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ABSTRACT 

 

Numerous studies have been reported in the past 50-plus years regarding the stimulatory role of 

cytochrome b5 (b5) in some but not all microsomal cytochrome P450 (P450, CYP) reactions with 

drugs and steroids. A missing element in most of these studies has been a sensitive and accurate 

measure of binding affinities of b5 with P450s. In the course of work with P450 17A1, we 

developed a fluorescent derivative of a human b5 site-directed mutant, Alexa 488-T70C-b5, that 

could be utilized in binding assays at sub-µM concentrations. Alexa 488-T70C-b5 bound to 

human P450s 1A2, 2B6, 2C8, 2C9, 2E1, 2S1, 4A11, 3A4, and 17A1 with estimated Kd values 

ranging from 2.5 to 61 nM. Only weak binding was detected with P450 2D6, and no 

fluorescence attenuation was observed with P450 2A6. All of the P450s that bound b5 have some 

reported activity stimulation except for P450 2S1. The affinity of P450 3A4 for b5 was decreased 

somewhat by the presence of a substrate or inhibitor. The fluorescence of a P450 3A4•Alexa 

488-T70C-b5 complex was partially restored by titration with NADPH-P450 reductase (POR) 

(Kd,apparent 89 nM), suggesting the existence of a ternary P450 3A4-b5-POR complex, as observed 

previously with P450 17A1. Gel filtration evidence was also obtained for this ternary complex 

with P450 3A4. Overall, the results indicated that the affinity of b5 for many P450s is very high 

and that ternary P450-b5-POR complexes are relevant in P450 3A4 reactions, as opposed to a 

shuttle mechanism. 
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SIGNIFICANCE STATEMENT 

High affinity binding of cytochrome b5 (b5) (Kd < 100 nM) was observed with many drug-

metabolizing cytochrome P450 (P450) enzymes. There is some correlation of binding with 

reported stimulation, with several exceptions. Evidence is provided for a ternary P450 3A4-b5-

NADPH-P450 reductase complex.  
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Introduction 

 The story of the involvement of cytochrome b5 (b5) in cytochrome P450 (P450) drug 

oxidations began with observations on the enhancement of some NADPH-dependent microsomal 

catalytic activities by NADH (Hildebrandt and Estabrook, 1971). The initial explanation was that 

NADH could deliver electrons to P450 via the flavoprotein NADH-b5 reductase and b5 and 

augment electron flow (Hildebrandt and Estabrook, 1971; Correia and Mannering, 1973). 

However, purification and reconstitution experiments indicated that b5 was not an obligatory 

component of P450 systems (Lu and Coon, 1968). Further research in multiple laboratories 

showed that the addition of b5 to reconstituted P450 systems could either stimulate, inhibit, or 

have no effect (Gorsky and Coon, 1986). Evidence that b5 was not only an effector in 

reconstituted systems but also important in the endoplasmic reticulum came from 

immunochemical experiments with anti-b5 and reactions in liver microsomes (Noshiro et al., 

1979; Noshiro et al., 1980; Yamazaki et al., 1996b). For a summary of some of the early 

literature in this area see Peterson and Prough (Peterson and Prough, 1986). 

 A number of proposals have been addressed to explain the effect of b5. One is electron 

transfer (Bhatt et al., 2017). b5 can provide the first electron in the P450 catalytic cycle (reducing 

ferric iron to ferrous), although the difference in redox potentials (Em,7) is unfavorable. The more 

widespread proposal has been that b5 is providing the second electron (i.e., to the Fe
2+

O2 

complex) (Noshiro et al., 1981), although reconstituted systems have been reported with only 

NADH, NADH-b5 reductase, b5, and P450 (West et al., 1974). This NADH-dependent electron 

transport system may be how drug metabolism occurs in liver-specific NADPH-P450 reductase 

(POR) knockout (Por
–/–

) mice (Gu et al., 2003; Henderson et al., 2003). Another proposal is that 

b5 is acting in an allosteric manner, changing the conformation of a P450 to make it more active 
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in some reactions. This hypothesis has its basis in studies showing that some (but not all) P450 

activities are enhanced by apo-b5 or mangano-porphyrin-b5, which are incapable of electron 

transfer (Yamazaki et al., 1996a; Auchus et al., 1998; Lee-Robichaud et al., 1998; Yamazaki et 

al., 2001; Yamazaki et al., 2002). Further, co-expression of P450 17A1 with apo-b5 (lacking the 

globular head domain) stimulates the steroid lyase activity in mammalian COS-1 cells (Storbeck 

et al., 2012). Another proposal, related to both of the above, is that b5 somehow improves the 

efficiency of the NADPH-coupling system, reducing the leakage of electrons to form reactive 

oxygen species (Peterson and Prough, 1986; Zhang et al., 2008; Peng et al., 2016). 

 Discerning the mechanism of stimulation by b5 has been difficult, for a number of 

reasons. Electrons can flow through POR to b5 (Guengerich, 2005), as well as NADH-b5 

reductase, the pathway used in fatty acid desaturation. Although a number of studies have 

identified sites of b5 interactions with several P450s using site-directed mutagenesis and 

chemical cross-linking studies (Gao et al., 2006; Peng et al., 2014 Bridges, 1998, 32285), no 

structures of binary complexes are yet available. There is also a conundrum regarding evidence 

that POR and b5 occupy the same site on some P450s (Estrada et al., 2013) and how rapid 

interchange of the accessory proteins can support catalysis. One proposal is that P450 dimers 

could bind POR on one end and b5 on the other (Holien et al., 2017). 

 An important issue has been the measurement of binding parameters of b5 and P450s. To 

our knowledge, no spectral titrations have been useful (Naffin-Olivos and Auchus, 2006), 

presumably because of the strong Soret absorbance of both heme proteins.
3
 NMR measurements 

(Estrada et al., 2013; Ahuja, 2013) are problematic in that high (>100 µM) concentrations of the 

proteins are needed, and estimation of what might be sub-µM Kd values is impossible. Surface 

plasmon resonance (SPR) measurements suffer from the need to bind one component, and the 
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rates observed are notoriously slow, not reflective of diffusion-controlled events (Johnson, 

2019). 

 Recently we expressed a b5 mutant, T70C (Fig. 1) (Stayton et al., 1988), conjugated it 

with a fluorescent dye (Alexa 488 maleimide) (Fig. 2), and utilized this probe in studies on the 

interaction of b5 with P450 17A1 (Kim et al., 2021). The results were interpreted in a model of 

very tight binding of b5 and P450 17A1, with POR binding to form a ternary complex during 

catalysis (Kim et al., 2021). We have now extended this approach to other human P450s, 

particularly those with precedents for stimulation by b5. 
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Materials and Methods 

 Enzymes. Recombinant human b5 (Guengerich, 2005) and rat POR (Hanna et al., 1998) 

were expressed in Escherichia coli and purified as described, without the use of affinity tags. 

Expression (in E. coli) and purification of C-terminal (His)6-tagged P450s was as in the indicated 

references: 1A2 (Sandhu et al., 1994), 2A6 (Kim et al., 2005), 2B6 (Hanna et al., 2000), 2C8 

(Tang et al., 2009), 2C9 (Sandhu et al., 1993), 2D6 (Hanna et al., 2001), 2E1 (Gillam et al., 

1994), 2S1 (Wu et al., 2006), 3A4 (Gillam et al., 1993; Hosea et al., 2000), 4A11 (Kim et al., 

2014), and 17A1 (Gonzalez and Guengerich, 2017). These P450s all have N-terminal amino 

acids modified, plus deletions, for optimal heterologous expression but still show a requirement 

of phospholipid vesicles for maximum catalytic activity. All have been found to be catalytically 

active under appropriate reconstitution conditions and, in several cases, to show b5 stimulation 

(Yamazaki et al. 2002). Alexa 488-T70C-b5 was prepared as described elsewhere in a study of 

P450 17A1 (Kim et al., 2021). All proteins were of high purity as judged by SDS-gel 

electrophoresis and did not contain any obvious cleavage products. The concentrations of P450 

were estimated using the extinction coefficient 450-490 = 91,000 M
-1

 cm
-1 

for the Fe
2+

-CO vs. 

Fe
2+

 difference spectra (Omura and Sato, 1964). The concentration of  b5 was estimated using the 

extinction coefficient 423= 100,000 M
-1

 cm
-1  

(Spatz and Strittmatter, 1971) or
 
the difference 

extinction coefficient 424-409 = 180,000 M
-1

 cm
-1 

for the Fe
2+

 vs. Fe
3+

 difference spectra (Velick 

and Strittmater, 1956). The concentration of POR was estimated using the extinction coefficient 

455 = 23,600 M
-1

 cm
-1

 (Yasukochi and Masters, 1976). 

 

 Fluorescence Titrations. A solution of 50 nM Alexa 488-T70C-b5 in 1 mM potassium 

phosphate buffer (pH 7.4) was placed in a 1.0-ml cuvette in an OLIS DM45 spectrofluorimeter 
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(On-Line Instrument Systems, Athens, GA). Excitation was at 480 nm, and the emission 

spectrum was scanned from 500 to 650 nm, with a peak at 513 nm.  F513 values were collected, 

plotted, and fit to a hyperbolic curve with a standard quadratic equation  

𝑌 = 𝐵 +
𝐴

2𝐸
[(𝐾𝑑 + 𝐸 + 𝑋) − √(𝐾𝑑 + 𝐸 + 𝑋)2 − 4𝐸𝑋 ] 

 

in GraphPad Prism software (GraphPad, San Diego, CA) , where Y is the observed fluorescence, 

E is the Alexa 488-T70C-b5 concentration, X is the concentration of ligand added (P450), Kd is 

the dissociation constant, and B is the intercept (this is set in Prism as: 

Y=B+(A/2)*(1/E)*((Kd+E+X)-sqrt((Kd+E+X)^2-(4*E*X)), with E set at the value used and B 

being the fluorescence at the starting point, F0). The extrapolated endpoint was used in each case, 

in that there is no independent evidence that the interaction of each P450 with Alexa 488-T70C-

b5 will generate the same fluorescence decrease in every case. Most of the results are expressed 

as F/F0  100, where F is the fluorescence at 513 nm (excitation at 480 nm) and F0 is the 

fluorescence in the absence of any added ligand. 

 

 Association Kinetics of Alexa 488-T70C-b5 and P450 3A4. The rate of association of 

Alexa 488-T70C-b5 with P450 3A4 was estimated by mixing 1 µM concentrations of each (in 

100 mM potassium phosphate buffer, pH 7.4), in an OLIS RSM1000 instrument (23 °C, 4 mm  

4 mm cell, 1.24 mm slits, 480 nm excitation, and detecting emission > 530 nm with an Oriel 

long-pass filter attached to the photomultiplier tube). The decrease in fluorescence was fit to a 

single-exponential, with the SD, using the OLIS GlobalWorks program. The fit was transformed 

using residuals analysis with the software.  
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Gel Filtration Studies. Size-exclusion chromatography was done with a Superose 12 

10/300 GL column (11 µm, 10 mm  300 mm, GE Healthcare) with an NGC Quest 100 Plus 

Chromatography system (BioRad). The buffer was 50 mM potassium phosphate (pH 7.4) 

containing 0.15 M NaCl, and the flow rate was 1.0 ml min
-1

. The column was equilibrated for 

each run with 1 column volume (23.6 ml); the injection volume was 3% of the column volume 

(10 nmol of each protein was injected, i.e. 100 µl of 100 µM solutions). Elution was with 1.5 

column volumes, and absorbance was monitored at 280 nm. Fractions were collected (1.0 ml) 

and analyzed by SDS-polyacrylamide gel electrophoresis (4-15% gradient gel), with staining 

with Coomassie Blue and densitometry using GelAnalyzer 19.1 software 

(www.gelanalyzer.com, Istvan Lazar and Istvan Lazar, Jr.).  

The molecular weights (Mr) of protein complexes were estimated using fitting to a curve 

developed by plotting log10 Mr vs. corrected elution volume (corrected for void volume based on 

elution volume of blue dextran), using chicken ovalbumin (43 kDa), chicken conalbumin 

(75kDa), rabbit muscle aldolase (158 kDa), ferritin (440 kDa), and blue dextran (≥2,000 kDa) 

(Cytiva Life Sciences).  

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on July 30, 2021 as DOI: 10.1124/dmd.121.000475

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://www.gelanalyzer.com/
http://dmd.aspetjournals.org/


 11 

Results 

 

 Rationale. In recent work with P450 17A1 (Kim et al., 2021) we labeled a human b5 

mutant (T70C) with a dye, based on a previous approach used to monitor the binding of bacterial 

P450cam and rat b5 (Stayton et al., 1988; Stayton et al., 1989). The site of attachment is removed 

from the putative sites of binding (Glu-48, Glu-49), at least to P450 17A1 (Naffin-Olivos and 

Auchus, 2006), on the opposite side of the heme prosthetic group (Fig. 1). The dye Alexa 488 

was attached using a maleimide linker (Fig. 2). Alexa 488-T70C-b5 was still capable of 

stimulating the lyase activity of P450 17A1, one of the P450 reactions most sensitive to b5 

stimulation (Kim et al., 2021). The fluorescence of Alexa 488-T70C-b5 was attenuated upon 

binding P450 17A1, in a concentration-dependent manner (Kim et al., 2021). We extended the 

approach to other human P450s, several of which are known to be stimulated by the presence of 

b5 (Yamazaki et al., 2002). 

 

Titrations of Human P450s.  Alexa 488-T70C-b5 was titrated with increasing 

concentrations of P450 3A4 (Fig. 3), with the attenuation of fluorescence indicative of the 

binding between Alexa 488-T70C-b5 and P450 3A4. As noted before with an acrylodan-labeled 

b5 mutant and other hemoproteins (Stayton et al., 1988; Stayton et al., 1989), the fluorescence 

changes were more marked at lower ionic strength, indicative of charge-charge interactions. The 

decrease in the fluorescence was fit to a quadratic equation and yielded an apparent Kd value of 

13 nM for the affinity of Alexa 488-T70C-b5 and P450 3A4 (Fig. 3 inset, Table 1). These are 

charge-charge interactions and the presence of phospholipid (L--dilauroyl-sn-glycero-3-

phosphocholine) did not appreciably affect the titration results (Supporting Fig. S1).  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on July 30, 2021 as DOI: 10.1124/dmd.121.000475

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 12 

The titration analysis of Alexa 488-T70C-b5 was extended to nine other human P450 

enzymes (Supporting Fig. S2). P450s 1A2, 2B6, 2C9, 2D6, 2S1, and 4A11 showed attenuation 

of fluorescence, indicating tight binding between Alexa 488-T70C-b5 and P450 (Fig. 4). P450s 

1A2, 2C9, 2E1, and 2S1 displayed very tight binding affinities with Kd values of ~ 15 nM (Table 

1). In particular, P450 2S1 showed a decrease in the F480/513 amplitude as strong as that of P450 

17A1 (Supporting Fig. S2, Table 1). However, P450 2A6 did not significantly decrease the 

fluorescence (Supporting Fig. S2, Fig. 4).  

The effects of P450 3A4 substrates and inhibitor on the binding affinity of b5 were 

examined (Supporting Fig. S3). The titration spectra indicated similar fluorescence changes as in 

the absence of ligands, with somewhat increased Kd values of 73, 84, and 68 nM in the presence 

of the substrates testosterone and midazolam and the inhibitor/substrate ketoconazole, 

respectively (Supporting Fig. S3), which are still indicative of tight binding. This result suggests 

that there is still tight binding of Alexa 488-T70C-b5 to P450 3A4 in the presence of substrate or 

inhibitor, or at least those that we used. 

 

 Rate of Association of P450 3A4 and b5.  The rate of binding of Alexa 488-T70C-b5 to 

P450 3A4 was measured by observing the decrease of fluorescence upon mixing the two proteins 

using a stopped-flow fluorimeter. Fluorescence attenuation was observed with a first order kobs 

value of 0.22 (± 0.03) s
-1

 with concentrations of 0.50 µM Alexa 488-T70C-b5 and 0.50 µM P450 

3A4 (Fig. 5), similar to but somewhat slower than the rate measured for the binding of b5 and 

P450 17A1 (Kim et al., 2021). 
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 Interaction of POR with a P450 3A4:b5 Complex. Neither unlabeled b5 nor POR (up to 

2.65 µM) attenuated the fluorescence of Alexa 488-T70C-b5 (50 nM), arguing against any inner 

filter effects. The attenuated fluorescence of Alexa 488-T70C-b5 following binding of P450 3A4 

(1:1 molar ratio) was partially restored by titration with POR (Fig. 6), as in the case of P450 

17A1 (Kim et al., 2021). The P450 interaction with POR appeared to be competitive with Alexa 

488-T70C-b5, but the original fluorescence values were never reached, which is inconsistent with 

complete displacement. The calculated Kd value of POR for the P450 3A4:b5 complex was 0.089 

M, suggesting lower affinity than b5 for P450 3A4 (0.013 µM) (Fig. 3, Table 1). The lack of a 

complete increase to the starting amplitude is not due to an inner filter effect, in that some P450s 

(e.g., 2A6, Supporting Fig. S2A) did not attenuate the fluorescence despite having more 

absorbance.  

 

Demonstration of a P450 3A4-b5-POR Ternary Complex using Gel Filtration. The 

fluorescence titration results (Fig. 6) suggested that P450 3A4, POR, and b5 form a ternary 

complex. Accordingly, we tested this hypothesis further using a different approach, i.e. gel 

filtration (Fig. 7). Most of the P450 3A4 eluted as a single oligomeric peak on a Superose 12 

column. b5 eluted later, as might be expected, and POR eluted as a multimer near the void 

volume of the column (Fig. 7). (The identity of the second A280 peak in the POR sample is 

unknown and is presumed to be a small molecule, in that no proteins were visualized upon SDS-

gel electrophoresis and Coomassie Blue staining, Fig. 7).  

A complex of P450 3A4 and b5 yielded peaks in the regions for P450 3A4 and b5 plus a 

larger complex eluting earlier, as verified with gel electrophoresis (Fig. 7). A mixture of POR, 

P450 3A4, and b5 had most of the 280 nm-absorbing material (protein) in a large peak eluting 
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later than free POR but earlier than the P450 3A4-b5 complex, as validated by gel electrophoresis 

(Fig. 7C, 7D, fraction 9). The presence of all three proteins in the ternary complex peak fractions 

(Fig. 7D) is documented in the gel shown in Fig. 7C. Based on calibration with Mr standard 

proteins, the approximate Mr of the P450 3A4-b5 complex is 480 kDa and the approximate Mr of 

the P450 3A4-b5-POR ternary complex is 690 kDa, indicating the presence of multimeric 

complexes (although the stoichiometry is unknown). 
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Discussion 

 A fluorescent derivative of b5, Alexa 488-T70C-b5, was used to characterize the binding 

of b5 to a number of human liver microsomal P450s involved in drug metabolism. We found that 

several of these have high affinity for b5, although none was apparently as strong as what we 

reported for (adrenal) P450 17A1 (Kd 2.5 nM) (Kim et al., 2021). Some studies with P450 3A4, 

historically known to be enhanced by b5 (at least for some activities), showed that ligands did not 

strongly affect b5 affinity (Fig. S3). Also, the binding of P450 3A4 to b5 and the dissociation of 

the complex occurred on a time scale of ~ 1 second (Fig. 5), similar to P450 17A1 (Kim et al., 

2021). POR can interact with the complex and, as with P450 17A1 and b5 (Kim et al., 2021), our 

evidence supports the existence of a ternary complex of P450 3A4, b5, and POR (Figs. 6, 7).  

The complexity of b5 interactions with P450s can be traced back to the 1970s and 1980s 

(Peterson and Prough, 1986). As an example, the Yamano laboratory used a b5-affiinity column 

to isolate a rabbit liver P450 termed B1 (Miki et al., 1980), now recognized as CYP3A6 (Koop et 

al., 1981; Schwab and Johnson, 1987; Nelson et al., 1993). The purified protein showed an 

absolute requirement for b5 in the O-demethylation of p-nitroanisole (Sugiyama et al., 1980) but 

not in reactions with the substrates benzphetamine, aminopyrine, and aniline (Miki et al., 1980). 

Koop et al. (Koop et al., 1981) also reported catalytic activity towards benzphetamine, 

aminopyrine, p-nitroanisole, p-nitrophenetole, testosterone, and androstenedione in the absence 

of b5. It is of interest to note that this is another P450 Subfamily 3A member that was shown to 

bind tightly with b5 (Miki et al., 1980), as was human P450 3A4 in our own work (Fig. 4, Table 

1). The variability of b5 dependence for rabbit P450 2B4 was studied by Gorsky and Coon 

(Gorsky and Coon, 1986) and shown to be highly sensitive to reconstitution conditions.   
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 As in the case of our fluorescence studies done with P450 17A1 (Kim et al., 2021), all 

experiments with b5 were done in the absence of added phospholipids or detergents, so the forces 

involved in interaction of b5 with the P450s are presumed to be ionic. P450 3A4-b5 binding was 

not affected very much by the presence of a substrate (or inhibitor) (Fig. S3). We did not 

evaluate the effects of substrates with other P450s. 

 Our results can be compared with earlier efforts to study complexes, mainly with SPR 

measurements (Shimada et al., 2005; Yablokov et al., 2017). The Kd values for the complexes 

were generally much higher for the SPR analyses, and no binding was detected for P450 1A2 

(Shimada et al., 2005) or 2C9 (Yablokov et al., 2017). Because one component of an SPR system 

must be immobilized, SPR measurements are hampered by mass transfer artifacts (Johnson, 

2019). Moreover, the sites of attachment of labels to the proteins are generally unknown. 

 In general, there is some correlation between b5 affinity and stimulation of catalytic 

activity (Table 1). However, there are some anomalies. For instance, P450 1A2 showed strong 

binding of b5 (Kd 13 nM) but had not been shown to stimulate either phenacetin O-deethylation 

or 7-ethoxyresorufin O-deethylation activity by human P450 1A2 in reconstituted systems 

(Shimada et al., 2005). Kotrbová et al. (Kotrbová et al., 2011) reported that rabbit b5 changed the 

balance of the products of ellipticine oxidation by rabbit P450 1A2. Jeřábek et al. (Jeřábek et al., 

2016) modeled the interactions. However, in other work b5 had no effect on rabbit P450 1A2-

catalyzed aminopyrine N-demethylation and inhibited aniline 4-hydroxylation (Gorsky and 

Coon, 1986). 

P450 2D6 showed weak binding here and we are unaware of any reports of stimulation of 

P450 2D6 activity by b5 in our own laboratory or others (Yamazaki et al., 2002), with the 

exception of in vivo work in mice by Henderson et al. (Henderson et al, 2015). However, Bart 
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and Scott (Bart and Scott, 2017) did find interaction of b5 and P450 2D6 using NMR 

spectroscopy, but this might be the result of the high concentrations of proteins used (> 100 µM).  

P450 2S1 is an interesting case, in that b5 bound tightly but we did not observe an effect 

of b5 on catalytic activity in previous assays (Fekry et al., 2019).  However, in those oxidative 

reactions (fatty acid -1 hydroxylations) the rates were very low (with or without b5). In our 

experience, P450 2S1 has shown better catalytic activities in reductive reactions (Xiao et al., 

2011; Wang and Guengerich, 2012; Wang and Guengerich, 2013), but we have not  examined 

the effect of b5 on any of those.  

P450 2A6 is also an anomaly. No interaction with b5 was detected in our titrations (Fig. 

2A). Bart and Scott (Bart and Scott, 2017) detected interactions with NMR spectroscopy and 

identified the b5 residues Thr-60, Asp-65, His-58, Ser-69, Thr-70, and Arg-73 as being involved. 

It is conceivable that the presence of the fluorophore (Alexa 488) on residue 70 (originally Thr-

70, changed to Cys-70) blocked b5 binding and that the fluorescence was not attenuated (but see 

Fig. 1). However, in that NMR study (Bart and Scott, 2017) the same b5 residues were implicated 

in the binding of P450 2E1 to b5, and we did observe quenching of the fluorescence with P450 

2E1 (Fig. 4B). The role of b5 in catalytic activity of P450 2A6 also seems spurious. Both we 

(Yamazaki et al., 2002; Yun et al., 2005) and others (Soucek, 1999) have observed ~ 2-fold 

stimulation of coumarin 7-hydroxylation by b5 but Bart and Scott (Bart and Scott, 2017) did not. 

In our own work (Yun et al., 2005), coumarin 7-hydroxylation was stimulated by b5 but neither 

the 3- or 7-hydroxylation of 7-methoxycoumarin or 7-ethoxycoumarin was. Bart and Scott (Bart 

and Scott, 2017) did observe b5 stimulation of chlorzoxazone 6-hydroxylation (3.5-fold) and 4-

nitrophenol 2-hydroxylation (1.5-fold) (using specificity constants (kcat/Km) for comparisons). 

Another anomaly is that some electron transfer from reduced b5 to the P450 2A6 Fe
2+

O2 complex 
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could be shown, but this electron transfer was not very efficient in coumarin 7-hydroxylation 

(Yun et al., 2005) and apo-b5 was almost as effective as (holo) b5 in supporting steady-state 

coumarin 7-hydroxylation (Yamazaki et al., 2002). At this time we can conclude that the 

interaction of P450 2A6 with Alexa 488-T70C-b5 is weak (Fig. 4A), which may be a particular 

feature of our system, and that the general evidence is that the b5 stimulation of P450 2A6 

catalytic activities is not a strong one, at least compared to P450s 17A1, 3A4, and 2E1 (Soucek, 

1999; Yamazaki et al., 2002; Yun et al., 2005; Bart and Scott, 2017). 

 Fluorescent derivatives of b5 have been made previously, in order to examine the 

interactions of P450 17A1 and b5 in cells (Storbeck et al., 2012; Simonov et al., 2015) and of b5 

with bacterial P450cam and other hemoproteins (myoglobin, cytochrome c) (Stayton et al., 1988; 

Stayton et al., 1989). We have not characterized the biophysical nature of the interactions of our 

derivative, Alexa 488-T70C-b5, with P450s. Inner filter artifacts can be ruled out and Förster 

resource energy transfer (FRET) interactions with the P450 heme are probably not relevant, in 

that a 12-mer peptide derived from P450 17A1 (putative binding region) could also attenuate the 

fluorescence (Kim et al., 2021), as could several small molecules. It is very possible that other b5 

mutants and fluorophores may prove to be more useful probes, and we are evaluating some. 

However, the results with Alexa 488-T70C-b5 to date are useful in estimating the affinity of b5 

for individual P450s (Fig. 4) and P450 variants (Kim et al., 2021). 

 Some caveats need to be considered. The modification of any residue of a protein, 

whether by mutagenesis or chemical modification, can alter the properties in ways that are 

unexpected and may not be indicative of the role(s) of that residue in normal function (Means 

and Feeney, 1971). In principle, the changes at Thr-70 of b5 (mutagenesis or conjugation) might 

alter its affinity for one or more P450s, and the order of affinities (Table 1) may not be 
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completely accurate. Our previous work with P450 17A1 showed that Alexa 488-T70C-b5 could 

be rapidly displaced, however, by excess unmodified b5 (Kim et al., 2021). The structure of 

human b5 (Fig.1) indicates that the dye should not be in a position to directly interact with the 

P450 (Glu-48, Glu-49), at least P450 17A1 and probably others. We conclude that, at the least, 

this work demonstrates the high affinity of b5 (or its derivative) for multiple human P450s.  

 In summary, we utilized a fluorescent derivative of b5 to show that it binds tightly to 

many human P450 enzymes, most of which have been shown to have b5-stimulated catalytic 

activity, with some exceptions. An important conclusion with P450 3A4 is that, as in the case of 

P450 17A1 (Kim et al., 2021), a ternary complex of P450, POR, and b5 is formed and is 

hypothesized to be important in catalysis, in contrast to a mechanism in which POR and b5 

shuttle at a common site. A ternary complex rationalizes interactions of reactive oxidized forms 

of P450 with individual proteins (POR and b5), which would have to sequentially bind to and 

then vacate the P450 Fe
2+

, Fe
2+

O2, and Fe
3+

-O2
–
 entities. At this point we cannot extend the 

ternary complex evidence to P450s other than 17A1 (Kim et al., 2021) and 3A4 (Figs. 6, 7), 

however.  
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Footnotes  
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Legends for figures 

 

Fig. 1. Structure of human b5. The solution structure was determined by NMR spectroscopy 

(Protein Data Bank 2I96). The positions of heme, the T70C mutation site, and two residues 

implicated in binding to P450 17A1 (E48, E 49) are indicated.  

 

Fig. 2. Alexa 488 maleimide and site of attachment to Cys.  

 

Fig. 3. Changes in fluorescence of Alexa 488-T70C-b5 with added concentrations of P450 3A4. 

Inset: plot of F480/513 data. See Table 1 for parameters. 

 

Fig. 4. Titrations of Alexa 488-T70C-b5 with human P450 enzymes. The concentration of Alexa 

488-T70C-b5 was 50 nM, in 1 mM potassium phosphate buffer (pH 7.4). (A) P450s 1A2, 2A6, 

2B6, 2C8, 2C9. (B) P450s 2D6, 2E1, 2S1, 4A11, 3A4, 17A1. See Table 1 for Kd and amplitude 

values. The titration with P450 17A1 was from a previously reported study (Kim et al., 2021).  

 

Fig. 5. Rate of binding of P450 3A4 and Alexa 488-T70C-b5. (A) Each syringe contained a 1.0 

µM solution of P450 3A4 or Alexa 488-T70C-b5. The rate (first-order) was 0.22 ± 0.03 s
-1

. (B) 

Residuals trace from Part A. 

 

Fig. 6. Fluorescence titration spectra of a 1:1 (molar) complex of Alexa 488-T70C-b5: P450 3A4 

(50 nM) with increasing amounts of POR. The inset indicates the plot of F480/513 data. The 

apparent Kd was 0.089  0.036 µM. 
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Fig. 7. Gel filtration analysis of complexes of P450 3A4, b5, and POR. All analyses were done 

using a Superose 12 10/300 FPLC column. (A) A280 profiles of individual proteins: POR (green), 

P450 3A4 (orange), b5 (purple), a binary mixture of b5 and P450 3A4 (blue), and a ternary 

mixture of all three proteins (red) are shown. Individual fractions were collected and analyzed by 

SDS-polyacrylamide gel electrophoresis, and densitometry was done of the Coomassie Blue-

stained bands corresponding to the individual proteins. The POR preparation contained 

uncharacterized 280 nm-absorbing material eluting near the position of free b5 but not showing 

any protein after electrophoresis and staining. (B) Densitometry traces of P450 3A4 (orange) and 

b5 (purple) eluted in a binary equimolar mixture of the two proteins. The migration positions of 

the individual proteins ((P450) 3A4 and b5) are indicated. (C) Coomassie Blue staining of the 

proteins in a ternary complex, as eluted from the column in Part A. The numbers on the left 

indicate Mr values of markers relevant to the three proteins of interest, which have approximate 

Mr values of 79 kDa (POR), 57 kDa (P450 3A4), and 17 kDa (b5). (D) Densitometry traces of 

P450 3A4 (orange), POR (green), and b5 (purple) eluted in a ternary equimolar mixture of the 

three proteins. The migration positions of proteins (POR, (P450) 3A4, and b5) are indicated in 

Parts B and D. 
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Table 1. Binding affinities of human P450 enzymes to Alexa 488-T70C-b5 and reported effects 

of b5 on catalysis. 

 Alexa 488-T70C-b5 titration 
Effect of b5  

on activity
b
 

 

Evidence for b5 

electron transfer 

to P450 

P450 Kd, µM 
Amplitudemax 

(%) 

 

1A2 
0.013 ± 

0.003 
-67 0 to -36% 

–
 b
 

2A6 ND
a
 -11 +50 to +100% –

 b
 

2B6 
0.061 ± 

0.015 
-53 +25 to +75% 

–
 b
 

2C8 0.15 ± 0.03 -55 +34 to +55% ±
 b
 

2C9 
0.015 ± 

0.004 
-53 0 to +50% 

–
 b
 

2D6 ND
a
 ND

a
 -11 to +2% –

 b
 

2E1 
0.015 ± 

0.008 
-32 +153 to +160% 

+
 b
 

2S1 
0.014 ± 

0.003 
-80 0

 c
 

 

4A11 
0.043 ± 

0.011 
-51 +100%

d
 

+ 
d 

3A4 
0.013 ± 

0.002 
-61 +25 to +80% 

–
 b, e

 

17A1 
0.0025 ± 

0.0006 
-70 ≥ +1,000% (lyase)

 f –
g 

 

a
Not determined. See Fig. S1A. 

b
(Yamazaki et al., 2002) 

c
(Fekry et al., 2019) 
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d
(Kim et al., 2014) 

e
 (Yamazaki et al., 1996a; Yamazaki et al., 2001; Yamazaki et al., 2002) 

f
(Gonzalez and Guengerich, 2017). Reported for lyase reaction with 17-OH progesterone or 

17-OH pregnenolone. The 17-hydroxylation reactions show only slight stimulation (Kim et al., 

2021).  

g 
(Auchus et al., 1998; Lee-Robichaud et al., 1998; Guengerich et al., 2019) 
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Fig. S1 

 
Figure S1. Titrations of Alexa 488-T70C-b5 with P450 17A1 and P450 3A4 in the absence and 

presence of phospholipid. Titrations were done with 50 nM Alexa 488-T70C-b5 as in Figs. 1 and 

2 in the absence (, filled blue circles) and presence (, filled red squares) of 30 µM L--

dilauroyl-sn-glycero-3-phosphocholine (DLPC). (A) P450 17A1 titration without lipid, (B) P450 

17A1 titration with DLPC, (C) Plots of F513 from Parts A ()  and B () ; (D) P450 3A4 titration 

without lipid, (E) P450 17A1 titration with DLPC, (F) Plots of F513 from Parts D ()  and E (). 
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Fig. S2 
 

A 

 

B 

 

Figure S2. Fluorescence titration spectra of Alexa 488-T70C-b5 with human P450 enzymes. 

(A) P450s 1A2, 2A6, 2B6, 2C8, 2C9. (B) P450s 2D6, 2E1, 2S1, 4A11, 3A4, 17A1. The 

concentration of Alexa488-T70C-b5 was 50 nM. 
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Fig. S3 

 

Figure S3. Titrations of Alexa 488-T70C-b5 with P450 3A4 in the presence of substrates and an 

inhibitor. Binding titrations were carried out using purified P450 3A4 enzyme including (A) 50 

M testosterone, (B) 100 M midazolam, or (C) 10 M ketoconazole. Emission spectra 

(scanning 500-630 nm, with an excitation wavelength at 480 nm) were recorded after subsequent 

additions of P450 3A4. The inset is a plot of the F480/513 data. The calculated Kd values were 73  
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18, 84  24, and 79  18 nM in presence of testosterone, midazolam, and ketoconazole, 

respectively. 

Fig. S4 

 

Figure S4. Calibration for estimation of molecular weights of complexes. (A)   

Chromatograms of  Cytiva Mr standards: ovalbumin, 43 kDa; convalbumin, 75 kDa; aldolase, 

158 kDa; ferritin, 440 kDa; blue dextran, ≥ 2,000 kDa. (B) Calibration plot. The estimated Mr 

values for the P450 3A4:b5 and  P450 3A4:POR:b5 complexes were  480 and  690  kDa, 

respectively. 
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