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Abstract 

 

Intratumoral heterogeneity is a leading cause of treatment failure resulting in tumor 

recurrence. For the antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1), two 

major types of resistance include changes in HER2 expression and reduced payload sensitivity, 

often exacerbated by heterogenous HER2 expression and ADC distribution during treatment. 

ADCs with bystander payloads such as trastuzumab-monomethyl auristatin E (T-MMAE) can 

reach and kill adjacent cells with lower receptor expression that cannot be targeted directly with 

the ADC. Additionally, coadministration of T-DM1 with its unconjugated antibody, trastuzumab, 

can improve distribution and minimize heterogeneous delivery. However, the effectiveness of 

trastuzumab coadministration and ADC bystander killing in heterogenous tumors in reducing the 

selection of resistant cells is not well-understood. Here, we use an agent-based model to predict 

outcomes with these different regimens. The simulations demonstrate that both T-DM1 and T-

MMAE benefit from trastuzumab coadministration for tumors with high average receptor 

expression (up to 70 and 40% decrease in average tumor volume, respectively), with greater 

benefit for non-bystander payloads. However, the benefit decreases as receptor expression is 

reduced, reversing at low concentrations (up to 360 and 430% increase in average tumor volume, 

respectively) for this mechanism that impacts both ADC distribution and efficacy. For tumors 

with intrinsic payload resistance, coadministration uniformly exhibits better efficacy than ADC 

monotherapy (50-70% and 19-36% decrease in average tumor volume for T-DM1 and T-

MMAE, respectively). Finally, we demonstrate that several regimens select for resistant cells at 

clinical tolerable doses, highlighting the need to pursue other mechanisms of action for durable 

treatment responses. 
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Significance Statement 

Experimental evidence demonstrates heterogeneity in the distribution of both ADCs and 

the target receptor in the tumor microenvironment, which can promote the selection of resistant 

cells and lead to recurrence. Here we quantify the impact of increasing the antibody dose and/or 

utilizing bystander payloads in heterogeneous tumors using an agent-based model and highlight 

the need for alternative cell killing mechanisms to avoid enriching resistant cell populations.  
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Introduction 

One of the main causes of treatment failures for therapies that target HER2 receptors is 

intratumoral heterogeneity, which typically leads to cancer relapse with a worse prognosis (Rye 

et al., 2018). The combination of incomplete cell killing and tumor heterogeneity is a widespread 

problem in chemotherapy that can result in selection of resistant cell populations. Residual tumor 

cells left from previous treatment are the major cause of tumor recurrence (Allgayer & Aguirre-

Ghiso, 2008; J. Li et al., 2015). Finding approaches to eliminate all tumor cells is a challenging 

task in the development of effective treatments that avoid tumor relapse.  

Antibody-drug conjugates (ADCs) such as ado-trastuzumab emtansine (T-DM1), 

commercially known as Kadcyla


, are a type of targeted therapy approved by the Food and Drug 

Administration (FDA) for HER2-overexpressing breast cancer relapsed from treatment with 

trastuzumab (Herceptin


) (Manthri, Singal, Youssef, & Chakraborty, 2019). T-DM1 efficacy has 

been linked closely to HER2 expression, and its efficacy decreases with a decrease in HER2 

expression (Garcia-Alonso, Ocana, & Pandiella, 2020). Recently, Bon et al. have shown that 

patients previously treated with pertuzumab (also a HER2 monoclonal antibody targeting agent) 

have reduced HER2 receptor availability, making T-DM1 less effective as a second-line 

treatment for patients previously treated with trastuzumab/pertuzumab as a first line regimen 

(Bon et al., 2020). Unfortunately, T-DM1 resistance is not limited to HER2 expression, and other 

forms of resistance such as limited tissue penetration (i.e. a ‘binding site barrier’), defective 

internalization, drug efflux pumps, and reduced lysosomal proteolysis make both acquired and 

intrinsic resistance a major problem (Barok, Joensuu, & Isola, 2014; Garcia-Alonso et al., 2020; 

Hamblett et al., 2015; Hunter et al., 2020; Rios-Luci et al., 2017; Staudacher & Brown, 2017). In 

this study, we focus on two mechanisms of resistance: i) reduced HER2 expression as a 
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mechanism that impacts both tissue distribution and cellular potency, and ii) payload sensitivity, 

which impacts cell potency without changing tumor ADC distribution. 

New ADC mechanisms and administration regimens have been shown to potentially 

overcome some of the barriers and resistance mechanisms to treatment. Some ADCs, for 

example, contain linkers and payloads that are more lipophilic than the DM1-lysine conjugate 

released by T-DM1, like DM1 (with a cleavable linker) and MMAE (Erickson et al., 2010; 

Kovtun et al., 2006). These payloads have the ability to enter adjacent cells by crossing the cell 

membranes once they are released inside ADC-targeted cells. This mechanism of uptake is 

known as the bystander effect. If the payload reaches a sufficient concentration, adjacent cells 

that cannot be directly targeted by the ADC may be killed. This has been one strategy to kill cells 

that are resistant due to lower receptor expression. 

In addition to target expression heterogeneity, antibodies distribute heterogeneously due 

to their fast-binding rates relative to diffusion (Graff & Wittrup, 2003). This effect, first observed 

early after the advent of monoclonal antibodies (Oldham et al., 1984) and described as a ‘binding 

site barrier’ by Weinstein and colleagues, (Fujimori, Covell, Fletcher, & Weinstein, 1989) has 

been seen in multiple solid tumors in the clinic (Eary et al., 1989; Lu, Fakurnejad, et al., 2020; 

Lu, Nishio, et al., 2020; Scott et al., 2005). An approach to improve heterogenous drug 

distribution during T-DM1 administration is coadministration with its unconjugated antibody 

trastuzumab. ADC monotherapy with T-DM1 at a clinical dose (3.6 mg/kg) shows that the drug 

is localized around blood vessels in solid tumors, and most of the tumor does not receive the 

treatment (Rhoden & Wittrup, 2012). As shown both in mice and in simulations, 

coadministration of trastuzumab and T-DM1 can improve penetration and efficacy of these 

therapeutics in solid tumors (Cornelius Cilliers, Menezes, Nessler, Linderman, & Thurber, 2018; 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 7 

Menezes, Cilliers, Wessler, Thurber, & Linderman, 2020). At the same time, this 

coadministration reduces the number of payloads in targeted cells (which is important for cell 

killing (F. Li et al., 2016)), thereby making these cells theoretically more susceptible to 

continued growth and division. However, it is not known how antibody coadministration and/or 

ADCs with bystander effects might influence the selection of more resistant cells, which can 

potentially alter the risk of tumor relapse. 

Here, we use a validated agent-based model described previously (Menezes et al., 2020) 

to quantify how ADCs with bystander payloads modulate efficacy in heterogeneous solid 

tumors, both with and without coadministered antibody, specifically focusing on overall efficacy 

and selection of resistant cells. In particular, we ask three questions: 1) How do carrier doses and 

bystander effects (MMAE vs. SMCC-DM1) impact the distribution, uptake, and efficacy of 

ADC treatment in tumors with heterogeneous HER2 expression? 2) Do carrier doses and 

bystander effects show the same influence on efficacy in heterogeneous tumors when cell 

sensitivity to the payload does not impact tumor distribution? And 3) How do different 

coadministration regimens affect the selection of resistant cells, which could lead to resistant 

tumor relapse? 
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Materials and Methods 

We extended our hybrid agent-based model (ABM) framework introduced previously 

(Menezes et al., 2020) to incorporate additional physical and biological phenomena. Briefly, the 

model is comprised of cells and blood vessels that behave based on probabilistic rules and their 

microenvironment. The previous model described: plasma dynamics (clearance and payload 

deconjugation), drug dynamics (intracellular processing for non-bystander payloads), and cell 

dynamics (e.g., cell division and cell death) that impact the tumor volume in our simulations.  

Cells change their state from alive to dead based on the concentration of payload bound to 

microtubules inside of the cell.  A description of our model for the plasma dynamics, drug 

dynamics, and agent dynamics (cancer cell and blood vessel dynamics) can be found in the 

Supplement (Equations S.1-S.15 and accompanying text).  

Here, the model is extended to include: 1) angiogenesis, allowing us to look at treatment 

over longer periods of time, 2) heterogeneous receptor expression and/or sensitivity of cancer 

cells to payloads, and 3) bystander payloads capable of diffusing to nearby cells. These 

additional features allow us to compare coadministration of T-DM1 and T-MMAE with 

trastuzumab in different tumor environments (Figure 1). 

 

Simulation Environment and Framework 

The model was constructed in C++ with Boost (distributed under the Boost software 

license – available at www.boost.org). The graphical user interface (GUI) was built using the Qt 

framework (open-source, distributed under GPL – available at qt.digia.com). Efficient linking 

and solution of our hybrid multiscale ABM followed the principles described in (Cilfone, 

Kirschner, & Linderman, 2015) with more details in (Menezes et al., 2020).  
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The model is a 2D representation of a tumor section that contains blood vessels and 

several thousand cells. The cells and blood vessels have different states, i.e., alive or dead for 

cells and functional and non-functional for vessels, and they occupy specific positions on the 

simulation grid. Each cell occupies a volume of 2 x 10
-12

 L (12.6 𝜇m on a side), and the initial 

tumor, which has about 1940 cells, is assumed to represent an initial tumor volume range of 200-

300 mm
3
. ADCs enter the tumor through active blood vessels, and the functional vessel density 

changes based on the tumor size. Cells were assigned either 1 million receptors/cell (similar to 

sensitive cell lines like NCI-N87) or 50K receptors/cell (similar to resistant cell lines like JIMT-

1) (Le Joncour et al., 2019), and the fraction of cells in each category could be varied. Placement 

of cells with either receptor number was random on the grid.  

 

ADC Dynamics with Bystander Effects 

 For distribution studies, drugs are administered as a single administration on day 0, and 

their dynamics inside the host are described with ordinary and partial differential equations. We 

previously described drug dynamics with bystander effects within a Krogh cylinder model, 

which assumes all cells have identical properties, (Eshita Khera, Cilliers, Bhatnagar, & Thurber, 

2018) and we use these same equations (with a more sophisticated geometry) in our ABM model 

here.  Briefly, as shown in Supplement Figure S.1. T-DM1, T-MMAE, and trastuzumab are 

cleared from the plasma biexponentially, while they can at the same time extravasate into the 

tumor, diffuse through the interstitial tissue, bind to HER2 receptors, and internalize. After 

ADCs are degraded in lysosomes, the payloads Lys-SMCC-DM1 (referred to as “DM1” 

henceforth) from T-DM1 and MMAE from T-MMAE enter the cytoplasm and either bind to 
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microtubules or leave the cell. Both payloads in the interstitial tumor tissue also have the ability 

to enter cancer cells directly, but at different rates determined by their individual properties.  

 

Vessel Dynamics 

 While tumors form new blood vessels to sustain tumor growth (angiogenesis), the 

functional or active vessel density is also known to decrease with increasing tumor size (Hilmas 

& Gillette, 1974; Williams et al., 1988).  In our model, grid locations for blood vessels 

(functional and non-functional) were identified before the start of simulations. The initial 

densities of total blood vessels and active blood vessels were calibrated as described in (Menezes 

et al., 2020). At each agent time step, new blood vessels can become functional as tumor size 

increases, but the overall vessel density (vessels per tumor volume) decreases (i.e. the tumor 

volume grows faster than vessel density). This is done by calculating the fraction of active blood 

vessels at each agent time step and comparing it with the tumor volume at that time and with its 

initial fraction of active blood vessels set at the beginning of the simulation as shown in Equation 

1: 

𝑓𝑟𝑡 = 𝑓𝑟𝑜 (
𝑉

𝑉0
)

−𝑎
     (1) 

where 𝑓𝑟𝑡 is the active fraction of blood vessels at the agent time step,  𝑓𝑟𝑜 is the active fraction 

of blood vessels assigned at the beginning of the simulation, 𝑉 is tumor volume at the agent time 

step (mm
3
), and V0 is the initial tumor volume (mm

3
). The parameter 𝑎 was fit to experimental 

data and has a value of 0.28 (Supplement Fig S.2) (Hilmas & Gillette, 1974). With this method, 

the overall decrease in active vessel density that occurs at the same time that new blood vessels 

are formed during the increase in tumor volume is captured.  
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Cell Dynamics and Model Calibration 

Cells proliferate and die as the simulation progresses. All cells in the tumor in a particular 

simulation proliferate with the same doubling time, with doubling times chosen from 5 to 17 

days based on calibration to experimental data (Cornelius Cilliers et al., 2018). Cancer cells 

change their states from alive to dead based on the concentration of payloads bound to 

microtubules inside the cell. The probability of cell killing per agent time step is: 

𝑃𝑘𝑖𝑙𝑙 =
𝑃𝑚𝑎𝑥 [𝑃𝑏]

𝐾𝑚+[𝑃𝑏]
       (2) 

where 𝑃𝑚𝑎𝑥 is the maximum probability for cell killing, [𝑃𝑏] is the concentration of 

payload bound to microtubules in nM, and 𝐾𝑚 is the Michaelis-Menten constant in nM. 

 

In vivo efficacy in a xenograft model 

 All animal studies were conducted according to University of Michigan Institutional 

Animal Care and Use Committee. For fractionated dosing, NCI-N87 cells were purchased from 

ATCC and grown at 37°C with 5% CO in RPMI1640 growth medium supplemented with 10% 

(v/v) FBS, 50 U/mL penicillin, and 50 μg/mL streptomycin. Mycoplasma testing was performed 

annually using the Mycoalert Testing Kit (Thermo Fisher Scientific, NC971983). For the 

xenograft studies, 5 x 10
6
 NCI-N87 cells were inoculated in the rear flank of 4–8-week-old 

female nude (Foxn1 nu/nu) mice from Jackson Laboratories. Tumors were measured with 

calipers every other day, and the tumor volume was calculated as length x width
2
 / 2. When 

tumors reached approximately 250 mm
3
, 3 doses of T-DM1 at 2.4mg/kg were given at days 0, 7, 

and 14. Tumors were monitored until the tumor reached 2000 mm
3
, or until the tumor ulcerated. 
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Results 

Model Calibration and Validation 

 This model used pharmacokinetic parameters estimated based on physicochemical 

properties and previously published by Khera et al(Eshita Khera et al., 2018) (see Table S.1 and 

S.2). Cell doubling time was calibrated to (Cornelius Cilliers et al., 2018) as previously shown in 

(Menezes et al., 2020), giving a range of 5 to 17 days. The cell killing parameters Pmax and Km 

were herein calibrated and validated for DM1 (T-DM1) and MMAE (T-MMAE) using 

experimental data from Cilliers et al. (Cornelius Cilliers et al., 2018) and Singh et al. (Singh, 

Guo, et al., 2020; Singh, Seigel, et al., 2020) along with CaliPro, our calibration protocol for 

parameter estimation (Joslyn, Kirschner, & Linderman, 2020). For DM1, cell killing calibration 

is shown in Fig. S.3.A with Pmax and Km 0.0014 and 800 respectively and validated in Fig. S.3.B-

D. For MMAE, Pmax and Km were 0.006 and 600 for calibration as shown in Fig. S.4.A and 

validated in Fig. S.4.B-D.   

Once the model was calibrated and validated to the pharmacodynamic data, the results 

were compared to in vivo efficacy data collected following fractionated dosing with 3 doses of 

2.4 mg/kg of T-DM1 (3x2.4mg/kg) as illustrated in Supplement Fig S.5. As shown in Fig S.5.B, 

the addition of angiogenesis better fits the experimental data with fractionated doses compared to 

our previous version of the model (Fig S.5.A) with static vessel distribution.  

 

 

Bystander Payload Reaches More Cells Albeit at Lower Concentrations per Cell 

 To compare delivery of bystander and non-bystander payloads to tumor cells, the payload 

concentrations of MMAE and DM1 were quantified by simulating the distribution and uptake of 

ADCs and their respective payloads for 3.6 mg/kg of T-DM1 with DAR 3.5 (clinical dose) and 
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1.8 mg/kg of T-MMAE with DAR 4. The results shown in Figure 2 reflect the maximum peak 

that occurs at day 1 (24 hours) for ADCs bound to the cell surface and at day 4 for microtubule-

bound payload. T-DM1 at 3.6 mg/kg reaches more cells at day 1 than T-MMAE at 1.8 mg/kg, 

consistent with increased penetration of a higher antibody dose. However, the MMAE payload 

reaches more cells at day 4 than DM1 (Fig 2.C, Fig 2.D), consistent with previous results from 

our Krogh cylinder model and as expected given the bystander effects for MMAE (Ilovich et al., 

2018; Eshita Khera et al., 2018). 

The single cell analysis capabilities of our ABM were used to quantify the penetration of 

MMAE in comparison to DM1, as measured by the percentage of cells with high payload 

concentrations (150nM), moderate concentrations (150nM > x  1nM), and low concentrations 

(< 1nM) (F. Li et al., 2016) (Fig 2.E).  We also examined two additional scenarios (3mg/kg and 

DAR3 for both T-DM1 and T-MMAE to match the dose and DAR for a more direct comparison 

of the ADCs), as shown in Supplemental Fig S.6. For T-MMAE administration, all cells are 

reached by MMAE, and the majority of cells receive concentrations between 150nM and 1nM. 

In contrast, DM1 reaches fewer cells, and the majority of targeted cells receive concentrations 

higher than 150nM. Many cells in T-DM1 administration receive very little DM1, demonstrating 

a more heterogeneous distribution (Fig 2.E). These data capture the bystander effect of payloads 

such as MMAE that reach more cells although with lower concentrations than a non-bystander 

payload, a consequence of the payload’s lipophilicity and ability to diffuse into adjacent cells.  

 

Antibody Coadministration Reduces Efficacy in Tumors with Low Receptor Expression  

 To compare how coadministration of trastuzumab with T-DM1 or T-MMAE impacts the 

efficacy in tumors with cell populations with heterogeneous receptor expression (versus a base 
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case of uniform high expression), we simulated tumors with varying fractions of cells with 1 

million or 50,000 receptors per cell and treated with trastuzumab to ADC dose ratios of 0:1, 3:1, 

and 8:1, dosing every 21 days (day 0, 21, and 42). The average tumor volumes at 50 days for 

administration of T-DM1 at 3.6 mg/kg (DAR 3.5) and T-MMAE at 1.8 mg/kg (DAR 4) are 

shown in Figure 3. In tumors with 60% - 100% of cells expressing 1M receptors, adding a carrier 

dose improves the efficacy for T-DM1 and for T-MMAE (up to 70 and 40 % decrease in average 

tumor volume, respectively). In tumors with a majority of cells having lower receptor numbers 

(0% to 20% with 1M receptors), coadministration reduces efficacy (up to 360 and 430 % 

increase in average tumor volume for T-DM1 and for T-MMAE, respectively), and 

administration of ADC alone is more efficacious. The poor efficacy of coadministration with 

heterogeneous expression is similar to that for tumors with uniformly low receptor expression. 

When most cells express only a low number of receptors, ADCs distribute more evenly in the 

tumor than for high receptor expression, increasing efficacy. Adding unconjugated antibody to 

the regimen (coadministration) puts the unconjugated antibody in competition with ADCs, and 

cells with fewer receptors do not internalize sufficient ADC for cell killing, lowering efficacy. 

The trade-off between improved tissue distribution (pharmacokinetics) and targeted cell 

killing (pharmacodynamics) is highlighted in the shift of cell populations with high, moderate, 

and low levels of payload uptake. Supplemental Fig S.7 quantifies the percentages of cells with 

different payload concentrations. These simulations show an increase in the fraction of cells with 

high payload delivery for the 0:1 regimen as the average receptor expression drops and tissue 

penetration increases versus a decrease in payload delivery for the 8:1 regimen. 

 

Bystander Effects Mitigate Loss in Efficacy from Coadministration at Low Receptor Expression 
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To better understand the role of MMAE bystander effects on T-MMAE efficacy, we 

simulated the distribution and efficacy of T-MMAE while artificially removing the payload’s 

ability to enter adjacent cells. We performed simulations with varying receptor expression, 

similar to Figure 3, and we set the internalization rate constant of MMAE to enter adjacent cells 

to zero (kinp=0) as shown on Figure 4. Comparing the distribution of Figure 4.E with control 

(Figure 4.B), the elimination of payload entering adjacent cells reduces the MMAE uptake in 

bystander cells, as expected. The tumor growth curves show modestly improved responses when 

bystander effects are included, with significant improvement for high coadministered doses with 

low receptor expression, where bystander effects help retain payload concentrations at an 

effective level. 

 

 

Coadministration Improves Efficacy in Tumors with Intrinsically Resistant Cells 

Not all mechanisms of drug sensitivity impact distribution. We simulated tumors with 

cell populations that are naturally more resistant to treatment (using a higher value of Km; Eq. 2) 

and predicted how coadministration affects tumor response. For these cells, Km was doubled 

(Km=2x) or quadrupled (Km=4x), and simulations with varying percentages of more sensitive 

cell populations, with and without coadministration, are shown in Figure 5. For T-DM1, 3:1 or 

8:1 antibody co-administration improves efficacy compared to ADC alone, increasing the 

percentage of resistant cells uniformly reduces efficacy (Figure 5.A and B). For T-MMAE, 

coadministration for tumors with a high fraction of sensitive cells also shows the benefit of the 

carrier dose. However, as the percentage of cells with intrinsic resistance increases, the benefit of 

the carrier dose is less evident. This is due to the high ‘dilution’ of T-MMAE with trastuzumab, 
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which affects the ability to kill those more resistant cells that require a higher concentration of 

the payload despite better tissue penetration reaching more cells. 

 

Regimens with Greater Efficacy Can Select for More Resistant Cells 

Next, we questioned whether bystander or non-bystander payloads and/or different 

coadministrations could select for a small number of less sensitive cells that might then 

repopulate the tumor. Simulations were performed in which the initial tumor was composed of 

1% cells with lower receptor expression (Figure 6.A-F), or with intrinsic resistance (value of Km 

2x) (Figure 6.G-L). Simulations were conducted for 100 days with dosing every 3 weeks to 

provide time for the resistant cells to overtake the tumor, resulting in larger tumor sizes. In 

general, as the ratio of trastuzumab to ADC increases, efficacy is increased for both T-DM1 and 

T-MMAE administration in heterogenous receptor expressing tumors. However, resistant cells 

become a larger percentage of the tumor in several scenarios, showing the selection of resistant 

cells. The selection is highest for a non-bystander payload (T-DM1) at the highest 

coadministration dose (8:1). Notably, this is also the most effective treatment. T-MMAE had 

improved efficacy with higher coadministration for tumors with differences in receptor 

expression, but it also showed selection of resistant cells with coadministration. These 

simulations indicate that bystander killing alone may not be sufficient to prevent the outgrowth 

of resistant cells at clinical doses, with or without a carrier dose. 

MMAE exhibits bystander effects that allow the drug to diffuse more homogeneously 

through the tumor, but it also decreases the single-cell uptake. For intrinsic resistance that 

requires a higher concentration of the payload, T-MMAE here at 1.8mg/kg dose was not 
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effective. Since bystander effects result in lower concentrations in cells than directly targeted 

cells, many of the intrinsically resistant cells distant from vessels do not receive a lethal dose.  

Another important observation in these data is that a large number of simulations (e.g. 

100) were needed to discern trends in the results. When only 10 simulations were used, the 

trends seen in Figure 6 are masked by tumor variability (data not shown). This suggests that 

many samples must be taken to identify the most effective treatment, which may not be feasible 

with animal experiments alone. These results highlight the need for computational approaches to 

complement experimental results to better predict clinical outcomes. 
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Discussion 

The clinical success of ADCs has improved in the past few years, including the increased 

reliance on bystander payloads and higher antibody doses. The main goal of next generation 

ADCs is to improve the therapeutic index of these drugs by increasing efficacy while 

maintaining relative safety (Coats et al., 2019). This could be achieved by: 1) increasing the 

delivery to more cells within the tumor, 2) utilizing bystander payloads with balanced 

physicochemical properties to reach nearby cells at sufficient concentrations while avoiding 

extensive tumor washout, and 3) driving immune responses to leverage additional mechanisms 

of cell killing. In this work, we concentrated on the first two approaches with a particular focus 

on heterogeneous tumors. Overcoming ADC delivery challenges such as the binding site 

‘barrier’ and heterogeneous receptor expression requires strategies including the use of bystander 

payloads and higher antibody doses (e.g. coadministration regimens) in order to reach cells that 

may not be directly targeted by ADCs like T-DM1(Garcia-Alonso et al., 2020; Ocana, Amir, & 

Pandiella, 2020; Yardley et al., 2015). These approaches have the potential to significantly 

impact responses and may explain the efficacy of trastuzumab deruxtecan in gastric cancer 

versus T-DM1. While both are approved for use in breast cancer, the former drug is given at 

higher antibody doses (6.4 versus 3.6 mg/kg), which increases tissue penetration, and contains a 

bystander payload to reach low-expressing cells given the higher heterogeneity of HER2 

expression in gastric cancer (Thuss-Patience et al., 2017). 

Here, we used our updated hybrid agent-based model to predict the efficacy of various 

dosing strategies of ADCs with bystander or non-bystander payloads in heterogeneous tumors 

(specifically heterogeneous receptor expression and intrinsic cellular resistance). Our model 

presents an advantage over previous models because it includes single-cell heterogeneity, drug 
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responses, high-resolution tuning of cancer cell and blood vessel dynamics, and heterogeneous 

ADC and payload delivery that are not achievable with commonly used compartmental or Krogh 

cylinder models.  

Bystander payloads vary in lipophilicity and potency, affecting both the ADC’s PK and 

PD. For example, MMAE has increased lipophilicity compared to Lys-SMCC-DM1, with a 

clogD of 2.01 versus 1.21 respectively (Eshita Khera et al., 2018). This changes how easily 

payloads cross cell membranes, how much they non-specifically adhere to proteins and 

membranes inside and outside the tumor cells, and the effective diffusion through the tumor 

tissue. As seen in Figures 2.C and 2.D (and Supplemental Fig. 6.C and 6.D), this helps MMAE to 

penetrate deeper and more homogeneously into the tissue, while DM1 has a more heterogeneous 

distribution influenced exclusively by the penetration depth of the intact ADC. MMAE, on the 

other hand, does not accumulate to sufficient levels for complete cell killing inside cells reached 

via the bystander effect at the doses given here (1.8mg/kg), but for higher doses like 3.6mg/kg, 

the payload reaches cells with concentrations shown to be effective (Singh, Guo, et al., 2020; 

Singh et al., 2016). Other payloads, such as deruxtecan, have shown significant bystander killing 

at clinically tolerable doses (Ogitani, Hagihara, Oitate, Naito, & Agatsuma, 2016). These agents 

may be able to better target antigen negative cells than the payloads used here, which is 

important for clinically heterogeneous tumors (Seol et al., 2012). Singh et al. emphasized the 

importance of a parallel decline in antigen-positive and antigen-negative cells within a 

heterogeneous tumor to maintain bystander killing (Singh, Seigel, et al., 2020). The higher 

efficiency of direct cell killing relative to bystander killing may make this difficult to achieve in 

practice (Eshita Khera et al., 2018).   
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Due to MMAE’s relatively high potency, reduced efficacy from the bystander escape of 

the payload and loss in concentration (washout) are only evident in high trastuzumab ratios and 

in tumors with low total receptor expression (e.g. < 30% 1M, Fig 4F). Other very potent 

bystander payloads such as PBD and DGN (DNA alkylators) are also very lipophilic and have 

demonstrated optimal bystander efficiency by balancing the difference between retention and 

diffusion through cells, which can minimize washout of the drug from the tumor (Eshita Khera et 

al., 2018; E. Khera et al., 2020). However, these potent payloads must be administered at lower 

doses than microtubule inhibitors due to their toxicity. 

In general, T-DM1 and T-MMAE efficacy benefit from coadministration with 

trastuzumab for tumors with high receptor expression, but the benefit of coadministration is 

reduced and eventually lost for tumors with lower receptor expression as shown in Figure 3. 

Consistent with previous work, coadministration offers advantages for T-MMAE in high 

expression tumors, since the efficiency of direct cell targeting is greater than bystander killing 

(Eshita Khera et al., 2018; Singh, Guo, et al., 2020). Figures 3 and 4 highlight the need for a 

balance between fast escape of the payload versus accumulation in cells to mediate cell death. 

Approaches that enable fast endosomal/lysosomal escape but prevent cellular escape/washout 

(similar to the dolaflexin payload) could increase potency by locking the toxic payload inside of 

the cytosol (Clardy et al., 2018). The higher efficacy of T-DM1 and T-MMAE with increasing 

numbers of low-expressing cells may seem counter-intuitive. However, this result, where lower 

receptor expression improves efficacy due to better tissue penetration, has been observed 

experimentally (Nessler et al., 2020; Ponte et al., 2020). 

Other diverse mechanisms of resistance can lead to intrinsic cellular resistance wherein 

cells require a higher concentration of drug for cell killing (Barok et al., 2014). We performed 
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simulations to understand how coadministration of antibody with ADCs carrying bystander and 

non-bystander payload in the presence of these resistant cells modulates efficacy. In general, the 

results in Figure 5 show that coadministration is better for the vast majority of tumor 

compositions when the resistance mechanism does not influence tumor distribution. A few tumor 

compositions with a very high concentration of resistant cells (right side of Figures 5.C and D) 

show similar efficacy regardless of carrier dosing, but these regimens are ineffective overall. 

Strategies such as interchanging payloads (van Geel et al., 2015) may be needed to restore 

cellular sensitivity in these cases. The benefit of the carrier dose is greater for T-DM1 than T-

MMAE due to the ability of bystander payloads to partially compensate for heterogeneous tissue 

penetration. When the resistance mechanism does not influence distribution, the carrier dose is 

more consistently beneficial with fewer trade-offs.  

In these simulations, we also saw that the regimens that led to better efficacy also led to 

selection of more resistant cells (Fig 6.C). These dynamics highlight fundamental limitations in 

improving efficacy by only taking into consideration changes in dosing regimens of ADCs. 

Although these approaches are beneficial for a period of time, tumor reoccurrence could result in 

a short duration of response (Banerjee et al., 2018) and potentially lead to an even more resistant 

tumor composition. This work highlights the need to utilize other mechanisms of action and/or 

treatments, similar to combination therapy used with current chemotherapeutics. This could 

include efforts to mitigate specific mechanisms of resistance, such as selecting payloads that are 

less susceptible to drug exporters, or more broadly effective approaches including the stimulation 

of an immune response. 

This model, like other preclinical models, encounters some limitations in the translation 

to the clinical setting. For example, many clinical tumor parameters are infeasible to measure, 
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although progress is being made (Lu, Fakurnejad, et al., 2020; Lu, Nishio, et al., 2020), and the 

translation to the clinic requires estimation of these parameters with adjustment for species 

(Shah, Haddish-Berhane, & Betts, 2012; Singh & Shah, 2017). Additional features beyond 

scaling clearance rates are needed to capture human plasma pharmacokinetics of drugs like T-

DM1, such as ADC deconjugation, TMDD, and HER2 shedding (Betts et al., 2020). Finally, 

stromal cells (including immune cells) can play a major role in response (D'Amico et al., 2019; 

Iwata et al., 2018; Rios-Doria et al., 2017). While these features are not important in this mouse 

model, and therefore were not included here, they are important for plasma clearance and tumor 

response in humans.  

This last result and the ability of cells to escape payload killing highlight how more effort 

should be spent on understanding and developing agents capable of immune stimulation, and for 

this reason, future work with hybrid ABMs should include immune cells and other molecules. In 

particular, many ADCs have demonstrated immunostimulatory effects, including benefits from 

combination therapy with checkpoint inhibitors and immune cell agonists. For example, antibody 

mechanisms of action, such as ADCC, could also help eradicate cells with lower HER2 

expression that have lost sensitivity to receptor signaling blockade (Barok et al., 2007). By 

including these additional dynamics in the tumor microenvironment, these simulations could 

help guide the overall development of ADC therapies. 

Computational approaches provide a powerful tool to aid ADC development when 

combined with experimental work (Byun & Jung, 2019; Eshita Khera et al., 2018; Maass, 

Kulkarni, Betts, & Wittrup, 2016; Singh, Seigel, et al., 2020; Vasalou, Helmlinger, & Gomes, 

2015). For example, in vitro experiments alone lack the tissue penetration issue that animal 

results and computational methods can capture for better clinical predictions, e.g.(C. Cilliers, 
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Guo, Liao, Christodolu, & Thurber, 2016; Cornelius Cilliers et al., 2018). Animal experiments 

also have significant limitations such as high tolerability and faster pharmacokinetics than 

humans, resulting in overdosing many animal experiments relative to the clinic and obscuring 

delivery challenges in vivo. Non-human primate toxicity studies are needed for cross-reactivity 

to ADCs, but these animals lack tumors, so the interplay of toxicity and efficacy cannot be 

determined (Ponte et al., 2020). These weaknesses and limitations of experiments can be 

addressed by calibrated and validated computational approaches that can capture the in vitro, in 

vivo efficacy, toxicity, and scaling challenges in a single system.  In addition, computational 

approaches provide the power to discern trends that may be lost in the noise during animal 

studies with small cohort sizes. These trends may not appear until later during development 

when larger studies and/or clinical trials are conducted. In contrast, a large number of 

simulations (e.g. n = 100) can more efficiently identify trends in the outcomes. This supports the 

use of computer simulations, especially with ABMs, as an approach to help streamline the 

development of ADCs.  

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 24 

Acknowledgments 

The authors also thank Paul Wolberg for technical assistance. 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 25 

Authorship Contributions 

Participated in research design: Menezes, Linderman, and Thurber 

Conducted Simulations: Menezes. 

Performed data analysis: Menezes, Linderman, and Thurber 

Wrote or contributed to the writing of the manuscript: Menezes, Linderman, and Thurber 

Financial Disclosure 

 

No author has an actual or perceived conflict of interest with the contents of this article. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 26 

References 

Allgayer, H., & Aguirre-Ghiso, J. A. (2008). The urokinase receptor (u-PAR)--a link between 

tumor cell dormancy and minimal residual disease in bone marrow? APMIS, 116(7-8), 

602-614. doi:10.1111/j.1600-0463.2008.00997.x 

Banerjee, S., Oza, A. M., Birrer, M. J., Hamilton, E. P., Hasan, J., Leary, A., . . . Liu, J. F. 

(2018). Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) 

compared with pegylated liposomal doxorubicin in patients with platinum-resistant 

ovarian cancer in a randomized, open-label, phase II study. Ann Oncol, 29(4), 917-923. 

doi:10.1093/annonc/mdy023 

Barok, M., Isola, J., Palyi-Krekk, Z., Nagy, P., Juhasz, I., Vereb, G., . . . Szollosi, J. (2007). 

Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition 

of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol 

Cancer Ther, 6(7), 2065-2072. doi:10.1158/1535-7163.MCT-06-0766 

Barok, M., Joensuu, H., & Isola, J. (2014). Trastuzumab emtansine: mechanisms of action and 

drug resistance. Breast Cancer Res, 16(2), 209. doi:10.1186/bcr3621 

Betts, A., Clark, T., Jasper, P., Tolsma, J., van der Graaf, P. H., Graziani, E. I., . . . Barletta, F. 

(2020). Use of translational modeling and simulation for quantitative comparison of PF-

06804103, a new generation HER2 ADC, with Trastuzumab-DM1. J Pharmacokinet 

Pharmacodyn, 47(5), 513-526. doi:10.1007/s10928-020-09702-3 

Bon, G., Pizzuti, L., Laquintana, V., Loria, R., Porru, M., Marchio, C., . . . Vici, P. (2020). Loss 

of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated 

with dual HER2 blockade: the SePHER Study. J Exp Clin Cancer Res, 39(1), 279. 

doi:10.1186/s13046-020-01797-3 

Byun, J. H., & Jung, I. H. (2019). Modeling to capture bystander-killing effect by released 

payload in target positive tumor cells. Bmc Cancer, 19(1), 194. doi:10.1186/s12885-019-

5336-7 

Cilfone, N. A., Kirschner, D. E., & Linderman, J. J. (2015). Strategies for efficient numerical 

implementation of hybrid multi-scale agent-based models to describe biological systems. 

Cell Mol Bioeng, 8(1), 119-136. doi:10.1007/s12195-014-0363-6 

Cilliers, C., Guo, H., Liao, J., Christodolu, N., & Thurber, G. M. (2016). Multiscale modeling of 

antibody-drug conjugates: connecting tissue and cellular distribution to whole animal 

pharmacokinetics and potential implications for efficacy. AAPS J, 18(5), 1117-1130. 

doi:10.1208/s12248-016-9940-z 

Cilliers, C., Menezes, B., Nessler, I., Linderman, J., & Thurber, G. M. (2018). Improved tumor 

penetration and single-cell targeting of antibody–drug conjugates increases anticancer 

efficacy and host survival. Cancer Research, 78(3), 758-768. doi:10.1158/0008-

5472.Can-17-1638 

Clardy, S. M., Yurkovetskiy, A., Yin, M., Gumerov, D., Xu, L., Ter-Ovanesyan, E., . . . 

Lowinger, T. B. (2018). Abstract 754: Unique pharmacologic properties of Dolaflexin-

based ADCs—a controlled bystander effect. Cancer Research, 78(13 Supplement), 754-

754. doi:10.1158/1538-7445.Am2018-754 

Coats, S., Williams, M., Kebble, B., Dixit, R., Tseng, L., Yao, N. S., . . . Soria, J. C. (2019). 

Antibody-drug conjugates: future directions in clinical and translational strategies to 

improve the therapeutic Index. Clin Cancer Res. doi:10.1158/1078-0432.CCR-19-0272 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 27 

D'Amico, L., Menzel, U., Prummer, M., Muller, P., Buchi, M., Kashyap, A., . . . Zippelius, A. 

(2019). A novel anti-HER2 anthracycline-based antibody-drug conjugate induces 

adaptive anti-tumor immunity and potentiates PD-1 blockade in breast cancer. J 

Immunother Cancer, 7(1), 16. doi:10.1186/s40425-018-0464-1 

Eary, J. F., Schroff, R. W., Abrams, P. G., Fritzberg, A. R., Morgan, A. C., Kasina, S., . . . et al. 

(1989). Successful imaging of malignant melanoma with technetium-99m-labeled 

monoclonal antibodies. J Nucl Med, 30(1), 25-32. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/2642954 

Erickson, H. K., Widdison, W. C., Mayo, M. F., Whiteman, K., Audette, C., Wilhelm, S. D., & 

Singh, R. (2010). Tumor delivery and in vivo processing of disulfide-linked and 

thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem, 21(1), 84-92. 

doi:10.1021/bc900315y 

Fujimori, K., Covell, D., Fletcher, J., & Weinstein, J. (1989). Modeling Analysis of the Global 

and Microscopic Distribution of Immunoglobulin G, F(ab')2, and Fab in Tumors. Cancer 

Research, 49, 5656-5663.  

Garcia-Alonso, S., Ocana, A., & Pandiella, A. (2020). Trastuzumab Emtansine: Mechanisms of 

Action and Resistance, Clinical Progress, and Beyond. Trends Cancer, 6(2), 130-146. 

doi:10.1016/j.trecan.2019.12.010 

Graff, C. P., & Wittrup, K. D. (2003). Theoretical analysis of antibody targeting of tumor 

spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res, 

63(6), 1288-1296. Retrieved from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati

on&list_uids=12649189  

Hamblett, K. J., Jacob, A. P., Gurgel, J. L., Tometsko, M. E., Rock, B. M., Patel, S. K., . . . 

Fanslow, W. C. (2015). SLC46A3 Is Required to Transport Catabolites of Noncleavable 

Antibody Maytansine Conjugates from the Lysosome to the Cytoplasm. Cancer Res, 

75(24), 5329-5340. doi:10.1158/0008-5472.CAN-15-1610 

Hilmas, D. E., & Gillette, E. L. (1974). Morphometric Analyses of the Microvasculature of 

Tumors During Growth and After X-irradiation. Cancer, 33(1), 103-110.  

Hunter, F. W., Barker, H. R., Lipert, B., Rothe, F., Gebhart, G., Piccart-Gebhart, M. J., . . . 

Jamieson, S. M. F. (2020). Mechanisms of resistance to trastuzumab emtansine (T-DM1) 

in HER2-positive breast cancer. Br J Cancer, 122(5), 603-612. doi:10.1038/s41416-019-

0635-y 

Ilovich, O., Qutaish, M., Hesterman, J. Y., Orcutt, K., Hoppin, J., Polyak, I., . . . Bradley, D. P. 

(2018). Dual-Isotope Cryoimaging Quantitative Autoradiography: Investigating 

Antibody-Drug Conjugate Distribution and Payload Delivery Through Imaging. J Nucl 

Med, 59(9), 1461-1466. doi:10.2967/jnumed.118.207753 

Iwata, T. N., Ishii, C., Ishida, S., Ogitani, Y., Wada, T., & Agatsuma, T. (2018). A HER2-

Targeting Antibody-Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances 

Antitumor Immunity in a Mouse Model. Mol Cancer Ther, 17(7), 1494-1503. 

doi:10.1158/1535-7163.MCT-17-0749 

Joslyn, L. R., Kirschner, D. E., & Linderman, J. J. (2020). CaliPro: A Calibration Protocol That 

Utilizes Parameter Density Estimation to Explore Parameter Space and Calibrate 

Complex Biological Models. Cellular and Molecular Bioengineering. 

doi:10.1007/s12195-020-00650-z 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://www.ncbi.nlm.nih.gov/pubmed/2642954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12649189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12649189
http://dmd.aspetjournals.org/


 28 

Khera, E., Cilliers, C., Bhatnagar, S., & Thurber, G. M. (2018). Computational transport analysis 

of antibody-drug conjugate bystander effects and payload tumoral distribution: 

implications for therapy. Molecular Systems Design & Engineering, 3(1), 73-88. 

doi:10.1039/c7me00093f 

Khera, E., Cilliers, C., Smith, M. D., Ganno, M. L., Lai, K. C., Keating, T. A., . . . Thurber, G. 

M. (2020). Quantifying ADC bystander payload penetration with cellular resolution using 

pharmacodynamic mapping. Neoplasia, 23(2), 210-221. doi:10.1016/j.neo.2020.12.001 

Kovtun, Y. V., Audette, C. A., Ye, Y., Xie, H., Ruberti, M. F., Phinney, S. J., . . . Goldmacher, 

V. S. (2006). Antibody-drug conjugates designed to eradicate tumors with homogeneous 

and heterogeneous expression of the target antigen. Cancer Res, 66(6), 3214-3221. 

doi:10.1158/0008-5472.CAN-05-3973 

Le Joncour, V., Martins, A., Puhka, M., Isola, J., Salmikangas, M., Laakkonen, P., . . . Barok, M. 

(2019). A Novel Anti-HER2 Antibody-Drug Conjugate XMT-1522 for HER2-Positive 

Breast and Gastric Cancers Resistant to Trastuzumab Emtansine. Mol Cancer Ther, 

18(10), 1721-1730. doi:10.1158/1535-7163.MCT-19-0207 

Li, F., Emmerton, K. K., Jonas, M., Zhang, X., Miyamoto, J. B., Setter, J. R., . . . Law, C. L. 

(2016). Intracellular Released Payload Influences Potency and Bystander-Killing Effects 

of Antibody-Drug Conjugates in Preclinical Models. Cancer Res, 76(9), 2710-2719. 

doi:10.1158/0008-5472.CAN-15-1795 

Li, J., Jiang, E., Wang, X., Shangguan, A. J., Zhang, L., & Yu, Z. (2015). Dormant Cells: The 

Original Cause of Tumor Recurrence and Metastasis. Cell Biochem Biophys, 72(2), 317-

320. doi:10.1007/s12013-014-0477-4 

Lu, G., Fakurnejad, S., Martin, B. A., van den Berg, N. S., van Keulen, S., Nishio, N., . . . 

Rosenthal, E. L. (2020). Predicting Therapeutic Antibody Delivery into Human Head and 

Neck Cancers. Clin Cancer Res. doi:10.1158/1078-0432.CCR-19-3717 

Lu, G., Nishio, N., van den Berg, N. S., Martin, B. A., Fakurnejad, S., van Keulen, S., . . . 

Rosenthal, E. L. (2020). Co-administered antibody improves penetration of antibody-dye 

conjugate into human cancers with implications for antibody-drug conjugates. Nat 

Commun, 11(1), 5667. doi:10.1038/s41467-020-19498-y 

Maass, K. F., Kulkarni, C., Betts, A. M., & Wittrup, K. D. (2016). Determination of Cellular 

Processing Rates for a Trastuzumab-Maytansinoid Antibody-Drug Conjugate (ADC) 

Highlights Key Parameters for ADC Design. AAPS J, 18(3), 635-646. 

doi:10.1208/s12248-016-9892-3 

Manthri, S., Singal, S., Youssef, B., & Chakraborty, K. (2019). Long-time Response with Ado-

trastuzumab Emtansine in a Recurrent Metastatic Breast Cancer. Cureus, 11(10), e6036. 

doi:10.7759/cureus.6036 

Menezes, B., Cilliers, C., Wessler, T., Thurber, G. M., & Linderman, J. J. (2020). An Agent-

Based Systems Pharmacology Model of the Antibody-Drug Conjugate Kadcyla to Predict 

Efficacy of Different Dosing Regimens. AAPS J, 22(2), 29. doi:10.1208/s12248-019-

0391-1 

Nessler, I., Khera, E., Vance, S., Kopp, A., Qiu, Q., Keating, T. A., . . . Thurber, G. M. (2020). 

Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In 

Vivo Efficacy in Prostate Cancer Models. Cancer Res, 80(6), 1268-1278. 

doi:10.1158/0008-5472.CAN-19-2295 

Ocana, A., Amir, E., & Pandiella, A. (2020). HER2 heterogeneity and resistance to anti-HER2 

antibody-drug conjugates. Breast Cancer Res, 22(1), 15. doi:10.1186/s13058-020-1252-7 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 29 

Ogitani, Y., Hagihara, K., Oitate, M., Naito, H., & Agatsuma, T. (2016). Bystander killing effect 

of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug 

conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. 

Cancer Sci, 107(7), 1039-1046. doi:10.1111/cas.12966 

Oldham, R. K., Foon, K. A., Morgan, A. C., Woodhouse, C. S., Schroff, R. W., Abrams, P. G., . . 

. et al. (1984). Monoclonal antibody therapy of malignant melanoma: in vivo localization 

in cutaneous metastasis after intravenous administration. J Clin Oncol, 2(11), 1235-1244. 

doi:10.1200/JCO.1984.2.11.1235 

Ponte, J. F., Lanieri, L., Khera, E., Laleau, R., Ab, O., Espelin, C., . . . Thurber, G. M. (2020). 

Antibody Co-Administration Can Improve Systemic and Local Distribution of Antibody 

Drug Conjugates to Increase In Vivo Efficacy. Mol Cancer Ther. doi:10.1158/1535-

7163.MCT-20-0451 

Rhoden, J. J., & Wittrup, K. D. (2012). Dose dependence of intratumoral perivascular 

distribution of monoclonal antibodies. J Pharm Sci, 101(2), 860-867. 

doi:10.1002/jps.22801 

Rios-Doria, J., Harper, J., Rothstein, R., Wetzel, L., Chesebrough, J., Marrero, A., . . . 

Hollingsworth, R. (2017). Antibody-Drug Conjugates Bearing Pyrrolobenzodiazepine or 

Tubulysin Payloads Are Immunomodulatory and Synergize with Multiple 

Immunotherapies. Cancer Res, 77(10), 2686-2698. doi:10.1158/0008-5472.CAN-16-

2854 

Rios-Luci, C., Garcia-Alonso, S., Diaz-Rodriguez, E., Nadal-Serrano, M., Arribas, J., Ocana, A., 

& Pandiella, A. (2017). Resistance to the Antibody-Drug Conjugate T-DM1 Is Based in a 

Reduction in Lysosomal Proteolytic Activity. Cancer Res, 77(17), 4639-4651. 

doi:10.1158/0008-5472.CAN-16-3127 

Rye, I. H., Trinh, A., Saetersdal, A. B., Nebdal, D., Lingjaerde, O. C., Almendro, V., . . . 

Russnes, H. G. (2018). Intratumor heterogeneity defines treatment-resistant HER2+ 

breast tumors. Mol Oncol, 12(11), 1838-1855. doi:10.1002/1878-0261.12375 

Scott, A. M., Lee, F. T., Jones, R., Hopkins, W., MacGregor, D., Cebon, J. S., . . . Old, L. J. 

(2005). A phase I trial of humanized monoclonal antibody A33 in patients with colorectal 

carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin 

Cancer Res, 11(13), 4810-4817. doi:10.1158/1078-0432.CCR-04-2329 

Seol, H., Lee, H. J., Choi, Y., Lee, H. E., Kim, Y. J., Kim, J. H., . . . Park, S. Y. (2012). 

Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its 

clinicopathological significance. Mod Pathol, 25(7), 938-948. 

doi:10.1038/modpathol.2012.36 

Shah, D. K., Haddish-Berhane, N., & Betts, A. (2012). Bench to bedside translation of antibody 

drug conjugates using a multiscale mechanistic PK/PD model: a case study with 

brentuximab-vedotin. J Pharmacokinet Pharmacodyn, 39(6), 643-659. 

doi:10.1007/s10928-012-9276-y 

Singh, A. P., Guo, L., Verma, A., Wong, G. G., Thurber, G. M., & Shah, D. K. (2020). Antibody 

Coadministration as a Strategy to Overcome Binding-Site Barrier for ADCs: a 

Quantitative Investigation. AAPS J, 22(2), 28. doi:10.1208/s12248-019-0387-x 

Singh, A. P., Maass, K. F., Betts, A. M., Wittrup, K. D., Kulkarni, C., King, L. E., . . . Shah, D. 

K. (2016). Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict 

Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1). AAPS J, 

18(4), 861-875. doi:10.1208/s12248-016-9904-3 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 30 

Singh, A. P., Seigel, G. M., Guo, L., Verma, A., Wong, G. G., Cheng, H. P., & Shah, D. K. 

(2020). Evolution of the Systems Pharmacokinetics-Pharmacodynamics Model for 

Antibody-Drug Conjugates to Characterize Tumor Heterogeneity and In Vivo Bystander 

Effect. J Pharmacol Exp Ther, 374(1), 184-199. doi:10.1124/jpet.119.262287 

Singh, A. P., & Shah, D. K. (2017). Application of a PK-PD Modeling and Simulation-Based 

Strategy for Clinical Translation of Antibody-Drug Conjugates: a Case Study with 

Trastuzumab Emtansine (T-DM1). AAPS J, 19(4), 1054-1070. doi:10.1208/s12248-017-

0071-y 

Staudacher, A. H., & Brown, M. P. (2017). Antibody drug conjugates and bystander killing: is 

antigen-dependent internalisation required? Br J Cancer, 117(12), 1736-1742. 

doi:10.1038/bjc.2017.367 

Thuss-Patience, P. C., Shah, M. A., Ohtsu, A., Van Cutsem, E., Ajani, J. A., Castro, H., . . . 

Kang, Y. K. (2017). Trastuzumab emtansine versus taxane use for previously treated 

HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction 

adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 

2/3 study. Lancet Oncol, 18(5), 640-653. doi:10.1016/S1470-2045(17)30111-0 

van Geel, R., Wijdeven, M. A., Heesbeen, R., Verkade, J. M., Wasiel, A. A., van Berkel, S. S., & 

van Delft, F. L. (2015). Chemoenzymatic Conjugation of Toxic Payloads to the Globally 

Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious 

Antibody-Drug Conjugates. Bioconjug Chem, 26(11), 2233-2242. 

doi:10.1021/acs.bioconjchem.5b00224 

Vasalou, C., Helmlinger, G., & Gomes, B. (2015). A mechanistic tumor penetration model to 

guide antibody drug conjugate design. PLoS ONE, 10(3), e0118977. 

doi:10.1371/journal.pone.0118977 

Williams, L. E., Duda, R. B., Proffitt, R. T., Beatty, B. G., Beatty, J. D., Wong, J. Y. C., . . . 

Paxton, R. J. (1988). Tumor Uptake as a Function of Tumor Mass - A Mathematical 

Model. Journal of Nuclear Medicine, 29(1), 103-109. Retrieved from <Go to 

ISI>://A1988L675000017 

Yardley, D. A., Kaufman, P. A., Huang, W., Krekow, L., Savin, M., Lawler, W. E., . . . 

Bosserman, L. (2015). Quantitative measurement of HER2 expression in breast cancers: 

comparison with 'real-world' routine HER2 testing in a multicenter Collaborative 

Biomarker Study and correlation with overall survival. Breast Cancer Res, 17, 41. 

doi:10.1186/s13058-015-0543-x 

 

 

 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 31 

Footnotes 

 

This work was supported by the National Institutes of Health [Grant R35 GM128819] (GMT); 

National Institutes of Health [Grant R01 CA196018] multi-PI (G. Luker, S. Takayama, 

Linderman), and Department of Defense [Grant BC200857] (GMT and JL).  

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on October 14, 2021 as DOI: 10.1124/dmd.121.000503

 at A
SPE

T
 Journals on M

arch 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 32 

Figure Legends 

 

Figure 1: Model Schematic 

(A) The ABM environment is composed of cancer cells with different characteristics (e.g. 

different number of receptors or sensitivity to treatment) and blood vessels through which 

therapeutics are delivered. B) The model tests different regimens: 1) single agent administration 

(top panel) vs coadministration of antibody with ADC (bottom panel) and 2) non-bystander 

payloads (left column) vs bystander payloads (right column). The model can be used to examine 

these regimens for cell populations containing resistant cells. 

 

Figure 2: Similar ADC penetration but greater payload distribution of T-MMAE 

(A-B) Distribution of T-DM1 (3.6mg/kg with DAR 3.5) and T-MMAE (1.8 mg/kg, DAR 4) 

bound on the surface of the cancer cells. (C-D) Distribution of DM1 and MMAE bound to 

microtubules inside the cells. (E) Percentage of cells with high payload concentrations ( 

150nM), moderate concentrations (150nM > x  1nM), and low concentrations (< 1nM) at day 4, 

the time of maximum payload uptake.  n=10 simulations, with mean and SEM shown. T-MMAE 

has no cells with payload concentration lower than 1nM (shown by the grey arrows). Fig S.6 

shows the comparison between these two ADCs for the same dose and DAR; both ADCs reach 

the same number of cells at day 1, but the MMAE payload again reaches more cells at day 4. 

 

Figure 3: Treatment efficacy at 50 days for tumors with heterogeneous receptor expression. 

(A) T-DM1 regimens (3.6 mg/kg and DAR 3.5) and (B) T-MMAE regimens (1.8 mg/kg and 

DAR 4) for tumors with changing percentage of 1M or 50K receptors per cell for administration 

every 21 days (at day 0, 21, and 42). Data (mean and SEM) is shown for n=100 simulations. As 

the number of receptors decreases, coadministration of 8:1 antibody reduces efficacy. These data 

also show the larger benefit of coadministration for ADCs with non-bystander payloads that 

cannot diffuse deeper into the tissue to partially compensate for heterogeneous distribution. For 

tumors with uniformly high expression, the addition of 3:1 and 8:1 carrier doses to T-DM1 

reduces tumor growth by a larger amount than for T-MMAE. 

 

Figure 4: Artificially removing bystander effects with coadministration changes payload 

distribution and efficacy 

A-C) Distribution and efficacy for regimens with T-MMAE exhibiting the expected bystander 

killing. D-F) Distribution and Efficacy for regimens of T-MMAE when setting the 

internalization rate of free MMAE, kinp, to 0 with different coadministration regimens. 

Simulations show mean and SEM for n=100 simulations. For MMAE payload, the elimination of 

bystander effects with high coadministrations leads to lower efficacy. Regimens tested are as in 

Figure 3. 

 

Figure 5: Efficacy of T-DM1 and T-MMAE coadministration regimens when a fraction of 

cells has less sensitivity to drug.   

Regimens with T-DM1 (A-B) or TMMAE (C-D) with coadministration were simulated.  Tumors 

contained varying fractions of cells with intrinsic resistance (Km=2x or Km=4x the value in Table 

S.2). Lower cell payload sensitivity impacts most regimens in a similar fashion, reducing the 

overall efficacy regardless of the carrier dose or bystander effects.  Simulations show mean and 

SEM for n=100 simulations.  Regimens tested are as in Figure 3. 
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Figure 6: Tumor growth with initial composition of 1% of resistant cells vs sensitive cells 

for different regimens with T-DM1 or T-MMAE.   

(A-F) Coadministration of trastuzumab 0:1, 3:1, 8:1 with T-DM1 (A-C) and T-MMAE (D-F) 

every three weeks (marked by arrows) initially containing 1% of tumor cells with 50K receptors 

per cell vs 99% of 1M receptors per cell. (G-L) Coadministration of trastuzumab 0:1, 3:1, 8:1 

with T-DM1 (G-I) and T-MMAE (J-L) every three weeks initially containing 1% of cells with 

higher intrinsic resistance (Km=2x) vs 99% of cell with Km=1x. Km=800nM for T-DM1 and 

Km=600nM for T-MMAE. Simulations show mean and SEM for n=100 simulations. In most 

cases, more effective treatments result in a larger fraction of resistant cells. 
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Supplementary Tables 

 

 

Table S.1 Drug Dynamics Variables 

Variables Unit Description 
ADCc nM ADC in the central compartment
ADCp nM ADC in the peripheral compartment
ADC or ADCtumor nM Free ADC in the tumor 
Tfree nM Free Target
BADC nM ADC bound to Target 
BADC,lys nM Bound ADC in the lysosome 
Plys nM Payload in the lysosome 
Pint nM Payload not bound to intracellular 

target
Pb nM Payload bound to intracellular target
Pext nM Payload free extracellular 
Abfree nM Free bare antibody 
BAb nM Bare antibody bound to Target

 

 

  



Table S.2 Model Parameters 

Parameter Value Unit Description Reference 
k10 4.55 x 

10-6 
s-1 Total antibody clearance (Singh & Shah, 2019) 

k12 8.06 x 
10-6 

s-1 Antibody clearance for compartment 1 to 2 (Singh & Shah, 2019) 

k21 1.33 x 
10-5 

s-1 Antibody clearance for compartment 2 to 1 (Singh & Shah, 2019) 

V1 1.2 x 
10-3 

L Volume central compartment (Menezes, Cilliers, Wessler, 
Thurber, & Linderman, 2020)

kon 7.1 x 
105 

M-1s-1 ADC binding rate constant (Bostrom, Haber, Koenig, 
Kelley, & Fuh, 2011)

Kd 0.5 nM  ADC equilibrium dissociation constant (Bostrom et al., 2011) 
koff 3.5 x 

10-4 
s-1 ADC dissociation rate constant (Bostrom et al., 2011) 

ke 3.3 x 
10-5 

s-1 ADC internalization rate constant (Thurber, Zajic, & Wittrup, 
2007) 

kdeg 8 x 10-6 s-1 ADC lysosomal degradation rate constant (Maass, Kulkarni, Betts, & 
Wittrup, 2016) 

kin,DM1 5.95 x 
10-5 

s-1 DM1 rate constant from the lysosome to cytosol (Khera, Cilliers, Bhatnagar, & 
Thurber, 2018) 

kin,p DM1 5.95 x 
10-5 

s-1 DM1 cell internalization rate constant (Khera et al., 2018) 

kout DM1 3.94 x 
10-5 

s-1 DM1 rate constant from the lysosome to cytosol (Khera et al., 2018) 

kin,MMAE 1.41 x 
10-3 

s-1 MMAE rate constant from lysosome to cytosol (Khera et al., 2018) 

kin,p MMAE 1.41 x 
10-3 

s-1 MMAE cell internalization rate constant (Khera et al., 2018) 

kout MMAE 6.87 x 
10-4 

s-1 MMAE rate constant from lysosome to cytosol (Khera et al., 2018) 

kon,p  8333 M-1s-1 DM1 and MMAE binding rate constant to 
intracellular target

(Singh et al., 2016) 

koff,p  0.003 s-1 DM1 and MMAE unbinding rate constant (Singh et al., 2016) 
DARDM1 3.5 - DM1 to antibody ratio (Poon et al., 2013) 
DARMMAE 4 - MMAE to antibody ratio (Singh & Shah, 2019) 
Rs 2.75 x 

10-11 
M/s Target synthesis (Thurber & Weissleder, 2011a) 

Ttotal 5 x104 - 
1x106 

receptors/cell Total surface targets per cell Varied 

Ptotal 20 uM Total microtubule concentration per cell (Khera et al., 2018) 
ε 0.24 - Void fraction of ADC and Ab (Schmidt & Wittrup, 2009) 
εpay 0.44 - Void fraction of payload (Bhatnagar, Deschenes, Liao, 

Cilliers, & Thurber, 2014; 
Khera et al., 2018) 

DADC 1 x 10-

11 
m2/s Effective Diffusivity of ADC and Ab (Thurber & Weissleder, 2011b) 

DDM1 9.8 x 
10-12 

m2/s Effective Diffusivity of DM1 (Khera et al., 2018) 

DMMAE 1.4 x 
10-11 

m2/s Diffusivity of MMAE (Khera et al., 2018) 

PADC 3 x 10-9 m /s Vascular permeability of ADC and Ab (Yuan, 1995) 
Ppay 1 x 10-4 m/s Vascular permeability of the payload (Thurber & Weissleder, 2011b) 
Pmax, DM1 0.0014 - Maximum probability for cell killing for DM1 Calibrated 
Km, DM1 800 nM Michaelis-Menten constant for DM1 Calibrated 
Pmax, MMAE 0.006 - Maximum probability for cell killing for 

MMAE
Calibrated 



Km, MMAE 600 nM Michaelis-Menten constant for MMAE Calibrated 
td (in vivo) 5-17 days In vivo doubling time Calibrated 
td (in vitro) 1-2.5 days In vitro doubling time Estimated 

*1 million receptors per cell corresponds to 833nM receptors where each cell occupies about 2x 10-12 L.  
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Figure S.1: Model schematic. 
(A) Plasma dynamics are described with a two-compartment model (Eqs. S.1-2). (B) From the 
blood vessel, drugs enter the interstitial tissue (Eq. S.3 - Robin boundary condition), diffuse 
through it (Eq. S.4), and bind to HER2 receptors on cancer cells (Eq. S.5). There, ADCs are 
internalized and degraded. After the payloads DM1 and MMAE are released, they either bind to 
microtubules or escape the cancer cell. From the interstitial tissue, payloads diffuse and enter 
adjacent cells or intravasate into the blood vessels and wash out of the tumor (Eqs. S.6-14). (C) 
Cells with high or low receptor expression or sensitivity to drug, as well as blood vessels, behave 
based on the changes in the environment. All variables, parameters, and rate constants for model 
dynamics are shown in Table S.1 and Table S.2. 
 
 

 
 

 

  



 

 

Figure S.2: Model fit to experimental blood vessel density. 
The experimental data on vascular surface area (Hilmas & Gillette, 1974) show that blood vessel 
density decreases with an increase in the tumor volume.  To account for this in the model, we used 
an exponential decay (Eq. 1). From the published experimental data, we considered the tumor 
volumes from 250 mm3 to 1500 mm3 and their respective decrease in vascular density.  The new 
fraction of active blood vessel is then a function of the simulated tumor volume. As the tumor 
volume increases, the vascular density decreases following the rate shown here. At each agent time 
step, if the new fraction of active blood vessel is lower than the vessel density after the decrease is 
calculated, a randomly chosen blood vessel in the simulation becomes functional. 
 
 



 
 
Figure S.3: Calibration and validation of the ABM for T-DM1.  
(A) The model was calibrated to T-DM1 data based on the concentration payload bound to its target and to 
experimental data in (Cilliers, Menezes, Nessler, Linderman, & Thurber, 2018). In our original version of 
the model, we calibrated to the total concentration of the payload inside of the cell; the recalibration here 
allows delivery of T-DM1 to be described with the same framework as T-MMAE.  Calibrated model 
parameter values (Pmax and KM for each payload) were fit using the response from ADC-only treatment (i.e. 
0:1 ratio of trastuzumab to T-DM1) and are given in Table 2. (B-D) After fitting the cell sensitivity 
parameters Pmax and KM in A, the simulations were run with coadministration of the ADC with trastuzumab 
to compare with experimental results for model validation. The simulated efficacy of a constant ADC dose 
(3.6 mg/kg) combined with trastuzumab at a ratio of 1:1, 3:1, and 8:1 (trastuzumab to ADC ratio) shows 
similar efficacy as found experimentally (data from (Cilliers et al., 2018)) 
  



 

 
 
Figure S.4: Calibration and validation of the ABM for T-MMAE.  
(A) The model was calibrated to T-MMAE using in vivo data from Singh et al at 3mg/kg (Singh, Seigel, et 
al., 2020).  Two parameters were fit to calibrate the model: the Pmax and KM of MMAE, which are given in 
Table 2. (B-D) The model was run with doses of 10mg/kg ADC, 3.6mg/kg ADC, and 3.6 mg/kg with a 3:1 
ratio of trastuzumab to ADC and compared to experimental data from (Singh, Guo, et al., 2020) for 
validation. 
  



 

 
 
Figure S.5: Fractionated dosing with or without angiogenesis and comparison with 
experimental data. 
(A) Using the experimental protocol from (Cilliers et al., 2018), 5 x 106 NCI-N87 cells were 
inoculated in the rear flank of nude mice. When the tumor reached approximated 250 mm3, 3 doses 
of 2.4 mg/kg T-DM1 were given at days 0, 7, and 14. The tumor volume was measured every other 
day until 70 days or until it reached 2000 mm3.  (B-C) Simulations with the same doses and 
frequencies were performed before (Menezes et al., 2020) and after (this work) the addition of 
angiogenesis into the model. The inclusion of angiogenesis into the model better predicts tumor 
efficacy and tumor uptake. 



 
 
Figure S.6: Distribution of T-DM1 and T-MMAE and their respective payloads at maximum uptake 
for the same dose and DAR (3 mg/kg and DAR 3).  
(A-B) Distribution of ADCs T-DM1 and T-MMAE (both 3 mg/kg with DAR 3) on the surface of the cells 
at 24 hrs showing the same ADC penetration from the matched antibody doses. (C-D) Distribution of 
microtubule-bound payload for DM1 and MMAE. Despite T-DM1 and T-MMAE having the same 
distribution on the surface of the cells, the MMAE payload diffuses deeper into the tissue to reach all cells 
with > 1 nM payload as seen in Fig.2.  



 
 
Figure S.7: Percentage of tumor cells with concentration of payload bound.  
Percentage of tumor cells with concentrations greater or equal to 150nM, between 150nM and 1nM, and 
lower than 1nM for coadministration of T-DM1 (3.6 mg/kg and DAR 3.5) or T-MMAE (1.8 mg/kg and 
DAR 4) with trastuzumab. (A-C) Uptake of DM1 for coadministration of T-DM1 and trastuzumab for 
tumors with 100%, 70%, 30%, and 0% of cells with 1million receptors per cell vs 50 thousand receptors 
per cell. (D-F) Uptake of MMAE for coadministration of T-MMAE and trastuzumab for tumors with 100%, 
70%, 30%, and 0% of cells with 1 million receptors per cell vs 50 thousand receptors per cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Model Equations 

 These model equations describe the plasma dynamics (using a biexponential compartment with 

no target-mediated drug disposition), extravasation and distribution in the grid (boundary conditions and 

diffusion), drug dynamics (intracellular processing for non-bystander and bystander payloads), and cell 

dynamics (e.g. cell division and cell death). More on this model can be found in (Menezes et al., 2020). 

 

ADC plasma clearance: [ ] = −𝑘  . [ADC ] −  𝑘  . [ADC ] +  𝑘 . [ADC ]     (S.1) 

=  −𝑘 . [ADC ] +  𝑘  . [ADC ]     (S.2) 

where the concentration of ADC at time zero is ADCc(0) = Dose/Vd (Vd is plasma volume of 

distribution) and ADCp(0) = 0. The rate constants k12 and k21 were calibrated to account for the transport 

rate between the central and peripheral compartments (k12 = CLD /V1 and k21 = CLD/V2 where CLD is the 

transport clearance between compartments and V2 is the volume of the peripheral compartment). These 

rates are independent of binding in the tumor. Therefore, it is assumed there is negligible targeted mediated 

drug disposition (TMDD) in these simulations. (Mager & Jusko, 2001) 

The boundary conditions at the blood vessels and at the edge of the tumor respectively are: 

 −D [ ] = P(ADC − [ ] )      (S.3) 
 

 −D [ ] = 0      (S.4) 
 

Diffusion of ADC in the tumor tissue is represented by the diffusion in the 2D cartesian 
coordinates: 
 
 [ ] = 𝐷( [ ] + [ ])     (S.5) 

ADC dynamics in the cancer cells are described below: 
  [ ] = − 𝑘 [ ] . 𝑇 +  𝑘 [𝐵 ]      (S.6) 



 [ ] = 𝑅 −  𝑘 [ ] . 𝑇 +  𝑘 [𝐵 ] −  𝑘 . 𝑇 +  𝑘 [𝐵 ] −  𝑘 𝑇   (S.7) 
 [ ] = 𝑘 [ ] . 𝑇 −  𝑘 [𝐵 ] − 𝑘 [𝐵 ]     (S.8) 
 [ , ] = 𝑘 [𝐵 ] −  𝑘 𝐵 ,     (S.9) 
 [ ] =  𝑘 𝐵 , 𝐷𝐴𝑅 −  𝑘 𝑃     (S.10) 
 𝑑[𝑃 ]𝑑𝑡 =  𝑘 𝑃 +  𝑘 , 1 − 𝜀𝜀 [𝑃 ] −  𝑘 , [𝑃 ] − ,( ) 𝑃 −  [𝑃 ] [𝑃 ] +  𝑘 ,  [𝑃 ]   (S.11) 

 [ ] =   ,( ) 𝑃 −  [𝑃 ] [𝑃 ] −  𝑘 ,  [𝑃 ]   (S.12) 

 [ ] =  − 𝑘 , [𝑃 ] +  𝑘 , [𝑃 ]    (S.13) 

 [ ] = −𝑘 . 𝑇 +  𝑘 [𝐵 ]    (S.14) 
 [ ] = 𝑘 . 𝑇 −  𝑘 [𝐵 ] − 𝑘 [𝐵 ]    (S.15) 

 
where Rs is receptor synthesis (Rs=ke 

.Ttotal) and Tfree(0) = Ttotal.   
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