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ABSTRACT 30 

Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters 31 

the activity of another drug taken concomitantly. This can lead to decreased drug 32 

efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice 33 

attempt to avoid potential interactions when multiple drugs are co-administrated, 34 

however there is still a large knowledge gap in understanding how drugs taken in the 35 

past can contribute to DDIs in the future. The goal of this study is to investigate the 36 

consequence of neonatal drug exposure on efficacy of other drugs administered to adult 37 

life. We selected a mouse model to test phenobarbital exposure at a neonatal age and 38 

its impact on efficacy of omeprazole in adult life. The results of our experiment show an 39 

observed decrease in omeprazole’s ability to raise gastric pH in adult mice that receive 40 

single or multiple doses of phenobarbital at a neonatal age. This effect may be 41 

associated with the permanent induction of cytochrome P450 enzymes in adult liver 42 

after neonatal phenobarbital treatment. Our data indicates that DDIs may result from 43 

drugs administered in the past in an animal model and should prompt reevaluation of 44 

how DDIs are viewed and avoided long term DDIs in clinical practice.  45 
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Introduction 47 

 48 

Polypharmacy-induced drug-drug interactions (DDIs) significantly raise the risks for 49 

decreasing therapeutic efficacy and increasing adverse reactions with particular higher risks for 50 

the elder, children, and women populations (Sharifiet al. 2014). Approximately 50% of the 51 

population aged over 65 years now takes at least 5 different medications with 35-60% of these 52 

elderly patients exposed to a potential DDI and 5-15% suffering clinically significant adverse 53 

reactions (Magro et al. 2012). Additionally, it is estimated that 49% of hospitalized patients 54 

under the age of 21 are exposed to a potential DDI (Feinstein et al. 2015).  55 

Based on their mechanisms of actions, DDIs are classified into two main categories: 56 

pharmacokinetics and pharmacodynamics. DDIs that are considered in the category of 57 

pharmacokinetics occur when one drug alters the absorption, distribution, metabolism, or 58 

excretion of another drug in the patient’s body. Altering any of these pharmacokinetic factors 59 

can increase or decrease the concentrations of a drug or its metabolites in circulation (Seymour 60 

and Routledge 1998). Certain drugs possess the ability to increase or decrease the rate, at which 61 

another drug is metabolized, leading to significantly lower or higher serum concentrations of the 62 

drug or its metabolites. These types of interactions are common due to the induction of gene 63 

expression of certain number of cytochrome P450 enzymes (P450s) that are responsible for the 64 

biotransformation of 80% prescription drugs (Jana and Paliwal 2007). Induction of P450s by 65 

drugs occurs shortly after the inducing drug is taken, with a delay depending on the half-life of 66 

the drug. Induction is considered to be a temporary event in adults, in which P450 levels will 67 

return to normal once the inducing drug is ceased (Lynch and Price 2007). However, a large 68 

body of works from the Shapiro’s laboratory have demonstrated that neonatal exposure to 69 
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phenobarbital can cause a permanent elevation of basal levels of enzyme activities in a variety of 70 

P450-mediated drug metabolizing enzymes (Agrawal et al. 1995, Agrawal and Shapiro 2000, 71 

Agrawal and Shapiro 2005). Recently, a research in our lab has shown that the permanent 72 

elevation of gene expression and enzyme activities of several P450s in adult mouse liver by 73 

neonatal treatment with phenobarbital is dependent on two key factors: the age, at which the 74 

mouse is treated in early life, and the dose, at which phenobarbital is given(Tien et al. 2015). . 75 

Phenobarbital is still the first drug of choice for treating acute neonatal seizures, which occur in 76 

2-3 out of 1,000 live births (Hellstrom-Westas et al. 2015) and is still widely administered to 77 

babies. It is also a known inducer of the CYP2B6, 2C9, 2C19, and 3A4 in human and CYP2B10, 78 

2C29, and 3A11 in mice (Czekaj 2000). Treatment at earlier ages with high doses of 79 

phenobarbital produces a permanent induction of P450 enzymes at the adult age in mouse liver 80 

(Tien et al. 2015). However, whether the permanent induction of P450 enzymes has an effect on 81 

the efficacy of other drugs administered to adults was not investigated.  82 

This study aims to determine whether treatment with the P450-inducing drug phenobarbital 83 

early in life can affect the efficacy of a drug taken at a separate time later in adult life. 84 

Omeprazole is a proton pump inhibitor commonly used to treat stomach ulcers, gastroesophageal 85 

reflux disease, and heartburn (Marostica et al. 2007). Its action involves blocking the release of 86 

acid by proton pumps in the stomach so as to raise the pH of the gastric lumen. We chose 87 

omeprazole as a model drug to test for changes in efficacy in adult mice after neonatal treatment 88 

with phenobarbital. Its efficacy can be tested by measuring pH of gastric juices after daily 89 

dosing. Omeprazole is known to be primarily metabolized by CYP2C19 and CYP3A4 in humans 90 

(Andersson et al. 1994, Chang et al. 1995, Andersson 1996).  Its metabolism can be altered by 91 

co-administrated with phenobarbital (Park et al. 2005). Although the primary P450 enzymes 92 
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metabolizing omeprazole in mice are not defined yet, we select CYP2C29 and CYP3A11 as a 93 

representative member of CYP2C and CYP3A subfamily, respectively, in this study. 94 

Investigating whether neonatal phenobarbital exposure affects the ability of omeprazole to 95 

increase stomach pH in adults can give insight into how drug treatment in early life can impact 96 

drug interactions in later life. This knowledge may prompt a reevaluation of how DDIs in the 97 

clinic are viewed and predicted. In order for a drug-drug interaction to occur, it may not be 98 

necessary for two drugs to be taken concomitantly.  99 
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Materials and Methods 101 

Chemicals. Phenobarbital and omeprazole were purchased from Sigma-Aldrich (St. Louis, 102 

MO). 103 

Animal treatment with drugs. The use of animals in the current study was approved by the 104 

Institutional Animal Care and Use Committee (IACUC) at the University of Connecticut. 105 

C57BL/6 mice were bred and housed under the standard conditions in the Animal Care Service 106 

Facility at the University of Connecticut according to the animal care guidelines provided by the 107 

American Association for Laboratory Animal Science.  Treatment schedules of phenobarbital or 108 

omeprazole in each experiment are outlined in figures. Phenobarbital at a dose of 200 mg/kg or 109 

control saline (PBS) was given to the mice via intraperitoneal injection. The selected dose of 110 

phenobarbital was proved to be able to permanently induce P450 expression in adult liver when 111 

treatment occurs at a neonatal age (Tien et al. 2015). Three consecutive doses of omeprazole at 112 

150 mg/kg/day or control saline (PBS) were given to the mice via intraperitoneal injection. The 113 

dose of omeprazole at 150 mg/kg/day was selected because this dose has previously been 114 

demonstrated to efficiently inhibit the gastric H+/K+-ATPase pump in mice (Aristoteli et al. 115 

2006). Blocking the activity of the gastric proton-pump prevents the release of hydrochloric acid 116 

from parietal cells and increases the pH of the stomach as the cavity becomes less acidic 117 

(Marostica et al. 2007). Because no difference between male and female was found in a previous 118 

study (Tien et al., 2015) on the permanent induction of gene expression of CYP3A11 and 119 

CYP2C29 in adult by phenobarbital treatment at early life, only male mice were used in each 120 

control and treatment group. 121 

pH measurement in gastric stomach. One hour after the final omeprazole or control PBS 122 

treatment, all adult mice were anesthetized with isoflurane and an incision was made in the 123 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 6, 2017 as DOI: 10.1124/dmd.116.073601

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD #73601 

8 
 

stomach. An Orion 9863BN micro pH electrode was placed in the stomach and the pH of gastric 124 

liquids was measured by a pH probe using a previous described procedure (Brennemanet et al. 125 

2014). Mice were then sacrificed and livers were harvested.  126 

Quantitative real-time PCR and Western blot analysis. Total RNAs and proteins were 127 

isolated from the harvested livers and expression of CYP2C29 and CYP3A11 in liver at mRNA 128 

level was determined by RT-PCR and protein level by Western blot with procedures described in 129 

a previous study (Tien et al. 2015).  130 

Statistics. Data are presented as mean ± SD with n = 3 mice per group in the control or 131 

treatment group. Statistical analyses were performed using GraphPad Prism 6. Comparisons 132 

between control and treatment groups were performed using unpaired t-test and a p-value˂0.05 133 

was considered statistically significant. The sample size (n=3) had a power over 80% to find 134 

p<0.05 if the means of the treatment groups compared to the control group are greater than 2 fold 135 

and standard deviations are less than 30%. 136 

 137 
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Results 139 

 140 

Omeprazole inhibits the gastric proton-pump to increase pH in the gastric stomach in 141 

adult mice. A control experiment illustrated in Fig. 1A was performed to examine efficacy of 142 

omeprazole in inhibition of proton pumps in adult mouse stomach. The adult mice that received 143 

PBS as a control had a gastric stomach pH of 2.4 ± 0.2 at a non-fasting condition (Fig. 1B). The 144 

adult mice that received omeprazole for 3 days had a gastric stomach pH of 4.5 ± 0.2 under the 145 

non-fasting condition after the final treatment. This indicates that omeprazole efficiently blocked 146 

the activity of gastric proton pump to reduce the amount of acids released and significantly 147 

raised the pH in the stomach (**p<0.01). Expression of CYP2C29 and CYP3A11 at mRNA level 148 

and CYP3A11 at protein level in mouse livers was further examined by RT-PCR and Western 149 

blot, respectively. Because of no available antibody specific against CYP2C29, CYP2C29 150 

protein level wasn’t determined by Western blot in this study. No differences in gene expression 151 

of CYP3A11 and CYP2C29 at mRNA level were noted after treatment with omeprazole 152 

compared to the control (Fig. 1C and 1D). CYP3A11 expression at the protein level is also 153 

consistent between the control and omeprazole treatment (Fig. 1E). These results show that 154 

treatment with omeprazole has no effect on the induction of expression of CYP2C29 and 155 

CYP3A11.   156 

Concurrent administration of phenobarbital and omeprazole temporarily reduces 157 

efficacy of omeprazole in proton-pump inhibition in adult mice. Figure 2A illustrates an 158 

experimental design to examine phenobarbital-omeprazole (PB-OME) interaction on efficacy of 159 

omeprazole in proton pump inhibition in adult mice. Mice in the OME control group had a 160 

gastric pH of 4.0 ± 0.1, comparable to the result shown in Fig. 1B. Mice in the co-treatment 161 
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group had a gastric pH of 3.5 ± 0.1 that was significantly lower (***p<0.001) than the control 162 

group. This indicates that administering phenobarbital at the same time with omeprazole in adult 163 

mice causes a drug-drug interaction, diminishing the efficacy of omeprazole in increase of 164 

gastric stomach pH. Mice in the post-treatment group had a gastric pH of 4.2 ± 0.1 that was 165 

similar to the OME control mice and showed no statistically significant difference. This indicates 166 

that in adult mice, the efficacy of proton-pump inhibition by omeprazole is not affected by a 167 

previous administration of phenobarbital. To exclude an effect on the gastric pH by 168 

phenobarbital, a group of mice (n=3) was treated with phenobarbital (200 mg/kg) at day 57 after 169 

birth and followed by PBS treatment at day 58 and 59, the mice had a gastric pH of 2.7 ± 0.3 at a 170 

non-fasting condition, which was not different compared to the control group received PBS 171 

treatment at day 57, 58, and 59 (pH = 2.4 ± 0.2). 172 

Gene expression of CYP2C29 and CYP3A11 at mRNA level was also determined by RT-173 

PCR in the livers collected after the completion of omeprazole treatment (Fig. 2C and 2D). 174 

Compared to the OME control group, expression of both CYP2C29 and CYP3A11 were 175 

significantly induced to 7.3 ± 0.9 (***p<0.001) and 12.6 ± 0.8 (***p<0.001) fold higher, 176 

respectively, in the PB/OME co-treatment mice. Mice that received phenobarbital three days 177 

prior to beginning omeprazole treatment had no significant changes in either CYP3A11 or 2C29 178 

expression after the last dose of omeprazole. Similar changes at protein level for CYP3A11 were 179 

observed in Fig. 2E. These results indicate that phenobarbital-mediated P450 induction in adult 180 

mice is not long-term and induced levels of enzymes will return to normal at 6 days after 181 

phenobarbital treatment is ceased.  182 

Here we demonstrated that induction of the expression of CYP2C29 and CYP3A11 by 183 

phenobarbital was associated with the decreased efficacy of omeprazole in proton-pump 184 
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inhibition shown as a decreased raise of pH in mouse gastric stomach when phenobarbital and 185 

omeprazole were co-administrated, but such effect was temporary and wasn’t observed in a 186 

treatment, in which omeprazole administration was three days later than the phenobarbital 187 

treatment. 188 

Neonatal administration of phenobarbital reduces the efficacy of omeprazole in proton-189 

pump inhibition in adult mice. An experimental design is illustrated in Fig. 3A. In the Neo 190 

vehicle/adult OME control group, omeprazole treatment at the adult age repeatedly showed 191 

efficient proton-pump inhibition to raise gastric pH to 4.5 ± 0.2. In the Neo single-PB/adult 192 

vehicle (PBS) group, no omeprazole was treated at the adult age, therefore, no gastric pH was 193 

increased (pH = 2.3 ± 0.8). Mice in the Neo single-PB/adult OME group had a significantly 194 

lower pH level of 3.6 ± 0.1 than the control mice that were administered with PBS at day 5 195 

(**p<0.01). Mice in the Neo multi-PB/adult OME group experienced an even lower gastric pH 196 

of 3.1 ± 0.2 (**p<0.01). These results suggest that phenobarbital exposure at a neonatal age 197 

could result in a long-term interaction with omeprazole to lower efficacy in proton pump 198 

inhibition in adult stomach. To ensure that phenobarbital treatment has no effect on gastric 199 

stomach pH, we also included a group of mice (n=3) receiving a single dose of 200 mg/kg/day 200 

phenobarbital at day 5 and 3 consecutive doses of PBS vehicle at 57, 58, and 59 days after birth. 201 

Their gastric pH values were comparable to a normal physiological level at 2.4 ± 0.4, indicating 202 

phenobarbital treatment at day 5 had no effect on gastric stomach pH. 203 

After the measurement of gastric pH, livers of the all mice were collected for further analysis 204 

of gene expression of CYP2C29 and CYP3A11 at mRNA level (Fig. 3C and 3D) and CYP3A11 205 

at protein level (Fig. 3E). Compared to the Neo vehicle/adult OME control group, phenobarbital 206 

treatment at the neonatal age with either single or multiple doses resulted in a long-term 207 
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elevation of mRNA expression of CYP2C29 and CYP3A11 in adult life. Phenobarbital treatment 208 

at the neonatal ages also resulted in increases of CYP3A11 at protein level (Fig. 3E). 209 
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Discussion 211 

 212 

Phenobarbital, along with several other first-generation antiepileptic and sedative drugs, is 213 

known to cause induction of several different P450 enzymes (Perucca 2006). Because of this, 214 

physicians are currently aware of the risk of DDIs with many common medications in patients 215 

prescribed phenobarbital (Lebowitz et al. 2016). However, the current clinical practice only takes 216 

the DDIs into consideration when multiple drugs are co-administrated at same times. A historical 217 

usage of drugs in previous weeks, months, or years has not been a consideration factor for DDIs 218 

as in most cases induction of P450 expression by a drug is a temporary event and will disappear 219 

in a short period after administration of the inducer drug is stopped. This is true for adults, 220 

however, our study may have a significant impact to change the concept of DDIs for people who 221 

received drug treatment at neonatal and infant ages. 222 

Studies from Shaprio’s laboratory have demonstrated that permanent induction of P450 223 

expression in adult liver can be achieved when phenobarbital is exposed at neonatal and infant 224 

ages (Agrawal et al. 1995, Agrawal and Shapiro 2000, Agrawal and Shapiro 2005). Our previous 225 

study further illustrated that the permanent induction is dose- and age-dependent  (Tien et al. 226 

2015). In the current study, we further demonstrated that the permanent induction of P450 227 

expression in adult mice by neonatal phenobarbital exposure may be associated with a significant 228 

decrease of efficacy in inhibition of proton pumps by omeprazole in adult life. Although 229 

previous studies have shown that neonatal treatment with phenobarbital can decrease sleep time 230 

in vivo in adult rats treated with hexobarbital (Agrawal and Shapiro 2000, Agrawal and Shapiro 231 

2005) and neonatal treatment with TCPOBOP can decrease paralysis time in adult mice treated 232 

zoxazolamine (Chen et al. 2012), neither hexobarbital nor zoxazolamine are current commonly 233 
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used drugs. In the current study by using the commonly used clinical drugs of omeprazole and 234 

phenobarbital, we have shown a long-term impact on therapeutic efficacy of a drug, which is 235 

metabolized by P450s, by neonatal exposure to another drug, which can induce P450 expression, 236 

in an animal model. However, this concept on long-term drug-drug interactions needs to be 237 

further confirmed by more drugs, such as midazolam, which are primarily metabolized by the 238 

inducible P450 enzymes in adults, and by more drugs, such as phenytoin and dexamethasone, 239 

which are capable to induce P450 expression in adult when they are exposed at neonatal ages in 240 

animal models. Dose ranges and exposure sensitive windows need to be established for each 241 

inducible drugs. Furthermore, the underline molecular mechanisms also need to be explored for 242 

explanation of the permanent induction of P450 expression by neonatal drug exposure. 243 

Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs 244 

have all been implicated in regulating the expression of drug metabolizing enzymes in both 245 

neonatal and adult livers (Kacevska et al. 2012, Ingelman-Sundberg et al. 2013, Bonder et al. 246 

2014). Nuclear receptors are also known to control the induction and expression of many hepatic 247 

P450 enzymes and transporter genes (Chai et al. 2013, Kandel et al. 2016) and likely play a role 248 

in causing their permanent induction with activation during the neonatal developmental period 249 

(Chen et al. 2012). Further mechanistic studies for this phenomenon can give greater insight to 250 

factors responsible for permanent induction of drug metabolizing enzymes by other drugs, 251 

environmental toxins, and nutritive components. 252 

  Our study, although performed in a mouse model, can prompt a reevaluation of how DDIs 253 

are presently viewed and predicted. Further translational studies in human subjects will need to 254 

be completed in order to prove that this concept can make a clinical impact. Historical usage of 255 
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drugs particularly during neonatal and infant ages may serve as a consideration factor for 256 

predicting drug response.  257 
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Figure legends 339 

Fig. 1. Omeprazole treatment increases gastric pH without altering P450 expression in adult 340 

mice. (A) An illustration of animal treatment. The adult mice were treated with either vehicle 341 

control (PBS) (n=3) or omeprazole (OME) at 150 mg/kg/day (n=3) for 3 consecutive days at the 342 

age of 57, 58, and 59 days after birth. (B) Gastric pH with mean ± SD in the mouse stomach at 343 

one hour after the last treatment of PBS or OME. (C) Relative fold changes of mRNA of 344 

CYP2C29, (D) mRNA of CYP3A11, and (E) protein of CYP3A11 in the mouse livers with the 345 

control and OME treatment. ** p<0.01. 346 

 347 

Fig. 2. Concurrent administration of phenobarbital and omeprazole results in a drug-drug 348 

interaction and reduces omeprazole efficacy. (A) An illustration of animal treatment. Adult mice 349 

in the OME-control group (n=3) were treated with 3 consecutive doses of 150 mg/kg/day of 350 

omeprazole at 57, 58, and 59 days after birth. Adult mice in the PB-OME co-treatment group 351 

(n=3) received a single dose of 200 mg/kg phenobarbital together with a dose of 150 mg/kg 352 

omeprazole at day 57, followed by two days of treatment with just omeprazole at day 58 and 59. 353 

Adult mice in the PB-OME post-treatment group (n=3) received a same single dose of 200 354 

mg/kg phenobarbital at day 57, then the 3 consecutive doses of 150 mg/kg/day of omeprazole 355 

were started 3 days later at day 60, 61, and 62. (B) Gastric pH with mean ± SD in the mouse 356 

stomach at one hour after the last treatment of OME. (C) Relative fold changes of mRNA of 357 

CYP2C29, (D) mRNA of CYP3A11, and (E) protein of CYP3A11 in the mouse livers with 358 

phenobarbital (control, co-, and post-) and omeprazole treatment. ***p<0.001. 359 

 360 
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Fig. 3. Neonatal administration of phenobarbital causes a drug-drug interaction and reduces 361 

efficacy of omeprazole in adult mice. (A) An illustration of animal treatment. The mice in the 362 

Neo vehicle/adult OME control group (n=3) received vehicle (PBS) at a neonatal age of day 5 363 

and 3 consecutive doses of 150 mg/kg/day of omeprazole at adult ages of 57, 58, and 59 days 364 

after birth. The mice in the Neo single-PB/adult vehicle group (n=3) received a single dose of 365 

200 mg/kg/day phenobarbital at day and three consecutive treatment of vehicle (PBS) at 57, 58, 366 

and 59 days after birth. The mice in the Neo single-PB/adult OME group (n=3) received a single 367 

dose of 200 mg/kg/day phenobarbital at day 5 and 3 consecutive doses of 150 mg/kg/day of 368 

omeprazole at 57, 58, and 59 days after birth. The mice in the Neo multi-PB/adult OME group 369 

(n=3) received 3 consecutive doses of 200 mg/kg/day phenobarbital at day 5, 6, and 7 and 3 370 

consecutive doses of 150 mg/kg/day of omeprazole at 57, 58, and 59 days after birth. (B) Gastric 371 

pH with mean ± SD in the mouse stomach at one hour after the last treatment of OME. (C) 372 

Relative fold changes of mRNA of CYP2C29, (D) mRNA of CYP3A11, and (E) protein of 373 

CYP3A11 in mouse livers with the neonatal phenobarbital (control, single-, and multiple-) and 374 

adult omeprazole treatment. *p<0.05 and **p<0.01.  375 
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