP4 pharmacophores were reported previously in the same paper; one,
based on five protease inhibitors (Pl) and, the other based on a more diverse set of ten drugs that
were inhibitors based on literature reports. The pharmacophore based on five Plsresulted in a
pharmacophore with four hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD),
and three hydrophobic features, and the pharmacophore based on ten drugs resulted in two HBAs
and a hydrophobic feature. The Pl-based pharmacophore featured a large number of features due
to the small number of compounds in the training set and their high degree of structural

similarity while the pharmacophore based on ten diverse compounds was based on the findings
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from multiple labs. The MRP4 pharmacophore we developed is more appropriate for predicting
potential MRP4 inhibitorsin order to identify the cholestatic potential of compounds because it
was based on data from a single laboratory utilizing one assay, was developed based on adiverse

set of compounds, and contained a large number of inhibitors.

The other recently reported BSEP pharmacophore (Ritschel et al., 2014) was trained using five
compounds of limited structural diversity, and resulted in a pharmacophore that had eight
features, four hydrophobic features and two HBAS that had an associated vector feature. The
authors found the pharmacophore too stringent so they modified it by making only four
hydrophobic features in the core of the pharmacophore essential. The advantage of the BSEP
pharmacophore presented in this paper isthat it is derived from pharmaceuticals instead of a
chemical library and developed with more diverse compounds, which results in a pharmacophore
with fewer features, but one more equipped to deal with alarger chemical space. The BSEP
pharmacophore reported in this paper, however, is able to align with the hydrophobic and
hydrogen bond accepting features of the previously reported BSEP pharmacophore. This
suggests that the pharmacophore reported in this paper may be convergent with previously

reported pharmacophore, although less stringent.

In conclusion, ongoing studies will utilize these models in an ensemble fashion against drugs that
are predicted to be MRP4 or BSEP inhibitors in order to further validate the models. These
models, when used in combination, may aid in the a priori identification of potential cholestasis-

inducing compounds during the early stages of drug development.
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Figure L egends

Figure 1. A. Classification of the inhibitors used in development of the MRP4 models. Forty-
five drugs were MRP4 inhibitors only and 31 drugs were BSEP inhibitors only, whereas 26
molecules inhibited both MRP4 and BSEP. B. Of the compoundsin A, 14 MRP4 inhibitors were
cholestatic, whereas only one BSEP inhibitor was identified as a cholestatic drug. Of the 26
compounds classified as both MRP4 and BSEP inhibitors, 15 (58%) were clinically identified as

cholestatic.

Figure2. A. MRP4: Principal component analysis (PCA) of the training and test set compounds
(257 total) were selected such that they occupy similar areas of the PCA plot. The PCA among
training and test set compounds was generated with the following properties. ALogP, molecular
weight, molecular fractional polar surface area, number of rings, aromatic rings, rotatable bonds,
hydrogen bond acceptors and hydrogen bond donors. The first principal component explains
0.366 of total variance and the second principal component explains 0.272 of total variance;
when combined these explain 0.638 of the total variance. The principal components are linear
combinations of original descriptors. The dominate descriptors in the principal components are
determined by the product of the descriptor coefficient while accounting for the magnitude of the
descriptor. Thefirst principal component is dominated by molecular weight, number of
hydrogen bond acceptors, and number of rotatable bonds. The second principal component is

dominated by molecular fractional polar surface area.

Component 1: =-3.8514 + 0.17609 * [ ALogP ] + 0.0029942 * [ Molecular_Weight ] + 0.19241 * |
Num_H_Donors] + 0.12966 * [ Num_H_Acceptors] + 0.11058 * [ Num_RotatableBonds] + 0.21601 * |
Num_Rings] + 0.26649 * [ Num_AromaticRings] - 0.91018 * [ Molecular_FractionalPolarSurfaceArea]
Component 2: =-0.91763 - 0.22028 * [ ALogP ] + 0.00060715 * [ Molecular_Weight ] + 0.30038 * [
Num_H_Donors] + 0.1113* [ Num_H_Acceptors] + 0.0097512 * [ Num_RotatableBonds] - 0.15452 * |
Num_Rings] - 0.34347 * [ Num_AromaticRings] + 4.3042 * [ Molecular_FractionalPolarSurfaceArea]
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B. BSEP: PCA analysis of the training and test sets. The first and second principal components
accounted for 0.391 and 0.344 of total variance, respectively. Together they explain 0.735 of the
total variance. Thefirst principal component (x-axis) is governed by the number of hydrogen
bond donors/acceptors and number of rings, whereas the second principal component (y-axis) is
governed by lipophilicity and the number of aromatic rings. Both principal components are

strongly influenced by fractional polar surface area.

Component 1: =-4.0005 + 0.035399 * [ ALogP ] + 0.0031256 * [ Molecular_Weight ] + 0.16608 * [
Num_H_Donors] + 0.14138 * [ Num_H_Acceptors] + 0.11881 * [ Num_RotatableBonds] + 0.23456 * |
Num_Rings] + 0.23836 * [ Num_AromaticRings] + 0.48987 * [ Molecular_Fractiona PolarSurfaceArea]
Component 2: =-0.12988 + 0.2367 * [ ALogP] + 0.00047919 * [ Molecular_Weight ] - 0.20734 * |
Num_H_Donors] - 7.2971e-002 * [ Num_H_Acceptors] + 0.019248 * [ Num_RotatableBonds] + 0.16242 * [
Num_Rings] + 0.31811 * [ Num_AromaticRings] - 3.6221 * [ Molecular_FractionalPolarSurfaceArea]

PCA analysis comparing the training set of MRP4 (C) and BSEP (D) to the DrugBank database

of FDA-approved drugs.

Figure 3. Favorable and unfavorable molecular features for interactions with MRP4. Each
feature is a fragment-like fingerprint, up to 6 bond lengths in diameter, which occurs within the
larger parent molecule. The squiggle and asterisks indicate that the bond extends further but
does not specify the atom type. The favorable features or “good” features are labeled G1-G5 and
the unfavorable features or “bad” features are labeled B1-B5. A featureisconsidered good if it
frequently occurs within compounds that were classified as inhibitors and bad if it frequently
occurs in compounds that are non-inhibitors. The large integer after the colon is the unique hash
identifier for the shown fingerprint. The Bayesian score is the normalized probability assigned

to that feature.

Figure 4. Favorable and unfavorable molecular features for interactions with BSEP.
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Figure 5. Pharmacophore model of inhibitors of MRP4-mediated transport of DHEAS. A. The
pharmacophore model with the measured distances between the 3 features. B. The
pharmacophore model aligned with chemical groups of two drugs from the training set,
clobetasol propionate (orange) and finasteride (lavender). Y ellow spheres represent hydrophobic
features and the red sphere represents a hydrogen bond acceptor. On the stick model, red
represents oxygen atoms, blue represents nitrogen atoms, green represents halogen atoms, and
therest are carbons. Both hydrophobic features align with methyl groups and the hydrogen bond

acceptor aligns with a ketone group. Hydrogen atoms are not displayed for clarity.

Figure 6. Receiver operating characteristic (ROC) curve of pharmacophore model of MRP4

inhibitors from virtually screening the test set (N = 77 compounds).

Figure 7. Structural alignment of glucocorticoids clobetasol propionate (orange) and
dexamethasone (gray). Clobetasol propionate, a potent MRP4 inhibitor, inhibits MRP4-
mediated transport of DHEAS by 101 + 23%. In contrast, dexamethasone exhibits no significant
inhibitory effect (5 £ 34% inhibition). The orange circles indicate identical chemical groupsin
proximity with each other. On the stick model, red represents oxygen atoms, green represents

halogen atoms, and the rest represents carbon atoms.

Figure 8. MRP4:. Comparison of calculated LogP of compounds classified as inactive (<21%
MRP4 inhibitory activity; n=37) compared to those classified as active (>21% MRP4 inhibitory
activity; n=50). The mean and median LogP values of the inactives are 0.38 and 0.69,

respectively, and 3.64 and 3.84, respectively, for the actives.

Figure9. DHEAS, an MRP4 substrate, and felbinac, an MRP4 inhibitor, aligned with the MRP4

inhibitor pharmacophore. Both compounds also are depicted with their individual
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pharmacophore, which shows all possible intermolecular interactions. A, DHEAS aigned to the
MRP4 pharmacophore. B, DHEAS pharmacophore showing all possible intermolecular
interactions. C, felbinac aligned to the MRP4 pharmacophore. D, felbinac pharmacophore
showing all possibleinteractions. Y ellow spheres represent hydrophobic features, red spheres
represent hydrogen bond acceptor features, the red star represents a negatively ionizable feature,
and the purple torus represents an aromatic ring feature. On the stick-models, red represents
oxygen atoms, yellow represents phosphorus atoms, and the rest represents carbon atoms.

Hydrogen atoms are not displayed for clarity.
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Table 1. Composition of Training and Test Set

Transport Model MRP4 BSEP
Training Set Total 57 171
(Inhibitors/ Non-inhibitors) (34/23) (43/128)
Test Set Total 29 86
(Inhibitors/ Non-inhibitors) (A7/12) (221 64)
Pharmacophore Training Subset® 9 9
Pharmacophore Test Set” 77 247

& Subset of drugs from the training set used to devel op the pharmacophore

® Drugs not included in the pharmacophore training set were moved to the test set
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Table 2. Characteristics of Bayesan Modelsfor MRP4 and BSEP Inhibition

Bayesian models

MRP4inhib-ECFP_6

MRP4inhib-FCFP_6

BSEPinhib-ECFP_6

BSEPinhib-FCFP_6

2D-fingerprints ECFP_6 FCFP_6 ECFP_6 FCFP_6
10-Fold XV ROC AUC? 0.816 0.793 0.750 0.759
TP/FN/FP/TN @ 33/1/1/22 33/1/1/22 43/0/3/125 43/0/5/123
External Validation b 0.819 0.838 0.845 0.871
TP/FN/FP/TN® 8/9/1/11 10/7/2/10 18/4/15/49 17/5/10/54
SE (%)° 47.1 58.8 81.8 77.3
SP (%)° 91.7 83.3 76.7 84.4
Q (%)° 65.5 69.0 77.9 82.6
mcc® 0.4123 0.4216 0.5238 0.5796

& Cross-validation-based ‘ receiver operator curve’ area under the curve (XV ROC AUC) based on
training set compounds (green shaded region).
® Predictive performance validation by test set compounds (blue shaded region). True positive
(TP), true negative (TN), false positive (FP), false negative (FN), sensitivity (SE), specificity
(SP), overall prediction accuracy (Q), and Matthew’ s correlation coefficient (MCC)(Ung et al.,
2007; Khandelwal et al., 2008). SE =TP/(TP + FN), SP=TN/(TN + FP), Q= (TP + TN)/(TP +
TN + FP+ FN). MCC = [(TP*TN) — (FN * FP)[/[(TP + FP) (TP + FN) (TN +FN)(TN+FP)] ¥
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Supplemental Data

This Supplemental Information includes 1) the drugs which were part of the MRP4 dataset and the BSEP dataset and

whether they were included in the training set. 2) The BSEP pharmacophore with the feature distances shown and the
BSEP pharmacophore with B-Estradiol 17-(B-D-glucuronide) aligned. 3) The expanded figure showing the favorable and
unfavorable fingerprints for MRP4 and BSEP for both the ECFP_6 and FCFP_6 model.

Supplementary Table S1.
These two tables contain the names of the drugs in the MRP4 dataset and BSEP dataset, PubChem ID or CHEMBL ID if

available, the inhibition data, and the compound’s classification for the model. Drugs with a “TRUE” value for the

training set column were used to train the Bayesian model and those with a “FALSE” value were part of the test set used
to validate the model. The IC50 values for the BSEP dataset were derived from Morgan et al., Toxicol Sci. 2013 and
Dawson et al., Drug Metab Dispos. 2012. The active classification category indicates if the molecules were considered

active or inactive which is 221% for MRP4 inhibition or an ICsq<133 for BSEP.

MRP4 Dataset

BSEP Dataset

PUBCHEM | MRP4 MRP4 % Active BSEP Active
Name CID TrainingSet | Inhibition Classification Name CHEMBL ID TrainingSet 1Cso Classification
Sulindac 1548887 TRUE 112 TRUE Acecainide TRUE 133 FALSE
Trimethoprim 5578 TRUE 9 FALSE Antimycin TRUE 59.6 TRUE
Chloramphenicol 5959 TRUE 6 FALSE Camptothecin TRUE 133 FALSE
Metoclopramide 4168 TRUE -12 FALSE Fenclozic acid TRUE 133 FALSE
Clopamide 2804 TRUE 10 FALSE Quercetin TRUE 133 FALSE
Furosemide 3440 TRUE 109 TRUE R-Apomorphine TRUE 133 FALSE
Haloperidol 3559 TRUE 34 TRUE Selegiline TRUE 133 FALSE
Chlorpromazine 2726 TRUE 84 TRUE Sitagliptin TRUE 133 FALSE
Etoposide 36462 TRUE 33 TRUE Suramin TRUE 133 FALSE
Verapamil 2520 TRUE 44 TRUE Vioxx TRUE 133 FALSE
Lopinavir 92727 TRUE 76 TRUE Acetaminophen CHEMBL112 TRUE 1000 FALSE
Ritonavir 392622 TRUE 72 TRUE Acyclovir CHEMBL184 TRUE 133 FALSE
Sorafenib 216239 TRUE 121 TRUE Alfentanil CHEMBL634 TRUE 133 FALSE
Tacrine 1935 TRUE 6 FALSE Amikacin CHEMBL177 TRUE 133 FALSE
Buspirone 2477 TRUE 13 FALSE Amitriptyline CHEMBL629 TRUE 133 FALSE
Timolol 33624 TRUE 12 FALSE Amrinone CHEMBL12856 TRUE 133 FALSE
Quinine 8549 TRUE 41 TRUE Atropine CHEMBL195 TRUE 133 FALSE
Oxybutynin 4634 TRUE 67 TRUE Benoxaprofen CHEMBL340978 TRUE 175 FALSE
Alprenolol 2119 TRUE 10 FALSE Betaine CHEMBL95889 TRUE 1000 FALSE
Nadolol 39147 TRUE -25 FALSE Betamipron CHEMBL1231530 TRUE 133 FALSE
Indomethacin 3715 TRUE 111 TRUE Busulfan CHEMBL820 TRUE 1000 FALSE
Vinblastine 13342 TRUE 10 FALSE Butorphanol CHEMBL33986 TRUE 133 FALSE
Cimetidine 2756 TRUE 0 FALSE Cefotetan CHEMBL474579 TRUE 133 FALSE
Alpidem 54897 TRUE 47 TRUE Chloroquine CHEMBL76 TRUE 133 FALSE
Nortriptyline 4543 TRUE 36 TRUE Cinchophen CHEMBL348000 TRUE 695.3 FALSE
Metformin 4091 TRUE -6 FALSE Ciprofloxacin CHEMBL8 TRUE 133 FALSE
Fluvastatin 446155 TRUE 62 TRUE Clavulanate CHEMBL777 TRUE 1000 FALSE
Tamoxifen 2733526 TRUE 102 TRUE Cloxacillin CHEMBL891 TRUE 219.7 FALSE
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Clobetasol

propionate 32798 TRUE 101 TRUE Cromolyn CHEMBL428880 TRUE 1000 FALSE
Terbutaline 5403 TRUE 20 FALSE Cyclophosphamide CHEMBL88 TRUE 133 FALSE
Antipyrine 2206 TRUE -5 FALSE Dapsone CHEMBL1043 TRUE 133 FALSE
Naloxone 5284596 TRUE -7 FALSE Diazepam CHEMBL12 TRUE 133 FALSE
Nitrofurantoin 6604200 TRUE 101 TRUE Dihydralazine CHEMBL35505 TRUE 1000 FALSE
Bezafibrate 39042 TRUE 41 TRUE Diltiazem CHEMBL23 TRUE 133 FALSE
Indinavir 5362440 TRUE 15 FALSE Disopyramide CHEMBL517 TRUE 133 FALSE
Mibefradil 60663 TRUE 91 TRUE Donepezil CHEMBL502 TRUE 78 TRUE
Chlorpheniramine 2725 TRUE 20 FALSE Doxepin CHEMBL101740 TRUE 133 FALSE
Fluorescein 16850 TRUE 5 FALSE Eprosartan CHEMBL813 TRUE 133 FALSE
Benzbromarone 2333 TRUE 111 TRUE Ethinylestradiol CHEMBL1078384 TRUE 14 TRUE
Finasteride 57363 TRUE 49 TRUE Etoricoxib CHEMBL416146 TRUE 53.2 TRUE
Tolbutamide 5505 TRUE -5 FALSE Flumazenil CHEMBL407 TRUE 133 FALSE
Dicloxacillin 18381 TRUE 41 TRUE Flutamide CHEMBL806 TRUE 133 FALSE
Primaquine 4908 TRUE 11 FALSE Ganciclovir CHEMBL182 TRUE 133 FALSE
Diphenhydramine 3100 TRUE 31 TRUE Gemfibrozil CHEMBLA457 TRUE 133 FALSE
19-Norethindrone 6230 TRUE 33 TRUE Glipizide CHEMBL1073 TRUE 133 FALSE
Fenofibrate 3339 TRUE 39 TRUE Guanfacine CHEMBL862 TRUE 133 FALSE
Valinomycin 5649 TRUE 65 TRUE Idazoxan CHEMBL10316 TRUE 133 FALSE
Glafenine 3474 TRUE 105 TRUE Indoramin CHEMBL279516 TRUE 133 FALSE
Flupirtine 53276 TRUE 11 FALSE Iproniazide CHEMBL92401 TRUE 1000 FALSE
Caffeine 2519 TRUE 5 FALSE Isoproterenol CHEMBL434 TRUE 1000 FALSE
Nitrendipine 4507 TRUE 93 TRUE Kanamycin CHEMBL176 TRUE 133 FALSE
Pioglitazone 4829 TRUE 34 TRUE Ketanserin CHEMBL51 TRUE 133 FALSE
Rosiglitazone 77999 TRUE 88 TRUE Ketotifen CHEMBL534 TRUE 738.4 FALSE
Desipramine 2995 TRUE 27 TRUE Leflunomide CHEMBL960 TRUE 133 FALSE
5-Fluorouracil 3385 TRUE 1 FALSE Levofloxacin CHEMBL33 TRUE 133 FALSE
Simvastatin 54454 TRUE 111 TRUE Methapyrilene CHEMBL1411979 TRUE 1000 FALSE
Promethazine 4927 TRUE 64 TRUE Methimazole CHEMBL1515 TRUE 133 FALSE
Aspirin 2244 FALSE 9 FALSE Methylprednisolone CHEMBL650 TRUE 133 FALSE
Theophylline 2153 FALSE 4 FALSE Metocurine CHEMBL1259 TRUE 133 FALSE
Quinidine 441074 FALSE 77 TRUE Metoprolol CHEMBL13 TRUE 133 FALSE
Rifamycin SV 6324616 FALSE 75 TRUE MK-571 CHEMBL15177 TRUE 3.53 TRUE
Famotidine 5702160 FALSE 16 FALSE Moclobemide CHEMBL86304 TRUE 133 FALSE
Glyburide 3488 FALSE 93 TRUE Morphine CHEMBL70 TRUE 133 FALSE
Tolcapone 4659569 FALSE 113 TRUE Naproxen CHEMBL154 TRUE 133 FALSE
Troglitazone 5591 FALSE 105 TRUE Neomycin CHEMBL449118 TRUE 133 FALSE
Acitretin 5284513 FALSE 33 TRUE Neostigmine CHEMBL278020 TRUE 133 FALSE
Dexmethasone 5743 FALSE 5 FALSE Nicotine CHEMBL3 TRUE 133 FALSE
D-Penicillamine 5852 FALSE -10 FALSE Nimodipine CHEMBL1428 TRUE 133 FALSE
Omeprazole 4594 FALSE 21 TRUE Nomifensine CHEMBL273575 TRUE 1000 FALSE
Chlorpropamide 2727 FALSE -12 FALSE Ondansetron CHEMBL46 TRUE 133 FALSE
Doxorubicin 31703 FALSE 12 FALSE Papaverine CHEMBL19224 TRUE 133 FALSE
Rifampicin 5381226 FALSE 60 TRUE Pefloxacin CHEMBL267648 TRUE 133 FALSE
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Sulfasalazine 5353980 FALSE 118 TRUE Pentamidine CHEMBL55 TRUE 133 FALSE
Fluoxetine 3386 FALSE 70 TRUE Phenacetin CHEMBL16073 TRUE 133 FALSE
Ranitidine 3001055 FALSE 10 FALSE Physostigmine CHEMBL94 TRUE 1000 FALSE
Cyclosporin A 5284373 FALSE 23 TRUE Picotamide CHEMBL1257015 TRUE 441 FALSE
Ticlopidine 5472 FALSE 35 TRUE Pindolol CHEMBL500 TRUE 133 FALSE
Phenformin 8249 FALSE 20 FALSE Practolol CHEMBL6995 TRUE 1000 FALSE
Clozapine 2818 FALSE 25 TRUE Prednisolone CHEMBL131 TRUE 133 FALSE
Maprotiline 4011 FALSE 29 TRUE Prochlorperazine CHEMBL728 TRUE 133 FALSE
Carbamazepine 2554 FALSE -3 FALSE Pyridoxine CHEMBL1364 TRUE 1000 FALSE
Probenecid 4911 FALSE 8 FALSE Remoxipride CHEMBL22242 TRUE 133 FALSE
Nifedipine 4485 FALSE 46 TRUE Risperidone CHEMBLS85 TRUE 133 FALSE
Praziquantel 4891 FALSE 59 TRUE Streptomycin CHEMBL1201194 TRUE 1000 FALSE
Ibuprofen 3672 FALSE 39 TRUE Sulfadiazine CHEMBL439 TRUE 133 FALSE
Triamterene 5546 FALSE 31 FALSE Sumatriptan CHEMBL128 TRUE 133 FALSE
Tenoxicam CHEMBL487234 TRUE 133 FALSE
Tetracycline CHEMBL1440 TRUE 133 FALSE
Tizanidine CHEMBL1079 TRUE 133 FALSE
Trazodone CHEMBL621 TRUE 133 FALSE
Tubocurarine CHEMBL339427 TRUE 133 FALSE
Urapidil CHEMBL279229 TRUE 133 FALSE
Venlafaxine CHEMBL637 TRUE 133 FALSE
Zileuton CHEMBL93 TRUE 133 FALSE
Zonisamide CHEMBL750 TRUE 133 FALSE
5-Fluorouracil CHEMBL185 TRUE 133 FALSE
Aspirin CHEMBL25 TRUE 133 FALSE
Carbamazepine CHEMBL108 TRUE 133 FALSE
Chloramphenicol CHEMBL130 TRUE 133 FALSE
Chlorpropamide CHEMBL498 TRUE 133 FALSE
Cimetidine CHEMBL30 TRUE 133 FALSE
Clopamide CHEMBL1361347 TRUE 133 FALSE
D-penicillamine CHEMBL1430 TRUE 1000 FALSE
Dexamethasone CHEMBL384467 TRUE 133 FALSE
Doxorubicin CHEMBL179 TRUE 133 FALSE
Famotidine CHEMBL902 TRUE 133 FALSE
Fluorescein CHEMBL177756 TRUE 133 FALSE
Maprotiline CHEMBL21731 TRUE 133 FALSE
Naloxone CHEMBL80 TRUE 133 FALSE
Phenformin CHEMBL170988 TRUE 133 FALSE
Probenecid CHEMBL897 TRUE 133 FALSE
Theophylline CHEMBL190 TRUE 133 FALSE
Timolol CHEMBL499 TRUE 133 FALSE
Bezafibrate CHEMBL264374 TRUE 231.7 FALSE
Chlorpromazine CHEMBL71 TRUE 133 FALSE
Furosemide CHEMBL35 TRUE 133 FALSE
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Ibuprofen CHEMBL175 TRUE 598.6 FALSE
Nitrofurantoin CHEMBL572 TRUE 133 FALSE
Promethazine CHEMBL643 TRUE 133 FALSE
Quinine CHEMBL170 TRUE 133 FALSE
Sulfasalazine CHEMBL421 TRUE 133 FALSE
Sulindac CHEMBL15770 TRUE 133 FALSE
Tamoxifen CHEMBLS83 TRUE 133 FALSE
Triamterene CHEMBL585 TRUE 133 FALSE
Vinblastine CHEMBL159 TRUE 133 FALSE
Cycloserine CHEMBL771 TRUE 1000 FALSE
Zoledronic acid CHEMBL924 TRUE 133 FALSE
Verapamil CHEMBL197 TRUE 133 FALSE
Staurosporine TRUE 18.7 TRUE
Amiodarone CHEMBL633 TRUE 43 TRUE
Bosentan CHEMBL957 TRUE 23 TRUE
Chlordiazepoxide CHEMBL451 TRUE 44.1 TRUE
Cinnarizine CHEMBL43064 TRUE 15.7 TRUE
Clofazimine CHEMBL1292 TRUE 12.9 TRUE
Clofibrate CHEMBL565 TRUE 71 TRUE
Gefitinib CHEMBL939 TRUE 10.9 TRUE
Imatinib CHEMBL941 TRUE 25.1 TRUE
Itraconazole CHEMBL22587 TRUE 18 TRUE
Midazolam CHEMBL655 TRUE 41.74 TRUE
Nefazodone CHEMBL623 TRUE 6.11 TRUE
Nicardipine CHEMBL1484 TRUE 7.87 TRUE
Norethindrone CHEMBL1162 TRUE 55 TRUE
Pazopanib CHEMBLA77772 TRUE 10.3 TRUE
Reserpine CHEMBL772 TRUE 8.35 TRUE
Saquinavir CHEMBL114 TRUE 4.9 TRUE
Telithromycin CHEMBL1136 TRUE 5 TRUE
Telmisartan CHEMBL1017 TRUE 16.2 TRUE
Wortmannin CHEMBL428496 TRUE 13.6 TRUE
Cyclosporine A CHEMBL160 TRUE 0.5 TRUE
Flupirtine CHEMBL255044 TRUE 35.5 TRUE
Omeprazole CHEMBL1344 TRUE 99 TRUE
Primaquine CHEMBL506 TRUE 32.7 TRUE
Alpidem CHEMBL54349 TRUE 9.2 TRUE
Benzbromarone CHEMBL388590 TRUE 17.5 TRUE
Dicloxacillin CHEMBL893 TRUE 56.4 TRUE
Erythromycin

estolate CHEMBL1200688 TRUE 13 TRUE
Fenofibrate CHEMBL672 TRUE 15.3 TRUE
Fluvastatin CHEMBL1078 TRUE 36.1 TRUE
Glafenine CHEMBL146095 TRUE 22.3 TRUE
Glyburide CHEMBLA472 TRUE 5 TRUE
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Indomethacin CHEMBL6 TRUE 42 TRUE
Lopinavir CHEMBL729 TRUE 17.3 TRUE
Nifedipine CHEMBL193 TRUE 63.9 TRUE
Pioglitazone CHEMBL595 TRUE 0.4 TRUE
Rifampin SV CHEMBL180 TRUE 11.3 TRUE
Rifamycin Sv CHEMBL437765 TRUE 6.3 TRUE
Rosiglitazone CHEMBL121 TRUE 2.8 TRUE
Sorafenib CHEMBL1336 TRUE 8 TRUE
Tolcapone CHEMBL1324 TRUE 36.6 TRUE
Troglitazone CHEMBL408 TRUE 3 TRUE
Taxol CHEMBL48 TRUE 15 TRUE
Glimepiride FALSE 15.7 TRUE
Amprenavir CHEMBL116 FALSE 44.8 TRUE
Drotaverine CHEMBL551978 FALSE 37 TRUE
Fusidic Acid CHEMBL374975 FALSE 10.1 TRUE
Ketoconazole CHEMBL75 FALSE 3.4 TRUE
Nelfinavir CHEMBL1159655 FALSE 11.8 TRUE
Rifabutin CHEMBL444633 FALSE 26.7 TRUE
Buspirone CHEMBL49 FALSE 104.5 TRUE
Clozapine CHEMBL42 FALSE 133 FALSE
Indinavir CHEMBL115 FALSE 21.2 TRUE
Acitretin CHEMBL1131 FALSE 38.2 TRUE
Clobetasol

Propionate CHEMBL1159650 FALSE 8.5 TRUE
Finasteride CHEMBL710 FALSE 28.2 TRUE
Mibefradil CHEMBLA45816 FALSE <135 FALSE
Nitrendipine CHEMBL475534 FALSE 225 TRUE
Oxybutynin CHEMBL1231 FALSE 27.4 TRUE
Praziquantel CHEMBL976 FALSE 67.1 TRUE
Ritonavir CHEMBL163 FALSE 1.74 TRUE
Simvastatin CHEMBL1064 FALSE 24.7 TRUE
Ticlopidine CHEMBL833 FALSE 74 TRUE
Valinomycin CHEMBL223643 FALSE 1.56 TRUE
Lapatinib CHEMBL554 FALSE 6.49 TRUE
ANIT FALSE 69 TRUE
Ciglitazone FALSE 37.8 TRUE
Acetazolamide CHEMBL20 FALSE 133 FALSE
Amoxicillin CHEMBL1082 FALSE 133 FALSE
Azathioprine CHEMBL1542 FALSE 133 FALSE
Betamethasone CHEMBL632 FALSE 133 FALSE
Bumetanide CHEMBL1072 FALSE 133 FALSE
Carmustine CHEMBL513 FALSE 133 FALSE
Chlorambucil CHEMBL515 FALSE 133 FALSE
Ciprofibrate CHEMBL557555 FALSE 133 FALSE
Clomipramine CHEMBL415 FALSE 133 FALSE




DMD # 62539

Colchicine CHEMBL107 FALSE 133 FALSE
Diazoxide CHEMBL181 FALSE 133 FALSE
Dopamine CHEMBL59 FALSE 1000 FALSE
Emetine CHEMBL50588 FALSE 133 FALSE
Felbamate CHEMBL1094 FALSE 1000 FALSE
Flucloxacillin CHEMBL222645 FALSE 208.6 FALSE
Galantamine CHEMBL659 FALSE 133 FALSE
Gliclazide CHEMBL427216 FALSE 133 FALSE
Imipramine CHEMBL11 FALSE 133 FALSE
Isoniazid CHEMBL64 FALSE 133 FALSE
Ketamine CHEMBL742 FALSE 133 FALSE
Lansoprazole CHEMBL480 FALSE 133 FALSE
Lidocaine CHEMBL79 FALSE 133 FALSE
Methotrexate CHEMBL426 FALSE 133 FALSE
Minoxidil CHEMBL802 FALSE 133 FALSE
Nefopam CHEMBL465026 FALSE 133 FALSE
Nevirapine CHEMBL57 FALSE 133 FALSE
Nitrazepam CHEMBL13209 FALSE 133 FALSE
Pargyline CHEMBL673 FALSE 1000 FALSE
Perphenazine CHEMBL567 FALSE 133 FALSE
Phenobarbital CHEMBL40 FALSE 133 FALSE
Pinacidil CHEMBL1159 FALSE 348.1 FALSE
Prazosin CHEMBL2 FALSE 133 FALSE
Procainamide CHEMBL640 FALSE 133 FALSE
Propranolol CHEMBL27 FALSE 133 FALSE
Salicylic acid CHEMBL424 FALSE 1000 FALSE
Sotalol CHEMBL471 FALSE 133 FALSE
Sulfamethoxazole CHEMBL443 FALSE 133 FALSE
Sulpiride CHEMBL26 FALSE 1000 FALSE
Thiotepa CHEMBL671 FALSE 133 FALSE
Valproate CHEMBL109 FALSE 1000 FALSE
Alprenolol CHEMBL266195 FALSE 133 FALSE
Antipyrine CHEMBL277474 FALSE 133 FALSE
Caffeine CHEMBL113 FALSE 133 FALSE
Chlorpheniramine CHEMBL505 FALSE 133 FALSE
Desipramine CHEMBL72 FALSE 133 FALSE
Metformin CHEMBL1431 FALSE 133 FALSE
Metoclopramide CHEMBL86 FALSE 133 FALSE
Nadolol CHEMBL649 FALSE 133 FALSE
Ranitidine CHEMBL1790041 FALSE 133 FALSE
Tacrine CHEMBL95 FALSE 133 FALSE
Terbutaline CHEMBL1760 FALSE 133 FALSE
Tolbutamide CHEMBL782 FALSE 133 FALSE
Trimethoprim CHEMBL22 FALSE 133 FALSE
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Diphenhydramine CHEMBL657 FALSE 133 FALSE
Etoposide CHEMBL44657 FALSE 133 FALSE
Fluoxetine CHEMBL41 FALSE 133 FALSE
Haloperidol CHEMBL54 FALSE 133 FALSE
Nortriptyline CHEMBL445 FALSE 133 FALSE
Quinidine CHEMBL97 FALSE 133 FALSE
Fialuridine FALSE 1000 FALSE
Cefixime CHEMBL1541 FALSE 133 FALSE
Methyldopa CHEMBL459 FALSE 1000 FALSE
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A

Supplementary Figure S1.

The BSEP pharmacophore and the assay substrate aligned to the BSEP pharmacophore. A, the BSEP pharmacophore
with the feature distances shown. The yellow spheres represent hydrophobic features and the red sphere represents a
hydrogen bond acceptor feature. B, the BSEP pharmacophore with B-Estradiol 17-(B-D-glucuronide), the MRP4
substrate used to produce the BSEP inhibitor data, aligned to the pharmacophore.



DMD # 62539

Model-MRP4_inhib_ECFP_6: good features from ECFP_6
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MRP4_inhib_ECFP_6: bad features from ECFP_6
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3 out of 3 good
Bayesian Score: 0.317

B6: 1800246409
0 out of 3 good
Bayesian Score: -1.069

B7: 403495774
0 out of 3 good
Bayesian Score: -1.069

S

BB: 512855562
0 out of 3 good
Bayesian Score: -1.069

NH,

M

B9: -1621619005
0 out of 3 good
Bayesian Score: -1.069
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B10: -1390809166
0 out of 3 good
Bayesian Score: -1.069

R

G11: -1683536800
3 out of 3 good
Bayesian Score: 0.317

o —

G12: -327922576
3 out of 3 good
Bayesian Score: 0.317

G13: 771857573
3 out of 3 good
Bayesian Score: 0.317

G14: 418575728
3 out of 3 good
Bayesian Score: 0.317
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G15: -867777309
3 out of 3 good
Bayesian Score: 0.317

G16: 1563344559
3 out of 3 good
Bayesian Score: 0.317
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G17: -1789942192
3 out of 3 good
Bayesian Score: 0.317

AND Enantiomer
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G18: -801490360
3 out of 3 good
Bayesian Score: 0.317

05 Enantomer
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G19: -1049652772
3 out of 3 good
Bayesian Score: 0.317

G20: 1706085096
3 out of 3 good
Bayesian Score: 0.317

NH,

e

B11: 1572579716
1 out of 7 good
Bayesian Score: -1.006

Y

B12: 768590601
0 out of 2 good
Bayesian Score: -0.822

B13: 1951894094
0 out of 2 good
Bayesian Score: -0.822

B14: -1790802833
0 out of 2 good
Bayesian Score: -0.822

B15: 67018160
0 out of 2 good
Bayesian Score: -0.822

B16: 1634699529
0 out of 2 good
Bayesian Score: -0.822

=

B17: 801399893
0 out of 2 good
Bayesian Score: -0.822

B18: -509950643
0 out of 2 good
Bayesian Score: -0.822
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B19: -320826665
0 out of 2 good
Bayesian Score: -0.822

T i

B20: 1948511382
0 out of 2 good
Bayesian Score: -0.822
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I-MRP4_inhib_FCFP_6: good features from FCFP_6

Category BayesianModel-MRP4_inhib_FCFP_6: bad features from FCFP_6&
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G1: 260714409
6 out of 0
Bayesian Score: 0.383

G2: 367494947

od
Bayesian Score: 0.383

i/ 0

G3: 415216134
5 out of 5 good
Bayesian Score: 0.370

G4: 713358128
5 out of 5 good
Bayesian Score: 0.370

G5: -55265897
5 out of 5 good
Bayesian Score: 0.370

B1: 1069584379
0 out of 4 good
Bayesian Score: -1.257

B2: -1009193755
0 out of 4 good
Bayesian Score: -1.257

B3: 632823813
0 out of 3 good
Bayesian Score: -1.060
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H

B4: 1995860413
0 out of 3 good
Bayesian Score: -1.060

e

B5: 545355516
0 out of 3 good
Bayesian Score: -1.060
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G6: 436886043

od
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Bayesian Score:

G7: -1034142694
5 out of 5 good
Bayesian Score: 0.370
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4 out of 4 good
Bayesian Score: 0.352

L

G9: 1985089045
4 out of 4 good
Bayesian Score: 0.352

G10: 349851805
3 out of 3 good
Bayesian Score: 0.326

BE: 222141736
0 out of 3 good
Bayesian Score: -1.060

B7: 364409691
0 out of 3 good
Bayesian Score: -1.060

T

B8: -1254202153
0 out of 3 good
Bayesian Score: -1.060

e

B9: -1647008159
0 out of 3 good
Bayesian Score: -1.060
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0 out of 2 good
Bayesian Score: -0.815
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G12: -2091862146
3 out of 3 good
Bayesian Score: 0.326

G13: 200925228
3 out of 3 good
Bayesian Score: 0.326

G14: 358331115
3 out of 3 good
Bayesian Score: 0.326

G15: 1186303932
3 out of 3 good
Bayesian Score: 0.326

B11: 1852786043
0 out of 2 good
Bayesian Score: -0.815

B12: -1151884458
0 out of 2 good
Bayesian Score: -0.815

B13: -1072054608
0 out of 2 good
Bayesian Score: -0.815
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B14: -1831573337
0 out of 2 good
Bayesian Score: -0.815

ok

oH

B15: 1538403660
0 out of 2 good
Bayesian Score: -0.815

G16: -1861645784
3 out of 3 good
Bayesian Score: 0.326

G17: -12607049
3 out of 3 good
Bayesian Score: 0.326

G18: -431955362

3 out of 3 good
Bayesian Score: 0.326

G19: -8608542
2 out of 2 good
Bayesian Score: 0.284

G20: -1265744632
2 out of 2 good
Bayesian Score: 0.284

B16: -158888774
0 out of 2 good
Bayesian Score: -0.815

NG Enamiamer

B17: -1946318893
0 out of 2 good
Bayesian Score: 0.815

B18: -768600632
0 out of 2 good
Bayesian Score: -0.815

B10: 946589555
0 out of 2 good
Bayesian Score: -0.815
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B20: -1233336096
0 out of 2 good
Bayesian Score: -0.815




DMD # 62539

Category Bay

del-BSEPinhib-ECFP_6: good features from ECFP_6

Cat

gory BayesianModel-BSEPinhib-ECFP_6: bad features from ECFP_6

G1: 1849632304
4 out of 4 good
Bayesian Score: 0.763
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G2: -409209140
4 out of 4 good
Bayesian Score: 0.763
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3 out of 3 good
Bayesian Score: 0.693

G4: -194719409
3 out of 3 good
Bayesian Score: 0.693
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G5: 581264446
3 out of 3 good
Bayesian Score: 0.693

B1: 1334073442
0 out of 12 good
Bayesian Score: -1.609
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0 out of 9 good
Bayesian Score: -1.386
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0 out of 8 good
Bayesian Score: -1.299

B4: 53207596
0 out of 8 good
Bayesian Score: -1.299
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0 out of 7 good
Bayesian Score: -1.203

N
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3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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0 out of 7 good
Bayesian Score: -1.203
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0 out of 7 good
Bayesian Scoere: -1.203
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0 out of 6 good
Bayesian Score: -1.098
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0 out of & good
Bayesian Score: -1.098
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0 out of & good
Bayesian Score: -1.098
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3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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G14: 2045517171

3 out of 3 good
Bayesian Score: 0.693

G15: -1603393888
3 out of 3 good
Bayesian Score: 0.693

B11: 1429481619
1 out of 14 good
Bayesian Score: -1.041

B12: -953984246
0 out of 5 good
Bayesian Score: -0.980

F Ay

B13: -652986225
0 out of 5 good
Bayesian Score: -0.980

B14: 177786161
0 out of 5 good
Bayesian Score: -0.980

B15: -560785749
0 out of 5 good
Bayesian Score: -0.980

G16: -1379384465
3 out of 3 good
Bayesian Score: 0.693

G17: 440281365
3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693

G19: 1213710154
3 out of 3 good
Bayesian Score: 0.693
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3 out of 3 good
Bayesian Score: 0.693
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0 out of 5 good
Bayesian Score: -0.980
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B17: -1168785726
0 out of 5 good
Bayesian Score: -0.980
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0 out of 5 good
Bayesian Score: -0.980
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B19: -932844120
0 out of 5 good
Bayesian Score: -0.980

B20: -797541757
0 out of 5 good
Bayesian Score: -0.980
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5 out of 5 good
Bayesian Score: 0.816
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4 out of 4 good
Bayesian Score: 0.767
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4 out of 4 good
Bayesian Score: 0.767
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4 out of 4 good
Bayesian Score: 0.767
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3 out of 3 good
Bayesian Score: 0.697
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0 out of 12 good
Bayesian Score: -1.603
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’/\/"\
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0 out of 8 good
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2 cut of 26 good
Bayesian Score: -1.163

B5: 451251206
0 out of 6 good
Bayesian Score: -1.093
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697

OH

=

o
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0 out of 6 good
Bayesian Scere: -1.093

Bayesian Score: -1.460

B7: 237434970
0 out of 5 good
Bayesian Score: -0.976

BB8: 364409691
0 out of 5 good
Bayesian Score: -0.976

B9: 159265197
0 out of 5 good
Bayesian Score: -0.976

B10: 732983171
0 out of 5 good
Bayesian Score: -0.976

G11: -868316358
3 out of 3 good
Bayesian Score: 0.697

N

G12: -2000646149
3 out of 3 good
Bayesian Score: 0.697

G13: -1366198942
3 out of 3 good
Bayesian Score: 0.697

G14: 1293778554
3 out of 3 good
Bayesian Score: 0.697

G15: -1689508504
3 out of 3 good
Bayesian Score: 0.697

TN

B11: 136358008
0 out of 5 good
Bayesian Score: -0.976

B12: -2091721556
0 out of 5 good
Bayesian Score: -0.976

B13: -1678752197
0 out of 5 good
Bayesian Score: -0.976

B14: 158888774
0 out of 5 good
Bayesian Score: -0.976

AND Enansomer
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0 out of 5 good
Bayesian Score: -0.976
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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3 out of 3 good
Bayesian Score: 0.697
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T
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B16: 627289444
0 out of 4 good
Bayesian Score: -0.843

B17: 1117583575

0 out of 4 good
Bayesian Score: -0.843

B18: 710973189
0 out of 4 good
Bayesian Score: -0.843

B19: -171682900
0 out of 4 good
Bayesian Score: -0.843

y

RH,

B20: 416249454
0 out of 4 good
Bayesian Score: -0.843

Supplementary Figure S2.
Favorable and unfavorable molecular features for interactions with MRP4 and BSEP. These figures contain the 20 most
predictive molecular features for both favorable and unfavorable inhibitory activity against MRP4 and BSEP generated

using ECFP_6 and FCFP_6 fingerprints.




