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Abstract 
 

Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of 

MRP4, in addition to BSEP, might be a risk factor for the development of cholestatic DILI. 

Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor 

for the development of cholestatic DILI. Here, we aimed to develop computational models to 

delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed 

using 257 BSEP and 86 MRP4 inhibitors and non-inhibitors in the training set. Models were 

externally validated and used to predict the affinity of compounds towards BSEP and MRP4 in 

the DrugBank database. Compounds with a score above the median fingerprint threshold were 

considered to have significant inhibitory effects on MRP4 and BSEP. Common feature 

pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a 

training set of 9 well-characterized MRP4 inhibitors and 9 potent BSEP inhibitors. Bayesian 

models for BSEP and MRP4 inhibition/non-inhibition were developed with cross-validated 

Receiver Operator Curve (ROC) values greater than 0.8 for the test sets, indicating robust models 

with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP 

inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond 

acceptor features, albeit in distinct spatial arrangements; similar molecular features between 

MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both 

transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models 

demonstrated significant classification accuracy and predictability.   
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Introduction 
 

Drug-induced liver injury (DILI) is an important cause of drug toxicity and a major 

reason for withdrawal of drugs from the market (Abboud and Kaplowitz, 2007) or attrition of 

drug candidates in late development stages, which can be extremely costly.  Unfortunately, 

current in vitro screens or in vivo preclinical studies cannot accurately predict the potential of 

compounds to cause hepatotoxicity.  DILI remains a major concern in drug discovery and 

clinical development. This obstacle has necessitated a search for alternative technologies, such as 

computational approaches to decrease the risk of DILI-associated late-stage failures.  

Despite extensive research, the underlying mechanisms of DILI are not well understood. 

However, it is clear that compound-related properties as well as individual patient characteristics 

affect the occurrence of DILI. Formation of reactive metabolites, mitochondrial impairment, and 

inhibition of canalicular bile acid transport mediated by the bile salt export pump (BSEP) (e.g. 

troglitazone, bosentan, erythromycin) (Stieger et al., 2000; Fattinger et al., 2001; Kostrubsky et 

al., 2003) are known risk factors for the development of DILI in humans. This has been 

substantiated by large scale in vitro screening studies revealing that drugs that cause cholestatic 

DILI have higher potencies as well as frequencies of BSEP inhibition compared to drugs that are 

not liver toxic or that cause hepatocellular DILI. (Morgan et al., 2010; Dawson et al., 2012) 

BSEP is located at the canalicular membrane of the hepatocyte where it is involved in the 

excretion of bile acids into bile under physiological conditions. (Noe et al., 2002) The 

importance of this protein in bile acid homeostasis is emphasized by the observation that 

mutations in the BSEP gene ABCB11 have been associated with progressive familial intrahepatic 

cholestasis type 2 (PFIC 2). Although BSEP inhibition may explain bile acid-mediated DILI 

liability for a large proportion of compounds, a subset of hepatotoxic drugs remains that cannot 

be explained by BSEP inhibition alone. 
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In addition to canalicular BSEP, multidrug resistance protein 4 (MRP4) is a bile acid 

efflux protein localized at the basolateral membrane of hepatocytes. While hepatic expression is 

low under normal physiological conditions, MRP4 up-regulation has been demonstrated under 

cholestatic conditions. MRP4 is hypothesized to serve as a back-up system for bile acid efflux 

from hepatocytes into sinusoidal blood when the normal vectorial transport of bile acids from 

hepatocytes into bile is compromised. (Scheffer et al., 2002; Teng and Piquette-Miller, 2007; 

Gradhand et al., 2008; Chai et al., 2012)  Recently, we screened 88 drugs (BSEP inhibitors and 

non-inhibitors) for inhibition of MRP4-mediated transport of the prototypical substrate [3H]-

dehydroepiandrosterone sulfate (DHEAS) and discovered potent MRP4 inhibition among 

cholestatic BSEP non-inhibitors. A statistically significant relationship was observed between 

the potency of MRP4 inhibition and the probability of cholestatic classification: for each 1% 

increase in MRP4 inhibition, the probability that a drug was cholestatic increased by 3.1%. 

Interestingly, many BSEP inhibitors also were MRP4 inhibitors. These data suggested that 

MRP4 inhibition may serve as a confounding factor in BSEP-mediated DILI, or in some cases 

lead to DILI in the absence of BSEP inhibition. Thus, MRP4 inhibition may be an additional risk 

factor for the development of cholestatic DILI.  

The role of hepatic bile acid transport inhibition in the etiology of DILI emphasizes the 

urgent need to develop screening tools to accurately predict drug-bile acid transporter 

interactions. While in vitro membrane vesicle assays have been developed for BSEP and MRP4 

screening, use of these assays early in drug development is time consuming, labor- and resource- 

intensive, and requires the physical availability of compounds (including metabolites) for testing. 

An alternative approach to in vitro testing is the use of computational models to predict drug-bile 

acid transporter interactions and aid in identifying transporter-associated DILI early in the drug 
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discovery process.  For example, pharmacophore models have been used in ligand-based drug 

design to define the key structural characteristics that a molecule must possess in order to bind to 

the biological target (Ekins et al., 2012). Since models for BSEP have been reported recently 

(Pedersen et al., 2013; Ritschel et al., 2014), the aim of the current study was to develop a 

comprehensive model for MRP4 inhibition and evaluate its predictive ability. In addition, we 

developed Bayesian models to delineate molecular features underlying both MRP4 and BSEP 

inhibition. These in silico models were used to identify potential novel MRP4 inhibitors by 

virtual screening of an existing database, and to classify drugs as BSEP and MRP4 inhibitors in 

an effort to correlate these features with DILI incidence. 
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Materials and Methods 

Dataset Composition.  A dataset of 86 compounds derived from Köck and co-workers (Köck 

et al., 2014) was used for MRP4 inhibition modeling and a dataset of 257 compounds derived 

from Dawson et al. and Morgan et al. (Morgan et al., 2010; Dawson et al., 2012) was used for 

developing BSEP inhibition models.  The compounds in these datasets were structurally diverse 

and from various therapeutic classes. They were classified as “cholestatic” or “non-cholestatic,” 

according to DILI type reported in the literature.  The compounds were further classified as 

“active” for the specified transporter if they had an IC50 ≤ 135 µM for BSEP or a percent 

inhibition ≥ 21% compared to control at 100 µM for MRP4, otherwise they were classified as 

“inactive” against that transporter.  The MRP4 classifications are based on findings by the Köck 

and co-workers that compounds that inhibit by at least 21% have a 50% chance of being 

cholestatic and the rationale for the BSEP classifications is to identify inhibitor compounds with 

both potent and moderate cholestatic risk, similar to Morgan et al.  These classifications enable 

the identification of compounds that should be investigated further for their potential to cause 

cholestasis.   

In addition to MRP4 and BSEP datasets, a database of 1,510 FDA-approved drugs was 

retrieved from DrugBank (http://www.drugbank.ca) (Law et al., 2014).  The database was 

modified by removing ionic salts and large polymeric drugs and proteins, resulting in a catalogue 

of 1,488 drugs. 

Training and Test Set Generation.  The MRP4 and BSEP databases were separated into 

training and test sets by randomly dividing two-thirds of the compounds into the training set and 

the other third into the test set (Supplemental Table 1). Table 1 enumerates the number of 
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compounds in each set based on the respective transporter as well as the number of compounds 

that were classified as inhibitors and non-inhibitors. 

The Bayesian modeling of MRP4 and BSEP used all the compounds in their respective 

training sets.  In contrast, the pharmacophore models were developed using a subset of 

compounds from the training set.  The MRP4 pharmacophore subset was based on clustering of 

the training set, which produced a subset of 9 compounds; analogously, the BSEP 

pharmacophore subset contained the strongest inhibitors, also producing a subset of 9 

compounds.  Details of subset generation and composition are explained further within the 

pharmacophore creation methods section. 

The conformational models for pharmacophore creation were produced in LigandScout using 

the OMEGA conformer generator with the default best quality settings that produced a 

maximum of 500 conformations per molecule with an energy window of 10kcal/mol and RMS 

threshold difference of 0.4 to identify unique conformers.  The common feature pharmacophore 

was generated using the default settings in LigandScout for ligand-based shared-feature 

pharmacophore creation with a feature tolerance scale of 1.0.  

Principal Component Analysis (PCA) of Training, Test Set and DrugBank Molecules. The 3D 

molecular structures of 86 MRP4 inhibitors and non-inhibitors and the 257 BSEP inhibitors were 

obtained from PubChem (http://www.ncbi.nlm.nih.gov/pccompound).  PCA plots of each 

transporters’ training and test sets were produced in order to ensure that the two sets were 

representative of each other in terms of molecular descriptors.  In addition, the training sets were 

compared to the modified DrugBank database (see above) to ensure that the training set was 

representative of currently approved drugs and had predictive power in that chemical space.  The 

PCA plots were generated based on 8 molecular descriptors for each drug: ALogP, molecular 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on March 3, 2015 as DOI: 10.1124/dmd.114.062539

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 62539 

 

9 

weight, number of hydrogen bond donors, number of hydrogen bond acceptors, number of 

rotatable bonds, number of rings, number of aromatic rings, and molecular fractional polar 

surface area.  The molecular descriptors and PCA plots were generated within Discovery Studio 

4.0 (DS 4.0; Accelrys, Inc. San Diego, CA).  The two-dimensional plots (Fig. 2A-D) represent 

only the first two principal components of each comparison for visual clarity. 

Common Feature Pharmacophore Generation and Validation. Ligand-based pharmacophores 

and conformational models were generated using LigandScout (version 3.12 build 20130912, 

Inte:Ligand, Vienna, Austria) [1,2] with default settings. The pharmacophore models for MRP4 

inhibition were generated from a subset of drugs produced by clustering the training sets based 

on similarity of the pharmacophore radial distribution function.  Drugs with similar 

pharmacophore features were clustered together and the most potent inhibitors of each cluster 

were included in the subset to train the pharmacophore model.  The rationale of clustering is to 

generate a pharmacophore from a smaller training set while still maintaining the structural 

diversity of the original training set.  If the common pharmacophore creation failed or produced a 

pharmacophore with less than 3 features, the drug that failed to align was removed from the 

training set.  Of the 10 pharmacophores generated per training set, the pharmacophore that 

aligned with the most compounds in the training and test set, and had the highest score, was 

selected for further testing. 

The MRP4 common feature pharmacophore was validated within LigandScout through 

virtually screening the test set for its ability to distinguish actives (i.e. drugs with ≥21% MRP4 

inhibitory activity) from inactives (i.e. drugs with <21% MRP4 inhibitory activity).  The 

conformational models of the test set were generated in an identical manner as the training set.  
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Drugs that aligned with all 3 pharmacophore features were predicted to be active MRP4 

inhibitors. 

The pharmacophore models for BSEP inhibition were generated from a subset of drugs from 

the BSEP training set that were the strongest inhibitors (<25 uM IC50s) among the Morgan 

dataset (Morgan et al., 2010).  This dataset was chosen because it contained the largest number 

of BSEP inhibitors.  The clustering method utilized for the MRP4 inhibition pharmacophore was 

used initially; however, this resulted in a pharmacophore with poor predictive ability which is 

why the strongest inhibitors were used instead.  The BSEP common feature pharmacophore was 

validated using the same methods as the MRP4 pharmacophore except that actives were drugs 

with an IC50 ≤ 135 µM. 

Building and Validation of Bayesian Models. Bayesian categorization involves simple and 

straightforward probabilistic classification by evaluating the frequency of structural features 

associated with a hypothesis of interest (Xia et al., 2004). The protocol “Create Bayesian Model” 

in DS4.0 was applied for model generation with the number of bins set to 10. In addition to 7 

molecular descriptors, ‘extended-connectivity fingerprints maximum diameter 6’ (ECFP_6) and 

‘functional-class fingerprints maximum diameter 6’ (FCFP_6) (Rogers et al., 2005) were 

calculated for all compounds. ECFP and FCFP differ such that, for example, a chlorine atom and 

a bromine atom, which are substituents in the same position on an aromatic ring, would be 

differentiated as different fingerprints with ECFP but not with FCFP.  The models were built by 

using combinations of iterative sets of varying descriptors and cutoff values. Bayesian models 

were validated with 10-fold cross-validation-based ‘receiver operator curve’ area under the curve 

(XV ROC AUC) (Zweig and Campbell, 1993) associated with training set compounds. The 

predictive capacity of Bayesian models was validated with the same test set described for 
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pharmacophore generation above. The activities of the test set compounds were predicted by the 

“Calculate Molecular Properties” protocol in DS4.0. 

 

Evaluation of Model Performance. The Matthews correlation coefficient (MCC) was used to 

determine the relative predictive ability of the pharmacophore and Bayesian models. MCC 

ranges from –1 (no correlation) to +1 (full correlation) and is calculated as follows: 

 

       ��� �
�����������

����	��
���	��
���	��
���	��

     (Eq.1) 

 

where TP= number of true positives, FP=number of false positives, TN=number of true 

negatives, and FN=number of false negatives. Positive predictive value = TP/(TP+FP), 

sensitivity = TP/(TP+FN), and specificity = TN/(TN+FP). 

The ROC curve is another method of evaluating models.  It is a 2D plot that graphs the 

sensitivity of a model, its true positive rate, versus the reverse percentage of the specificity of the 

model, its false positive rate, by the ranked order of the pharmacophore-fit scores.  One of the 

abilities of the ROC curve is the use of the area under the curve (AUC) when comparing the 

ability of different models to correctly classify true positives above false positives.  Starting from 

the bottom left corner, the graph plots the percentage of the actives in the test set properly 

classified as active, which is defined as the sensitivity or true positive rate, versus the percentage 

of the inactives improperly classified as active, which is defined as the reverse specificity or false 

positive rate.  In addition to the AUC, the ROC can be used to set a score cutoff which optimizes 

the tradeoff between sensitivity and specificity.    
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RESULTS 

Characteristics of the data set.  The MRP4 inhibitor data were obtained from data previously 

generated in our laboratories (Köck et al., 2014) and the BSEP inhibitor data were compiled 

from two high-throughput screening studies (Morgan et al., 2010; Dawson et al., 2012).  The 

BSEP studies were selected due to the large number of screened compounds from various 

therapeutic areas (Supplemental Table S1). Venn diagrams reveal the composition of the MRP4 

inhibitor dataset contrasted with the BSEP data from Morgan and colleagues to illustrate 

compounds in the dataset that uniquely inhibit MRP4 or BSEP as well as compounds that inhibit 

both transporters simultaneously (Fig. 1).  These diagrams demonstrate that most of the 

previously identified BSEP inhibitors tested by our laboratories were also MRP4 inhibitors (Fig. 

1A).  Among cholestatic compounds, most were dual BSEP and MRP4 inhibitors or MRP4-only 

inhibitors; only one BSEP-only inhibitor had been identified as cholestatic (Fig. 1B). 

Structure Generation and Validation. The PCA plot is a useful tool to predict potential outliers 

by assessing similarity among training and test set compounds (Khandelwal et al., 2007).  For the 

MRP4 dataset, PCA of 86 training and test set drugs with at least three principal components was 

performed based on 8 descriptors.  There were 57 compounds from the training set and 29 from 

the test set. The first and second components accounted for 36.6% and 27.2% of the total 

variance. For the BSEP dataset, PCA of 257 compounds compared 171 and 86 compounds in the 

training and test sets, respectively.  The first and second components accounted for 39.1% and 

34.4% of the total variance, indicating that these components represented the majority of overall 

descriptor space occupied by the molecules.  Figures 2A-B demonstrate that the test set drugs 

accommodate similar space compared with the training set compounds for their respective 

transporter. PCA plots of compounds in the training sets are overlaid on a PCA plot of DrugBank 
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drugs in Figures 2C-D, illustrating that training set compounds cover most of the descriptor 

space occupied by the compounds featured in the DrugBank database. 

Building and Validation of Bayesian Models. Bayesian models for MRP4 inhibition were 

developed with a training set of 57 MRP4 inhibitors and non-inhibitors and the Bayesian models 

for BSEP inhibition were developed with a training set of 171 inhibitors and non-inhibitors. 

Eight structural descriptors as well as structural extended-connectivity or functional-class 

fingerprints (ECFP_6 or FCFP_6, see Methods) were incorporated for model development. Four 

Bayesian models were generated for MRP4 and BSEP inhibitors and non-inhibitors based on 

specified atom-type (ECFP) and functional class (FCFP) 2-dimensional substructure fingerprints.   

The predictive performance of Bayesian models was evaluated by XV ROC AUC based on 10-

fold cross-validation of training set compounds. XV ROC AUC reflects the relationship between 

sensitivity and specificity, ranging from 0 to 1, with a higher number indicating a better model 

(Zweig and Campbell, 1993; Obuchowski and Lieber, 1998). The Bayesian models also were 

validated with their respective test set, consisting of 29 drugs for the MRP4 model and 86 drugs 

for the BSEP model. Their predicted performance was established by sensitivity (SE), specificity 

(SP), overall prediction accuracy (Q) and Matthew’s correlation coefficients (MCC values; a 

measure of the quality of binary classifications) calculated from the empirical true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) values (Ung et al., 2007; 

Khandelwal et al., 2008) (Table 2).  

Table 2 shows the AUCs of Bayesian models based on the 10-fold cross-validation with 

training set compounds. AUC values range between 0 and 1, with 0.5 indicating 50% correct 

prediction and 1 indicating a perfect match between observed and predicted data (Fawcett, 

2006). The AUC values associated with the four individual models indicated good internal 
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consistency and prediction accuracy.  While both the MRP4 inhibitor and the BSEP inhibitor 

Bayesian classification had similar ROC AUC scores for both the internal, leave-one-out cross-

validation, and the external test set validation, the sensitivity and specificity varied more between 

the models.  The MRP4 inhibitor models had significantly lower sensitivity, especially the 

MRP4 ECFP model, compared to the BSEP inhibitor models, but the trade-off was a higher 

specificity, minimizing false positives. Bayesian classification modeling of BSEP inhibitors 

resulted in more predictive models as demonstrated by their relatively higher Matthews’ 

correlation coefficient compared to MRP4 inhibitor models, which could be due to the larger size 

of the training set (171 BSEP compounds vs. 59 MRP4 compounds).  In addition to the external 

validation performed here, the BSEP Bayesian FCFP model was used to predict the classification 

of 5 strong inhibitors and 5 non-inhibitors from previous screen for BSEP inhibitors (Pedersen et 

al., 2013).  The model was able to correctly classify nine of the ten compounds, only incorrectly 

classifying MK571 as a non-inhibitor. 

Fingerprints can be defined as molecular fragments that characterize the structural features of 

drug molecules. Figure 3 and 4 displays the five most predictive structural fragments for both 

favorable and unfavorable inhibitory activity against MRP4 and BSEP using FCFP_6 

fingerprints.  Supplemental figure S2 contains an expanded figure of structural fragments 

favorable and unfavorable for inhibition of MRP4 and BSEP using both FCFP_6 and ECFP_6 

fingerprints.  Structural elements depicted in Figure 3 and 4 were identified in inhibitors and 

non-inhibitors amongst training set compounds, respectively.  Oxygen atoms tended to be 

predictive of favorable inhibitory activity for both MRP4 and BSEP, however, negatively ionized 

oxygen atoms frequently occurred in the MRP4 model but not in the BSEP model even though 

both are considered anion transporters.  This is in agreement with the study by Pedersen and 
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colleagues (Pedersen et al., 2013), who reported that BSEP substrates tend to be anionic but 

inhibitors were more likely to be neutral at physiological pH.  Accordingly, positively charged 

secondary and tertiary amines frequently occur among the MRP4 fingerprints associated with 

non-inhibition.  Thus, the identified fingerprints could be helpful in distinguishing inhibitors and 

non-inhibitors of MRP4 amongst novel compounds. 

MRP4 Pharmacophore Development.  The MRP4 training set of 57 drugs was imported into 

LigandScout 3.12 and clustered according to pharmacophore radial distribution function-code 

similarity with the maximum conformations set to 3 and the cluster distance set to 0.5.  This 

algorithm clusters compounds that have similar individual 3D pharmacophore characteristics. 

The following 9 drugs that represent the strongest inhibitors in their respective cluster were 

used to generate MRP4 inhibition pharmacophores: nitrenedipine, sulindac, sorafenib, clobetasol 

propionate, benzbromarone, glafenine, furosemide, finasteride, and simvastatin. The remaining 

77 compounds not selected for the training set were moved to the test set for pharmacophore 

validation.  The ligand-based common feature pharmacophore produced from the 9 compounds 

had 2 hydrophobic features and a hydrogen bond acceptor feature (Fig 5A).  The two 

hydrophobic features were 5.01Å apart, while the hydrogen bond acceptor was 4.81Å from the 

neighboring hydrophobic feature, and 8.86Å from the distal hydrophobic group.  All 9 drugs in 

the training set aligned with all 3 pharmacophore features.  Two representative compounds were 

aligned to the pharmacophore to illustrate scale and similarity in how the molecules align with 

the respective molecular features comprising the pharmacophore (Fig 5B).  These compounds 

were chosen because their steroid backbone renders them particularly rigid, increasing the 

likelihood that the representative conformer is close to its bioactive conformation; additionally, 

they contain few atoms that can engage in intermolecular interactions, which further confirms 
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that these are the requisite features for MRP4 recognition.  Exclusion volumes, i.e. spheres that 

cannot be occupied and represent steric hindrance, were generated initially using the non-

inhibitors in the 57 compound training set; however, consideration of exclusion volumes 

rendered the models more likely to incorrectly classify MRP4 inhibitors as non-inhibitors during 

external validation and were subsequently omitted during database screening. 

Quantitative validation of the MRP4 pharmacophore model.  The MRP4 pharmacophore model 

was able to correctly classify 30 of the 42 actives in the test set and 22 of the 35 inactives, 

featuring model sensitivity of 71.4% and specificity of 62.8%.  The area under the receiver 

operating characteristic curve was 0.70, which is considered a fair quality model (Fig 6). 

Based on the virtual screening results from the external test set validation, the model has its 

highest positive predictive value, the number of true positives over the sum of true and false 

positives, at a pharmacophore-fit score cutoff of 37.75. The positive predictive value of the 

model at this cutoff is 0.826, selecting 19 true positives, 45.2% of total actives in the set, but 

only 4 false positives, 11.4% of total inactives in the set.  The pharmacophore-fit score cutoffs 

allow for selecting drugs with a higher likelihood of being classified correctly beyond those 

which align to the pharmacophore within the tolerance of the features. 

The inactives that were incorrectly classified included dexamethasone, naloxone, clopamide, 

vinblastine, tolbutamide, probenecid, indinavir, flupirtine, chorpropamide, alprenolol, 

chlorpheniramine, fluorescein, and timolol.  Interestingly, the false positive with the highest 

pharmacophore-fit score was dexamethasone, a glucocorticoid that had no significant inhibitory 

activity (5 ± 34%).  This compound was aligned with clobetasol propionate, another 

glucocorticoid included in the 9 training set compounds, which was a strong inhibitor (101 ± 

23%) (Fig 7).   
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As can be seen in Fig. 7, clobetasol propionate (orange) and dexamethasone (gray) have a high 

degree of structural similarity.  From this observation, molecular properties that could be 

mediating the significant difference in inhibitory activity were investigated.  The molecular 

property that exhibited the most significant difference was calculated LogP which is 4.18 for 

clobetasol propionate and 1.68 for dexamethasone, rendering clobetasol propionate a more 

hydrophobic compound.  The difference in calculated LogP values was evaluated for all 87 

compounds tested by Köck and co-workers; actives trended towards higher LogP values than 

inactives.  A Pearson correlation coefficient for the calculated LogP and a compound considered 

active (≥21% MRP4 inhibition) was 0.634 and the correlation coefficient for the percent MRP4 

inhibition and calculated LogP was 0.508.  Figure 8 represents a box plot of the calculated LogP 

values for the compounds classified as inactives and actives; the mean and median of the 

inactives’ calculated LogP values were 0.38 and 0.69, respectively, and the actives’ calculated 

LogP values were 3.64 and 3.84, respectively.  It is interesting to note that numerous 

sulfonamides or sulfamides, such as clopamide, tolbutamide, probenecid, and chlorpropamide 

were classified as false positives. These molecules may either be a poor match to the models, or 

their features are incorrectly parameterized within the Bayesian and pharmacophore modeling 

algorithms.  

The actives that were not properly classified as active by the model included 19-norethindrone, 

clozapine, desipramine, diphenhydramine, etoposide, maprotiline, nitrofurantoin, nortriptyline, 

oxybutynin, praziquantel, promethazine, and ticlodipine.  Eight of these 12 drugs have similar 

structures containing an amine group, which is predicted to be positively ionized at physiological 

pH; in addition, six of these drugs contain two aromatic rings whose distance is comparable to 

the distance observed between the two hydrophobic features in the MRP4 model.  Compounds 
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that fall into this category are clozapine, desipramine, diphenhydramine, maprotiline, 

nortriptyline, and promethazine.  Oxybutynin and ticlodipine contain an amine predicted to be 

positively charged, but they have only one aromatic group.  Nitrofurantoin is a compound that 

continually failed to match any structural similarity search to other known inhibitors; therefore, 

we speculate that it is binding in a different manner than any of the other inhibitors, perhaps at an 

allosteric site of the transporter. 

Qualitative Validation of the MRP4 Inhibitor Model.  In addition to the quantitative validation 

from virtually screening the test set, two compounds that qualitatively strengthen confidence in 

the model are DHEAS, the substrate used to generate the data, and felbinac, a potent MRP4 

inhibitor from a separate screening of MRP4 inhibitors (Morgan et al., 2013).   DHEAS was not 

included in either the training set or the test set, but the MRP4 pharmacophore model would be 

expected to align to the substrate that was used experimentally to generate the inhibition data.  

Figure 9A depicts how the two methyl groups on DHEAS align to the hydrophobic features in 

the pharmacophore and one of the oxygen atoms from the sulfate group aligns with the hydrogen 

bond acceptor feature.  The alignment of the pharmacophore model to DHEAS is of particular 

interest because of its structural rigidity due to the steroid backbone structure.  The only 

significant intramolecular motion that DHEAS can undergo is the rotation of the sulfate group.  

In addition to its rigidity, DHEAS contains few atoms that can participate in intermolecular 

interactions.  From the DHEAS pharmacophore (Fig 9B), it appears that the two methyl groups 

can participate in hydrophobic interactions, while the ketone can be a hydrogen bond acceptor, 

and all the oxygen atoms in the sulfate group, which is negatively ionized at physiological pH, 

can act as hydrogen bond acceptors. 
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Felbinac is of interest for the same reasons as DHEAS, namely its structural rigidity and 

minimal possible intermolecular interactions.  In addition, felbinac is a potent inhibitor of 

MRP4-mediated transport of β-estradiol 17-(β-D-glucuronide) with an IC50 of 8.2 uM. (17)  

Felbinac aligns well with the MRP4 pharmacophore model and, as shown in Figure 9D, engages 

in only a limited number of intermolecular interactions; both hydrophobic and aromatic 

interactions with the phenyl groups in the biphenyl compound, and the oxygen atoms of the 

negatively ionized carboxylate group, are able to act as hydrogen bond acceptors.  The two 

phenyl groups are locked rigidly on perpendicular planes and, therefore, only the carboxylate 

group is able to rotate. 

LogP Filtering Improves Model Specificity.  The MRP4 pharmacophore model’s specificity can 

be significantly improved if the test set were to be filtered after screening with a calculated LogP 

cutoff of 2.92, which corresponds to the start of the lower quartile of the actives.  The sensitivity 

would decrease to 52.38% (22 true actives of 42 total actives) but the specificity would increase 

to 91.43% (3 false actives of 35 total inactives).  This marked improvement in specificity 

demonstrates the significant influence LogP plays in MRP4 inhibition. 

BSEP Inhibitor Pharmacophore Development and Validation.  The BSEP inhibitor 

pharmacophore was produced with a subset of drugs from the training set that represented the 

nine strongest BSEP inhibitors according to Morgan and co-workers that were also tested for 

MRP4 inhibition by our group previously.  This subset included: nitrenedipine, fenofibrate, 

ritonavir, pioglitazone, rosiglitazone, valinomycin, simvastatin, benzbromarone, and lopinavir.  

The common feature pharmacophore produced with this set of nine compounds had three 

features:  two hydrophobic features and one hydrogen bond acceptor (Supplemental Figure S1).  

This is similar to the MRP4 pharmacophore, which may explain the high degree of inhibition 
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overlap, however, the distances between the features were different.  The distance between the 

two hydrophobic features was 6.29 Å, the hydrogen bond acceptor and the proximal hydrophobic 

feature was 4.67 Å, and the hydrogen bond acceptor and the distal hydrophobic feature was 6.69 

Å.  All nine drugs that were used to train the pharmacophore hit all three features. 

 The BSEP inhibitor pharmacophore was validated by virtual screening of the test set and 

the model correctly classified 46 of the 56 inhibitors and incorrectly classified 120 of the 191 

non-inhibitors.  The model selectivity was 82.7% but the specificity was 37.2%.  The poor model 

specificity is partly due to the higher proportion of non-inhibitors to inhibitors in the test set (191 

vs. 56) but also indicative of the difficulty of modeling BSEP through a pharmacophore 

approach.  

DISCUSSION 

A ligand-based pharmacophore and Bayesian modeling approach is presented here, describing 

the molecular properties and chemical features necessary for human MRP4 and BSEP 

interaction.  Since these transport proteins have been associated with DILI, these models may be 

useful in predicting DILI liability of novel compounds. The models were developed from our 

laboratories’ previous work and data from other groups. An advantage of Bayesian classification 

modeling is the ability to easily interpret how the model weighs the various molecular properties, 

and which molecular properties are most predictive for classification.  The Bayesian 

classification model was developed by creating up to 11 bins for each molecular property.  For 

discrete properties such as the number of rings or the hydrogen-bond acceptor atoms, all the 

compounds with the same value were put into the same bin; for continuous properties such as 

molecular weight or ALogP, a bin was assigned a value range and all the compounds that fell 

within that range were put into that bin.  The ranges for binning continuous values were created 
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such that the number of compounds in each bin was evenly distributed.  A normalized 

probability was then calculated for each bin according to the fraction of compounds in the bin 

that were active, i.e. if all the compounds in a bin were active, that bin was assigned a higher 

probability.  The probability was normalized by adjusting for bins with few compounds.  A 

Bayesian score was then calculated by summing the normalized probabilities of all the bins to 

which a compound was assigned. 

By inspecting the normalized probabilities of individual bins, the molecular properties that 

contain bins with high probabilities indicate molecular properties that are well correlated with 

either inhibition or non-inhibition.  For example, with the MRP4 model, a trend was observed 

with a higher ALogP correlating to MRP4 inhibition (14 of 15 drugs with an ALogP of 3.8 or 

higher were inhibitors while only 2 of 12 drugs with a ALogP of 0.94 or lower were inhibitors).  

A trend also was observed with large molecular weight drugs more likely to inhibit MRP4 

compared to smaller drugs (23 of 25 drugs with molecular weight ≥356 Da).  It should again be 

noted that the value range of a bin, for molecular properties that are continuous, is a result of 

evenly dividing the ordered drugs into 11 bins.  In addition to those continuous properties, 23 of 

25 drugs with 3 or 4 rings were inhibitors compared to 1 of 9 compounds with 0 or 1 ring.   

Compared to the MRP4 Bayesian model, the BSEP Bayesian model was more predictive of 

negative properties, thus predicting more non-inhibitors than inhibitors.  This is likely due to the 

fact that the training set contained more non-inhibitors relative to inhibitors compared to the 

MRP4 training set.  For the BSEP model, only 7 of 90 drugs with a molecular weight less than 

337 Da were inhibitors.  Correspondingly, only 11 of 90 compounds with 4 or fewer rotatable 

bonds were inhibitors and, similar to the MRP4 model, only 3 of 72 drugs with an ALogP of 

2.03 or lower were inhibitors. 
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Potential biological implications of the association between high calculated LogP values and 

MRP4 inhibition were considered.  These data lead to speculation that molecules must partition 

first into the bilayer to be an inhibitor for MRP4, or that higher LogP values correspond with 

increased hydrophobic interactions within the protein environment, thus rendering these 

molecules stronger competitive inhibitors. 

It is worth mentioning that these computational models are based on data collected from 

membrane vesicle assays and this in vitro system could have an influence on experimental 

transport inhibition results.  The methods generally involve short incubation periods with the test 

compounds in which the degree of partitioning of the test compound into the membrane of the 

vesicles could be in flux.  If the test compound exerts its inhibition while imbedded in the 

membrane, this could cause a skew in the data in which compounds with higher LogP values 

have a higher rate of partitioning into the membrane than those with lower LogP values.(Nagar 

and Korzekwa, 2012)  

Comparison to Previous Models.  Previous studies identified important molecular features for 

BSEP inhibition (Pedersen et al., 2013) and pharmacophore models have been proposed for 

BSEP (Ritschel et al., 2014) and MRP4 (Fukuda et al., 2013).  While there was good 

corroboration between the important molecular features, there were several notable differences 

between the pharmacophores previously reported and those developed here, which can be 

ascribed primarily to differences in the training sets used to generate the pharmacophores. 

Molecular properties that were reported previously to have a statistically significant difference 

between strong BSEP inhibition (>50% inhibition) and non-inhibitors were LogD7.4, molecular 

weight, saturated nonpolar surface area, LogP, number of rotatable bonds, unsaturated nonpolar 
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surface area, number of hydrogen-bond acceptors, and net charge at pH 7.4.   The molecular 

properties that remain statistically significant for weak inhibitors (27-50% inhibition) and non-

inhibitors were only molecular weight and saturated nonpolar surface area.  In comparison, our 

best Bayesian BSEP model (FCFP_6) ranked the top four feature bins based on their normalized 

probability in descending order: molecular weight, FCFP_6 fingerprint, number of rotatable 

bonds, and ALogP.  However, since a compound can have only one value for a molecular 

property but multiple fingerprints, the fingerprints tend to be the predominate factor influencing 

the final Bayesian score for a compound.  The pharmacophore model for BSEP is also in 

agreement with these previously reported molecular properties since they consisted of 2 

hydrophobic features and a hydrogen-bond accepting feature.  The hydrophobic features were 

associated with nonpolar surface area and high LogP while the hydrogen-bond accepting feature 

was associated with the number of hydrogen bond acceptors correlated with inhibition.  The 

presence of only one hydrogen-bond accepting features in the pharmacophore model, however, 

suggests that a large number is not essential for inhibition, but could provide more opportunities 

for hydrogen bonding in the correct spatial arrangement. 

Two common feature MRP4 pharmacophores were reported previously in the same paper; one, 

based on five protease inhibitors (PI) and, the other based on a more diverse set of ten drugs that 

were inhibitors based on literature reports. The pharmacophore based on five PIs resulted in a 

pharmacophore with four hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), 

and three hydrophobic features, and the pharmacophore based on ten drugs resulted in two HBAs 

and a hydrophobic feature.  The PI-based pharmacophore featured a large number of features due 

to the small number of compounds in the training set and their high degree of structural 

similarity while the pharmacophore based on ten diverse compounds was based on the findings 
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from multiple labs.  The MRP4 pharmacophore we developed is more appropriate for predicting 

potential MRP4 inhibitors in order to identify the cholestatic potential of compounds because it 

was based on data from a single laboratory utilizing one assay, was developed based on a diverse 

set of compounds, and contained a large number of inhibitors. 

The other recently reported BSEP pharmacophore (Ritschel et al., 2014) was trained using five 

compounds of limited structural diversity, and resulted in a pharmacophore that had eight 

features; four hydrophobic features and two HBAs that had an associated vector feature.  The 

authors found the pharmacophore too stringent so they modified it by making only four 

hydrophobic features in the core of the pharmacophore essential.  The advantage of the BSEP 

pharmacophore presented in this paper is that it is derived from pharmaceuticals instead of a 

chemical library and developed with more diverse compounds, which results in a pharmacophore 

with fewer features, but one more equipped to deal with a larger chemical space.  The BSEP 

pharmacophore reported in this paper, however, is able to align with the hydrophobic and 

hydrogen bond accepting features of the previously reported BSEP pharmacophore.  This 

suggests that the pharmacophore reported in this paper may be convergent with previously 

reported pharmacophore, although less stringent. 

In conclusion, ongoing studies will utilize these models in an ensemble fashion against drugs that 

are predicted to be MRP4 or BSEP inhibitors in order to further validate the models.  These 

models, when used in combination, may aid in the a priori identification of potential cholestasis-

inducing compounds during the early stages of drug development. 
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Figure Legends 

Figure 1. A. Classification of the inhibitors used in development of the MRP4 models. Forty-

five drugs were MRP4 inhibitors only and 31 drugs were BSEP inhibitors only, whereas 26 

molecules inhibited both MRP4 and BSEP. B. Of the compounds in A, 14 MRP4 inhibitors were 

cholestatic, whereas only one BSEP inhibitor was identified as a cholestatic drug. Of the 26 

compounds classified as both MRP4 and BSEP inhibitors, 15 (58%) were clinically identified as 

cholestatic. 

Figure 2. A. MRP4: Principal component analysis (PCA) of the training and test set compounds 

(257 total) were selected such that they occupy similar areas of the PCA plot. The PCA among 

training and test set compounds was generated with the following properties: ALogP, molecular 

weight, molecular fractional polar surface area, number of rings, aromatic rings, rotatable bonds, 

hydrogen bond acceptors and hydrogen bond donors.  The first principal component explains 

0.366 of total variance and the second principal component explains 0.272 of total variance; 

when combined these explain 0.638 of the total variance.  The principal components are linear 

combinations of original descriptors. The dominate descriptors in the principal components are 

determined by the product of the descriptor coefficient while accounting for the magnitude of the 

descriptor.  The first principal component is dominated by molecular weight, number of 

hydrogen bond acceptors, and number of rotatable bonds.  The second principal component is 

dominated by molecular fractional polar surface area.  

Component 1: = -3.8514 + 0.17609 * [ ALogP ] + 0.0029942 * [ Molecular_Weight ] + 0.19241 * [ 
Num_H_Donors ] + 0.12966 * [ Num_H_Acceptors ] + 0.11058 * [ Num_RotatableBonds ] + 0.21601 * [ 
Num_Rings ] + 0.26649 * [ Num_AromaticRings ] - 0.91018 * [ Molecular_FractionalPolarSurfaceArea ] 
Component 2: = -0.91763 - 0.22028 * [ ALogP ] + 0.00060715 * [ Molecular_Weight ] + 0.30038 * [ 
Num_H_Donors ] + 0.1113 * [ Num_H_Acceptors ] + 0.0097512 * [ Num_RotatableBonds ] - 0.15452 * [ 
Num_Rings ] - 0.34347 * [ Num_AromaticRings ] + 4.3042 * [ Molecular_FractionalPolarSurfaceArea ] 
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B. BSEP: PCA analysis of the training and test sets. The first and second principal components 

accounted for 0.391 and 0.344 of total variance, respectively.  Together they explain 0.735 of the 

total variance.  The first principal component (x-axis) is governed by the number of hydrogen 

bond donors/acceptors and number of rings, whereas the second principal component (y-axis) is 

governed by lipophilicity and the number of aromatic rings. Both principal components are 

strongly influenced by fractional polar surface area.   

Component 1:  = -4.0005 + 0.035399 * [ ALogP ] + 0.0031256 * [ Molecular_Weight ] + 0.16608 * [ 
Num_H_Donors ] + 0.14138 * [ Num_H_Acceptors ] + 0.11881 * [ Num_RotatableBonds ] + 0.23456 * [ 
Num_Rings ] + 0.23836 * [ Num_AromaticRings ] + 0.48987 * [ Molecular_FractionalPolarSurfaceArea ] 
Component 2:  = -0.12988 + 0.2367 * [ ALogP ] + 0.00047919 * [ Molecular_Weight ] - 0.20734 * [ 
Num_H_Donors ] - 7.2971e-002 * [ Num_H_Acceptors ] + 0.019248 * [ Num_RotatableBonds ] + 0.16242 * [ 
Num_Rings ] + 0.31811 * [ Num_AromaticRings ] - 3.6221 * [ Molecular_FractionalPolarSurfaceArea ] 
 
PCA analysis comparing the training set of MRP4 (C) and BSEP (D) to the DrugBank database 

of FDA-approved drugs.  

Figure 3.  Favorable and unfavorable molecular features for interactions with MRP4. Each 

feature is a fragment-like fingerprint, up to 6 bond lengths in diameter, which occurs within the 

larger parent molecule.  The squiggle and asterisks indicate that the bond extends further but 

does not specify the atom type.  The favorable features or “good” features are labeled G1-G5 and 

the unfavorable features or “bad” features are labeled B1-B5.  A feature is considered good if it 

frequently occurs within compounds that were classified as inhibitors and bad if it frequently 

occurs in compounds that are non-inhibitors.   The large integer after the colon is the unique hash 

identifier for the shown fingerprint.  The Bayesian score is the normalized probability assigned 

to that feature. 

Figure 4. Favorable and unfavorable molecular features for interactions with BSEP. 
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Figure 5.  Pharmacophore model of inhibitors of MRP4-mediated transport of DHEAS.  A. The 

pharmacophore model with the measured distances between the 3 features.  B. The 

pharmacophore model aligned with chemical groups of two drugs from the training set, 

clobetasol propionate (orange) and finasteride (lavender).  Yellow spheres represent hydrophobic 

features and the red sphere represents a hydrogen bond acceptor.  On the stick model, red 

represents oxygen atoms, blue represents nitrogen atoms, green represents halogen atoms, and 

the rest are carbons.  Both hydrophobic features align with methyl groups and the hydrogen bond 

acceptor aligns with a ketone group. Hydrogen atoms are not displayed for clarity. 

Figure 6. Receiver operating characteristic (ROC) curve of pharmacophore model of MRP4 

inhibitors from virtually screening the test set (N = 77 compounds). 

Figure 7. Structural alignment of glucocorticoids clobetasol propionate (orange) and 

dexamethasone (gray).  Clobetasol propionate, a potent MRP4 inhibitor, inhibits MRP4-

mediated transport of DHEAS by 101 ± 23%.  In contrast, dexamethasone exhibits no significant 

inhibitory effect (5 ± 34% inhibition).  The orange circles indicate identical chemical groups in 

proximity with each other.  On the stick model, red represents oxygen atoms, green represents 

halogen atoms, and the rest represents carbon atoms. 

Figure 8. MRP4:  Comparison of calculated LogP of compounds classified as inactive (<21% 

MRP4 inhibitory activity; n=37) compared to those classified as active (≥21% MRP4 inhibitory 

activity; n=50).  The mean and median LogP values of the inactives are 0.38 and 0.69, 

respectively, and 3.64 and 3.84, respectively, for the actives. 

Figure 9.  DHEAS, an MRP4 substrate, and felbinac, an MRP4 inhibitor, aligned with the MRP4 

inhibitor pharmacophore.  Both compounds also are depicted with their individual 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on March 3, 2015 as DOI: 10.1124/dmd.114.062539

 at A
SPE

T
 Journals on A

pril 9, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 62539 

 

32 

pharmacophore, which shows all possible intermolecular interactions.  A, DHEAS aligned to the 

MRP4 pharmacophore.  B, DHEAS pharmacophore showing all possible intermolecular 

interactions.  C, felbinac aligned to the MRP4 pharmacophore. D, felbinac pharmacophore 

showing all possible interactions. Yellow spheres represent hydrophobic features, red spheres 

represent hydrogen bond acceptor features, the red star represents a negatively ionizable feature, 

and the purple torus represents an aromatic ring feature.  On the stick-models, red represents 

oxygen atoms, yellow represents phosphorus atoms, and the rest represents carbon atoms.  

Hydrogen atoms are not displayed for clarity. 
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Table 1. Composition of Training and Test Set 
Transport Model MRP4 BSEP 
Training Set Total 
(Inhibitors / Non-inhibitors) 

57 
(34 / 23) 

171 
(43 / 128) 

Test Set Total 
(Inhibitors / Non-inhibitors) 

29 
(17 / 12) 

86 
(22 / 64) 

Pharmacophore Training Subseta 9 9 
Pharmacophore Test Setb 77 247 
a Subset of drugs from the training set used to develop the pharmacophore 
b Drugs not included in the pharmacophore training set were moved to the test set 
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Table 2. Characteristics of Bayesian Models for MRP4 and BSEP Inhibition 
Bayesian models MRP4inhib-ECFP_6 MRP4inhib-FCFP_6 BSEPinhib-ECFP_6 BSEPinhib-FCFP_6 

2D-fingerprints ECFP_6 FCFP_6 ECFP_6 FCFP_6 

10-Fold XV ROC AUC
 a

 0.816 0.793 0.750 0.759 

TP/FN/FP/TN
 a

 33/1/1/22 33/1/1/22 43/0/3/125 43/0/5/123 

External Validation
 b

 0.819 0.838 0.845 0.871 

TP/FN/FP/TN
 b

 8/9/1/11 10/7/2/10 18/4/15/49 17/5/10/54 

SE (%)
b
 47.1 58.8 81.8 77.3 

SP (%)
b
 91.7 83.3 76.7 84.4 

Q (%)
b
 65.5 69.0 77.9 82.6 

MCC
 b

 0.4123 0.4216 0.5238 0.5796 
a Cross-validation-based ‘receiver operator curve’ area under the curve (XV ROC AUC) based on 
training set compounds (green shaded region). 
b Predictive performance validation by test set compounds (blue shaded region). True positive 
(TP), true negative (TN), false positive (FP), false negative (FN), sensitivity (SE), specificity 
(SP), overall prediction accuracy (Q), and Matthew’s correlation coefficient (MCC)(Ung et al., 
2007; Khandelwal et al., 2008). SE =TP/(TP + FN), SP = TN/(TN + FP), Q = (TP + TN)/(TP + 
TN + FP + FN). MCC = [(TP *TN) – (FN * FP)]/[(TP + FP) (TP + FN) (TN +FN)(TN+FP)]1/2 
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Supplemental Data 

This Supplemental Information includes 1) the drugs which were part of the MRP4 dataset and the BSEP dataset and 

whether they were included in the training set. 2) The BSEP pharmacophore with the feature distances shown and the 

BSEP pharmacophore with β-Estradiol 17-(β-D-glucuronide) aligned. 3) The expanded figure showing the favorable and 

unfavorable fingerprints for MRP4 and BSEP for both the ECFP_6 and FCFP_6 model. 

Supplementary Table S1. 

These two tables contain the names of the drugs in the MRP4 dataset and BSEP dataset, PubChem ID or CHEMBL ID if 

available, the inhibition data, and the compound’s classification for the model.  Drugs with a “TRUE” value for the 

training set column were used to train the Bayesian model and those with a “FALSE” value were part of the test set used 

to validate the model.  The IC50 values for the BSEP dataset were derived from Morgan et al., Toxicol Sci. 2013 and 

Dawson et al., Drug Metab Dispos. 2012.  The active classification category indicates if the molecules were considered 

active or inactive which is ≥21% for MRP4 inhibition or an IC50 <133 for BSEP. 

MRP4 Dataset  BSEP Dataset 

Name 
PUBCHEM 
CID 

MRP4 
TrainingSet 

MRP4 % 
Inhibition 

Active 
Classification  Name CHEMBL ID 

BSEP 
TrainingSet IC50 

Active 
Classification 

Sulindac 1548887 TRUE 112 TRUE  Acecainide   TRUE 133 FALSE 

Trimethoprim 5578 TRUE 9 FALSE  Antimycin   TRUE 59.6 TRUE 

Chloramphenicol 5959 TRUE 6 FALSE  Camptothecin   TRUE 133 FALSE 

Metoclopramide 4168 TRUE -12 FALSE  Fenclozic acid   TRUE 133 FALSE 

Clopamide 2804 TRUE 10 FALSE  Quercetin   TRUE 133 FALSE 

Furosemide 3440 TRUE 109 TRUE  R-Apomorphine   TRUE 133 FALSE 

Haloperidol 3559 TRUE 34 TRUE  Selegiline   TRUE 133 FALSE 

Chlorpromazine 2726 TRUE 84 TRUE  Sitagliptin   TRUE 133 FALSE 

Etoposide 36462 TRUE 33 TRUE  Suramin   TRUE 133 FALSE 

Verapamil 2520 TRUE 44 TRUE  Vioxx   TRUE 133 FALSE 

Lopinavir 92727 TRUE 76 TRUE  Acetaminophen CHEMBL112 TRUE 1000 FALSE 

Ritonavir 392622 TRUE 72 TRUE  Acyclovir CHEMBL184 TRUE 133 FALSE 

Sorafenib 216239 TRUE 121 TRUE  Alfentanil CHEMBL634 TRUE 133 FALSE 

Tacrine 1935 TRUE 6 FALSE  Amikacin CHEMBL177 TRUE 133 FALSE 

Buspirone 2477 TRUE 13 FALSE  Amitriptyline CHEMBL629 TRUE 133 FALSE 

Timolol 33624 TRUE 12 FALSE  Amrinone CHEMBL12856 TRUE 133 FALSE 

Quinine 8549 TRUE 41 TRUE  Atropine CHEMBL195 TRUE 133 FALSE 

Oxybutynin 4634 TRUE 67 TRUE  Benoxaprofen CHEMBL340978 TRUE 175 FALSE 

Alprenolol 2119 TRUE 10 FALSE  Betaine CHEMBL95889 TRUE 1000 FALSE 

Nadolol 39147 TRUE -25 FALSE  Betamipron CHEMBL1231530 TRUE 133 FALSE 

Indomethacin 3715 TRUE 111 TRUE  Busulfan CHEMBL820 TRUE 1000 FALSE 

Vinblastine 13342 TRUE 10 FALSE  Butorphanol CHEMBL33986 TRUE 133 FALSE 

Cimetidine 2756 TRUE 0 FALSE  Cefotetan CHEMBL474579 TRUE 133 FALSE 

Alpidem 54897 TRUE 47 TRUE  Chloroquine CHEMBL76 TRUE 133 FALSE 

Nortriptyline 4543 TRUE 36 TRUE  Cinchophen CHEMBL348000 TRUE 695.3 FALSE 

Metformin 4091 TRUE -6 FALSE  Ciprofloxacin CHEMBL8 TRUE 133 FALSE 

Fluvastatin 446155 TRUE 62 TRUE  Clavulanate CHEMBL777 TRUE 1000 FALSE 

Tamoxifen 2733526 TRUE 102 TRUE  Cloxacillin CHEMBL891 TRUE 219.7 FALSE 
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Clobetasol 
propionate 32798 TRUE 101 TRUE  Cromolyn CHEMBL428880 TRUE 1000 FALSE 

Terbutaline 5403 TRUE 20 FALSE  Cyclophosphamide CHEMBL88 TRUE 133 FALSE 

Antipyrine 2206 TRUE -5 FALSE  Dapsone CHEMBL1043 TRUE 133 FALSE 

Naloxone 5284596 TRUE -7 FALSE  Diazepam CHEMBL12 TRUE 133 FALSE 

Nitrofurantoin 6604200 TRUE 101 TRUE  Dihydralazine CHEMBL35505 TRUE 1000 FALSE 

Bezafibrate 39042 TRUE 41 TRUE  Diltiazem CHEMBL23 TRUE 133 FALSE 

Indinavir 5362440 TRUE 15 FALSE  Disopyramide CHEMBL517 TRUE 133 FALSE 

Mibefradil 60663 TRUE 91 TRUE  Donepezil CHEMBL502 TRUE 78 TRUE 

Chlorpheniramine 2725 TRUE 20 FALSE  Doxepin CHEMBL101740 TRUE 133 FALSE 

Fluorescein 16850 TRUE 5 FALSE  Eprosartan CHEMBL813 TRUE 133 FALSE 

Benzbromarone 2333 TRUE 111 TRUE  Ethinylestradiol CHEMBL1078384 TRUE 14 TRUE 

Finasteride 57363 TRUE 49 TRUE  Etoricoxib CHEMBL416146 TRUE 53.2 TRUE 

Tolbutamide 5505 TRUE -5 FALSE  Flumazenil CHEMBL407 TRUE 133 FALSE 

Dicloxacillin 18381 TRUE 41 TRUE  Flutamide CHEMBL806 TRUE 133 FALSE 

Primaquine 4908 TRUE 11 FALSE  Ganciclovir CHEMBL182 TRUE 133 FALSE 

Diphenhydramine 3100 TRUE 31 TRUE  Gemfibrozil CHEMBL457 TRUE 133 FALSE 

19-Norethindrone 6230 TRUE 33 TRUE  Glipizide CHEMBL1073 TRUE 133 FALSE 

Fenofibrate 3339 TRUE 39 TRUE  Guanfacine CHEMBL862 TRUE 133 FALSE 

Valinomycin 5649 TRUE 65 TRUE  Idazoxan CHEMBL10316 TRUE 133 FALSE 

Glafenine 3474 TRUE 105 TRUE  Indoramin CHEMBL279516 TRUE 133 FALSE 

Flupirtine 53276 TRUE 11 FALSE  Iproniazide CHEMBL92401 TRUE 1000 FALSE 

Caffeine 2519 TRUE 5 FALSE  Isoproterenol CHEMBL434 TRUE 1000 FALSE 

Nitrendipine 4507 TRUE 93 TRUE  Kanamycin CHEMBL176 TRUE 133 FALSE 

Pioglitazone 4829 TRUE 34 TRUE  Ketanserin CHEMBL51 TRUE 133 FALSE 

Rosiglitazone 77999 TRUE 88 TRUE  Ketotifen CHEMBL534 TRUE 738.4 FALSE 

Desipramine 2995 TRUE 27 TRUE  Leflunomide CHEMBL960 TRUE 133 FALSE 

5-Fluorouracil 3385 TRUE 1 FALSE  Levofloxacin CHEMBL33 TRUE 133 FALSE 

Simvastatin 54454 TRUE 111 TRUE  Methapyrilene CHEMBL1411979 TRUE 1000 FALSE 

Promethazine 4927 TRUE 64 TRUE  Methimazole CHEMBL1515 TRUE 133 FALSE 

Aspirin 2244 FALSE 9 FALSE  Methylprednisolone CHEMBL650 TRUE 133 FALSE 

Theophylline 2153 FALSE 4 FALSE  Metocurine CHEMBL1259 TRUE 133 FALSE 

Quinidine 441074 FALSE 77 TRUE  Metoprolol CHEMBL13 TRUE 133 FALSE 

Rifamycin SV 6324616 FALSE 75 TRUE  MK-571 CHEMBL15177 TRUE 3.53 TRUE 

Famotidine 5702160 FALSE 16 FALSE  Moclobemide CHEMBL86304 TRUE 133 FALSE 

Glyburide 3488 FALSE 93 TRUE  Morphine CHEMBL70 TRUE 133 FALSE 

Tolcapone 4659569 FALSE 113 TRUE  Naproxen CHEMBL154 TRUE 133 FALSE 

Troglitazone 5591 FALSE 105 TRUE  Neomycin CHEMBL449118 TRUE 133 FALSE 

Acitretin 5284513 FALSE 33 TRUE  Neostigmine CHEMBL278020 TRUE 133 FALSE 

Dexmethasone 5743 FALSE 5 FALSE  Nicotine CHEMBL3 TRUE 133 FALSE 

D-Penicillamine 5852 FALSE -10 FALSE  Nimodipine CHEMBL1428 TRUE 133 FALSE 

Omeprazole 4594 FALSE 21 TRUE  Nomifensine CHEMBL273575 TRUE 1000 FALSE 

Chlorpropamide 2727 FALSE -12 FALSE  Ondansetron CHEMBL46 TRUE 133 FALSE 

Doxorubicin 31703 FALSE 12 FALSE  Papaverine CHEMBL19224 TRUE 133 FALSE 

Rifampicin 5381226 FALSE 60 TRUE  Pefloxacin CHEMBL267648 TRUE 133 FALSE 
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Sulfasalazine 5353980 FALSE 118 TRUE  Pentamidine CHEMBL55 TRUE 133 FALSE 

Fluoxetine 3386 FALSE 70 TRUE  Phenacetin CHEMBL16073 TRUE 133 FALSE 

Ranitidine 3001055 FALSE 10 FALSE  Physostigmine CHEMBL94 TRUE 1000 FALSE 

Cyclosporin A 5284373 FALSE 23 TRUE  Picotamide CHEMBL1257015 TRUE 441 FALSE 

Ticlopidine 5472 FALSE 35 TRUE  Pindolol CHEMBL500 TRUE 133 FALSE 

Phenformin 8249 FALSE 20 FALSE  Practolol CHEMBL6995 TRUE 1000 FALSE 

Clozapine 2818 FALSE 25 TRUE  Prednisolone CHEMBL131 TRUE 133 FALSE 

Maprotiline 4011 FALSE 29 TRUE  Prochlorperazine CHEMBL728 TRUE 133 FALSE 

Carbamazepine 2554 FALSE -3 FALSE  Pyridoxine CHEMBL1364 TRUE 1000 FALSE 

Probenecid 4911 FALSE 8 FALSE  Remoxipride CHEMBL22242 TRUE 133 FALSE 

Nifedipine 4485 FALSE 46 TRUE  Risperidone CHEMBL85 TRUE 133 FALSE 

Praziquantel 4891 FALSE 59 TRUE  Streptomycin CHEMBL1201194 TRUE 1000 FALSE 

Ibuprofen 3672 FALSE 39 TRUE  Sulfadiazine CHEMBL439 TRUE 133 FALSE 

Triamterene 5546 FALSE 31 FALSE  Sumatriptan CHEMBL128 TRUE 133 FALSE 

      Tenoxicam CHEMBL487234 TRUE 133 FALSE 

      Tetracycline CHEMBL1440 TRUE 133 FALSE 

      Tizanidine CHEMBL1079 TRUE 133 FALSE 

      Trazodone CHEMBL621 TRUE 133 FALSE 

      Tubocurarine CHEMBL339427 TRUE 133 FALSE 

      Urapidil CHEMBL279229 TRUE 133 FALSE 

      Venlafaxine CHEMBL637 TRUE 133 FALSE 

      Zileuton CHEMBL93 TRUE 133 FALSE 

      Zonisamide CHEMBL750 TRUE 133 FALSE 

      5-Fluorouracil CHEMBL185 TRUE 133 FALSE 

      Aspirin CHEMBL25 TRUE 133 FALSE 

      Carbamazepine CHEMBL108 TRUE 133 FALSE 

      Chloramphenicol CHEMBL130 TRUE 133 FALSE 

      Chlorpropamide CHEMBL498 TRUE 133 FALSE 

      Cimetidine CHEMBL30 TRUE 133 FALSE 

      Clopamide CHEMBL1361347 TRUE 133 FALSE 

      D-penicillamine CHEMBL1430 TRUE 1000 FALSE 

      Dexamethasone CHEMBL384467 TRUE 133 FALSE 

      Doxorubicin CHEMBL179 TRUE 133 FALSE 

      Famotidine CHEMBL902 TRUE 133 FALSE 

      Fluorescein CHEMBL177756 TRUE 133 FALSE 

      Maprotiline CHEMBL21731 TRUE 133 FALSE 

      Naloxone CHEMBL80 TRUE 133 FALSE 

      Phenformin CHEMBL170988 TRUE 133 FALSE 

      Probenecid CHEMBL897 TRUE 133 FALSE 

      Theophylline CHEMBL190 TRUE 133 FALSE 

      Timolol CHEMBL499 TRUE 133 FALSE 

      Bezafibrate CHEMBL264374 TRUE 231.7 FALSE 

      Chlorpromazine CHEMBL71 TRUE 133 FALSE 

      Furosemide CHEMBL35 TRUE 133 FALSE 
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      Ibuprofen CHEMBL175 TRUE 598.6 FALSE 

      Nitrofurantoin CHEMBL572 TRUE 133 FALSE 

      Promethazine CHEMBL643 TRUE 133 FALSE 

      Quinine CHEMBL170 TRUE 133 FALSE 

      Sulfasalazine CHEMBL421 TRUE 133 FALSE 

      Sulindac CHEMBL15770 TRUE 133 FALSE 

      Tamoxifen CHEMBL83 TRUE 133 FALSE 

      Triamterene CHEMBL585 TRUE 133 FALSE 

      Vinblastine CHEMBL159 TRUE 133 FALSE 

      Cycloserine CHEMBL771 TRUE 1000 FALSE 

      Zoledronic acid CHEMBL924 TRUE 133 FALSE 

      Verapamil CHEMBL197 TRUE 133 FALSE 

      Staurosporine   TRUE 18.7 TRUE 

      Amiodarone CHEMBL633 TRUE 43 TRUE 

      Bosentan CHEMBL957 TRUE 23 TRUE 

      Chlordiazepoxide CHEMBL451 TRUE 44.1 TRUE 

      Cinnarizine CHEMBL43064 TRUE 15.7 TRUE 

      Clofazimine CHEMBL1292 TRUE 12.9 TRUE 

      Clofibrate CHEMBL565 TRUE 71 TRUE 

      Gefitinib CHEMBL939 TRUE 10.9 TRUE 

      Imatinib CHEMBL941 TRUE 25.1 TRUE 

      Itraconazole CHEMBL22587 TRUE 18 TRUE 

      Midazolam CHEMBL655 TRUE 41.74 TRUE 

      Nefazodone CHEMBL623 TRUE 6.11 TRUE 

      Nicardipine CHEMBL1484 TRUE 7.87 TRUE 

      Norethindrone CHEMBL1162 TRUE 55 TRUE 

      Pazopanib CHEMBL477772 TRUE 10.3 TRUE 

      Reserpine CHEMBL772 TRUE 8.35 TRUE 

      Saquinavir CHEMBL114 TRUE 4.9 TRUE 

      Telithromycin CHEMBL1136 TRUE 5 TRUE 

      Telmisartan CHEMBL1017 TRUE 16.2 TRUE 

      Wortmannin CHEMBL428496 TRUE 13.6 TRUE 

      Cyclosporine A CHEMBL160 TRUE 0.5 TRUE 

      Flupirtine CHEMBL255044 TRUE 35.5 TRUE 

      Omeprazole CHEMBL1344 TRUE 99 TRUE 

      Primaquine CHEMBL506 TRUE 32.7 TRUE 

      Alpidem CHEMBL54349 TRUE 9.2 TRUE 

      Benzbromarone CHEMBL388590 TRUE 17.5 TRUE 

      Dicloxacillin CHEMBL893 TRUE 56.4 TRUE 

      

Erythromycin 
estolate CHEMBL1200688 TRUE 13 TRUE 

      Fenofibrate CHEMBL672 TRUE 15.3 TRUE 

      Fluvastatin CHEMBL1078 TRUE 36.1 TRUE 

      Glafenine CHEMBL146095 TRUE 22.3 TRUE 

      Glyburide CHEMBL472 TRUE 5 TRUE 
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      Indomethacin CHEMBL6 TRUE 42 TRUE 

      Lopinavir CHEMBL729 TRUE 17.3 TRUE 

      Nifedipine CHEMBL193 TRUE 63.9 TRUE 

      Pioglitazone CHEMBL595 TRUE 0.4 TRUE 

      Rifampin SV CHEMBL180 TRUE 11.3 TRUE 

      Rifamycin Sv CHEMBL437765 TRUE 6.3 TRUE 

      Rosiglitazone CHEMBL121 TRUE 2.8 TRUE 

      Sorafenib CHEMBL1336 TRUE 8 TRUE 

      Tolcapone CHEMBL1324 TRUE 36.6 TRUE 

      Troglitazone CHEMBL408 TRUE 3 TRUE 

      Taxol CHEMBL48 TRUE 15 TRUE 

      Glimepiride   FALSE 15.7 TRUE 

      Amprenavir CHEMBL116 FALSE 44.8 TRUE 

      Drotaverine CHEMBL551978 FALSE 37 TRUE 

      Fusidic Acid CHEMBL374975 FALSE 10.1 TRUE 

      Ketoconazole CHEMBL75 FALSE 3.4 TRUE 

      Nelfinavir CHEMBL1159655 FALSE 11.8 TRUE 

      Rifabutin CHEMBL444633 FALSE 26.7 TRUE 

      Buspirone CHEMBL49 FALSE 104.5 TRUE 

      Clozapine CHEMBL42 FALSE 133 FALSE 

      Indinavir CHEMBL115 FALSE 21.2 TRUE 

      Acitretin CHEMBL1131 FALSE 38.2 TRUE 

      

Clobetasol 
Propionate CHEMBL1159650 FALSE 8.5 TRUE 

      Finasteride CHEMBL710 FALSE 28.2 TRUE 

      Mibefradil CHEMBL45816 FALSE <135 FALSE 

      Nitrendipine CHEMBL475534 FALSE 22.5 TRUE 

      Oxybutynin CHEMBL1231 FALSE 27.4 TRUE 

      Praziquantel CHEMBL976 FALSE 67.1 TRUE 

      Ritonavir CHEMBL163 FALSE 1.74 TRUE 

      Simvastatin CHEMBL1064 FALSE 24.7 TRUE 

      Ticlopidine CHEMBL833 FALSE 74 TRUE 

      Valinomycin CHEMBL223643 FALSE 1.56 TRUE 

      Lapatinib CHEMBL554 FALSE 6.49 TRUE 

      ANIT   FALSE 69 TRUE 

      Ciglitazone   FALSE 37.8 TRUE 

      Acetazolamide CHEMBL20 FALSE 133 FALSE 

      Amoxicillin CHEMBL1082 FALSE 133 FALSE 

      Azathioprine CHEMBL1542 FALSE 133 FALSE 

      Betamethasone CHEMBL632 FALSE 133 FALSE 

      Bumetanide CHEMBL1072 FALSE 133 FALSE 

      Carmustine CHEMBL513 FALSE 133 FALSE 

      Chlorambucil CHEMBL515 FALSE 133 FALSE 

      Ciprofibrate CHEMBL557555 FALSE 133 FALSE 

      Clomipramine CHEMBL415 FALSE 133 FALSE 
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      Colchicine CHEMBL107 FALSE 133 FALSE 

      Diazoxide CHEMBL181 FALSE 133 FALSE 

      Dopamine CHEMBL59 FALSE 1000 FALSE 

      Emetine CHEMBL50588 FALSE 133 FALSE 

      Felbamate CHEMBL1094 FALSE 1000 FALSE 

      Flucloxacillin CHEMBL222645 FALSE 208.6 FALSE 

      Galantamine CHEMBL659 FALSE 133 FALSE 

      Gliclazide CHEMBL427216 FALSE 133 FALSE 

      Imipramine CHEMBL11 FALSE 133 FALSE 

      Isoniazid CHEMBL64 FALSE 133 FALSE 

      Ketamine CHEMBL742 FALSE 133 FALSE 

      Lansoprazole CHEMBL480 FALSE 133 FALSE 

      Lidocaine CHEMBL79 FALSE 133 FALSE 

      Methotrexate CHEMBL426 FALSE 133 FALSE 

      Minoxidil CHEMBL802 FALSE 133 FALSE 

      Nefopam CHEMBL465026 FALSE 133 FALSE 

      Nevirapine CHEMBL57 FALSE 133 FALSE 

      Nitrazepam CHEMBL13209 FALSE 133 FALSE 

      Pargyline CHEMBL673 FALSE 1000 FALSE 

      Perphenazine CHEMBL567 FALSE 133 FALSE 

      Phenobarbital CHEMBL40 FALSE 133 FALSE 

      Pinacidil CHEMBL1159 FALSE 348.1 FALSE 

      Prazosin CHEMBL2 FALSE 133 FALSE 

      Procainamide CHEMBL640 FALSE 133 FALSE 

      Propranolol CHEMBL27 FALSE 133 FALSE 

      Salicylic acid CHEMBL424 FALSE 1000 FALSE 

      Sotalol CHEMBL471 FALSE 133 FALSE 

      Sulfamethoxazole CHEMBL443 FALSE 133 FALSE 

      Sulpiride CHEMBL26 FALSE 1000 FALSE 

      Thiotepa CHEMBL671 FALSE 133 FALSE 

      Valproate CHEMBL109 FALSE 1000 FALSE 

      Alprenolol CHEMBL266195 FALSE 133 FALSE 

      Antipyrine CHEMBL277474 FALSE 133 FALSE 

      Caffeine CHEMBL113 FALSE 133 FALSE 

      Chlorpheniramine CHEMBL505 FALSE 133 FALSE 

      Desipramine CHEMBL72 FALSE 133 FALSE 

      Metformin CHEMBL1431 FALSE 133 FALSE 

      Metoclopramide CHEMBL86 FALSE 133 FALSE 

      Nadolol CHEMBL649 FALSE 133 FALSE 

      Ranitidine CHEMBL1790041 FALSE 133 FALSE 

      Tacrine CHEMBL95 FALSE 133 FALSE 

      Terbutaline CHEMBL1760 FALSE 133 FALSE 

      Tolbutamide CHEMBL782 FALSE 133 FALSE 

      Trimethoprim CHEMBL22 FALSE 133 FALSE 
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      Diphenhydramine CHEMBL657 FALSE 133 FALSE 

      Etoposide CHEMBL44657 FALSE 133 FALSE 

      Fluoxetine CHEMBL41 FALSE 133 FALSE 

      Haloperidol CHEMBL54 FALSE 133 FALSE 

      Nortriptyline CHEMBL445 FALSE 133 FALSE 

      Quinidine CHEMBL97 FALSE 133 FALSE 

      Fialuridine   FALSE 1000 FALSE 

      Cefixime CHEMBL1541 FALSE 133 FALSE 

      Methyldopa CHEMBL459 FALSE 1000 FALSE 
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Supplementary Figure S1. 

The BSEP pharmacophore and the assay substrate aligned to the BSEP pharmacophore. A, the BSEP pharmacophore 

with the feature distances shown.  The yellow spheres represent hydrophobic features and the red sphere represents a 

hydrogen bond acceptor feature.  B, the BSEP pharmacophore with β-Estradiol 17-(β-D-glucuronide), the MRP4 

substrate used to produce the BSEP inhibitor data, aligned to the pharmacophore. 
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Supplementary Figure S2. 

Favorable and unfavorable molecular features for interactions with MRP4 and BSEP.  These figures contain the 20 most 

predictive molecular features for both favorable and unfavorable inhibitory activity against MRP4 and BSEP generated 

using ECFP_6 and FCFP_6 fingerprints. 


