A physiological-based pharmacokinetic model embedded with a target-mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants, Huntsville, AL (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

Running title: warfarin PBPK model with TMDD mechanism

Correspondence Author:

Richard C. Brundage, PharmD, PhD
University of Minnesota
717 Delaware St. SE, Room 464
Minneapolis, MN 55455
612-624-3115 fax: 612-626-2595
brund001@umn.edu

Word count, abstract: 246
Word count, introduction: 734
Word count, discussion: 1245
Number of text pages: 35
Number of figures: 6
Number of tables: 6
Number of references: 53

Abbreviations:

CYP: cytochrome P450
DDI: drug-drug interaction
TMDD: target-mediated drug disposition
PK: pharmacokinetics
PD: pharmacodynamics
CL: clearance
PBPK: physiology-based pharmacokinetic
FDA: Food and Drug Administration
AUC_{0-360} : area-under-the-curve from time 0 to 360 hours
CV: coefficient of variations

Abstract

Warfarin, a commonly prescribed oral anticoagulant medication, is highly effective in treating deep vein thrombosis and pulmonary embolism. However, the clinical dosing of warfarin is complicated by high inter-individual variability in drug exposure and response and its narrow therapeutic index. CYP2C9 genetic polymorphism and drug-drug interactions (DDIs) are substantial contributors to this high variability of warfarin pharmacokinetics (PK), among numerous factors. Building a physiological-based pharmacokinetic (PBPK) model for warfarin is not only critical for a mechanistic characterization of warfarin PK , but also useful for investigating the complicated dose-exposure relationship of warfarin. Thus, the objective of this study was to develop a PBPK model for warfarin which integrates information regarding CYP2C9 genetic polymorphisms and their impact on DDIs. Generic PBPK models for both Sand R-warfarin, the two enantiomers of warfarin, were constructed in R with the mrgsolve package. As expected, a generic PBPK model structure did not adequately characterize the warfarin PK profile collected up to 15 days following the administration of single oral dose of warfarin, especially for S-warfarin. However, following the integration of an empirical targetmediated drug disposition (TMDD) component, the PBPK-TMDD model well characterized the PK profiles collected for both S- and R-warfarin in subjects with different CYP2C9 genotypes. Following the integration of enzyme inhibition and induction effects, the PBPK-TMDD model also characterized the PK profiles of both S- and R-warfarin in various DDI settings. The developed mathematic framework may be useful in building algorithms to better inform the clinical dosing of warfarin.

Significance Statement

The present study found a traditional physiology-based pharmacokinetic (PBPK) model cannot sufficiently characterize the pharmacokinetic profiles of warfarin enantiomers when warfarin is administered as a single dose, but a PBPK model with a target-mediated drug disposition mechanism can. After incorporating CYP2C9 genotypes and drug-drug interaction information, the developed model is anticipated to facilitate the understanding of warfarin disposition in subjects with different CYP2C9 genotypes in the absence and presence of both cytochrome P450 inhibitors and cytochrome P450 inducers.

Introduction

Warfarin is one of the most widely used oral anti-coagulants worldwide (Barnes et al., 2015). Warfarin exhibits its pharmacological anti-coagulation effects by inhibiting the vitamin K epoxide reductase to prevent the conversion of vitamin K epoxide to reduced vitamin K , which disrupts the vitamin K dependent blood coagulation cascade (Goodman et al., 2011; Matalqah, 2019). Although warfarin is highly efficacious in reducing the risk of stroke in arterial fibrillation patients, the narrow therapeutic index and high inter-individual variability in both drug exposure and response complicates its dosing (Jaffer and Bragg, 2003; Ufer, 2005; Flora et al., 2017). An inappropriate maintenance dose of warfarin resulting in drug exposure beyond the therapeutic window has been found to either compromise the therapeutic effects or introduce life-threatening bleeding risk (Kawai et al., 2014; Trusler, 2019).

Warfarin is administered as a racemic mixture. Although both S - and R -warfarin exhibit pharmacological activity, S-warfarin is suggested to be 3-7 fold more active than R-warfarin (Flora et al., 2017; Udoamaka Ezuruike, 2019). The elimination of warfarin is primarily via cytochrome P450 (CYP) mediated metabolism with negligible urinary excretion of the parent enantiomers (Ufer, 2005). Each warfarin enantiomer form five mono-hydroxylated metabolites, namely 4', 6, 7, 8, 10 hydroxylated (OH) S- or R-warfarin, mediated by various CYPs. Swarfarin is metabolized primarily by CYP2C9, whereas R-warfarin is metabolized by several CYP enzymes including CYP1A2, CYP2C19 and CYP3A4 that have comparable contributions (Ufer, 2005; Flora et al., 2017; Pouncey et al., 2018).

CYP2C9 is subject to genetic polymorphism, which significantly influences warfarin exposure, particularly with respect to the $\mathrm{S}-7-\mathrm{OH}$ metabolite, which is the primary elimination route for S warfarin (Xue et al., 2017). CYP2C9 *2 (Arg144Cys) and *3 (Ile359Leu) variant alleles are associated with reduced metabolic activity and thus a higher exposure of the more pharmacologically active S-warfarin and an increase in the risk of dose-dependent adverse effects (Hamberg et al., 2007; Hamberg et al., 2010; Xue et al., 2017). More importantly, the frequency of the CYP2C9*2 and *3 alleles can be as high as 15% in certain populations, such as Caucasians (Flora et al., 2017). Although the effect of these variants on warfarin exposure have been known for a long time, the impact of CYP2C9 *2 and *3 on the drug-drug interactions (DDIs) of warfarin has only recently been investigated. In addition, CYP2C9 *1B (-3089G>A
and -2663delTG), a regulatory genetic polymorphism, may further complicate the dosing of warfarin in a DDI setting (Chaudhry et al., 2010).

Leveraging physiological characteristics and the drug-related properties, physiological-based pharmacokinetic (PBPK) modeling is a valuable tool in model-informed drug development (Zhuang and Lu, 2016; Zhang et al., 2020). Importantly, the value of PBPK modeling in various drug development applications is gaining increasing acceptance by regulatory agency such as the US Food and Drug Administration (FDA) in recent years (Grimstein et al., 2019). An important aspect of PBPK modeling in drug development applications is predicting clinical DDIs of drugs (Grimstein et al., 2019). A successful implementation of PBPK modeling is useful not only in gaining more mechanistic insights for the investigated products, but also in supporting clinical decision-making and regulatory submission (Alhadab and Brundage, 2020).

Although the clinical use of warfarin can be traced back to the 1950s, the impact of the CYP2C9 genotypes on the clinical DDIs of warfarin is poorly understood (Flora et al., 2017). Taking advantage of a single dose warfarin clinical DDI study in healthy volunteers with various CYP2C9 genotypes and a target-mediated drug disposition (TMDD) model, our previous population PK analysis found subjects with CYP2C9*2 and *3 variants experience less reduction in S-warfarin clearance (CL) when warfarin is administered together with the CYP inhibitor fluconazole. In contrast, this population experienced a greater increase in S-warfarin CL when warfarin is administered together with the CYP inducer rifampin as compared to individuals possessing the wild-type genotype (CYP2C9*1/*1) (Cheng et al., 2022a). However, a more physiologically relevant PBPK model has not been developed to explain the CYP2C9 genotype dependent DDIs of warfarin. In addition, it is unclear whether the TMDD mechanism utilized in our population PK analysis is needed in a PBPK model structure to explain the single dose warfarin PK profiles collected up to 15 days following the drug administration. Thus, the objective of this study was to use a PBPK modeling approach to investigate the DDIs of warfarin in the presence of various CYP2C9 genotypes using the known CYP inhibitor fluconazole and CYP inducer rifampin.

Methods

Warfarin PBPK Model Structure

A diagram of the PBPK model is shown in Figure 1 comprising 19 compartments in total. The PBPK model was compiled and implemented in R (version 3.6.3) using mrgsolve package (version 0.11 .1) with mass balance differential equations (Elmokadem et al., 2019). The areas-under-the-curve (AUCs) were calculated using R package PKPDmisc (version 3.0.0).

The full PBPK model structures of S- and R-warfarin were adapted from initial literature models with physiological parameter values as shown in Table 1 (Peters, 2008). Standard weight-based allometric scaling coefficients of 0.75 and 1 were added on flow- and volume-based physiological parameters, respectively (West et al., 1999; Anderson and Holford, 2009). The structure of the initial PBPK model incorporates 14 compartments representing various physiological organs connected via arterial and venous blood flow components. In general, blood flows from the venous blood compartment and through the lungs into the arterial blood compartment, which further distributes blood into different organs. The physicochemical properties and blood and plasma binding related parameters were assumed to be the same between S- and R-warfarin, with values taken from the Sim-S-Warfarin compound file in Simcyp version 19 (Table 2) (Simcyp, 2020). Considering the relatively rapid and almost complete absorption of warfarin (Ufer, 2005), the advanced compartmental absorption and transit (ACAT) components of the original PBPK model (Peters, 2008) were not incorporated to reduce the model complexity. A simplified first-order absorption model was used instead, with drug administered into a gut lumen (GL) compartment. The organ distribution of S- and Rwarfarin was assumed to follow a perfusion-rate limited manner into well-stirred physiological organs. The partition coefficients of S- and R-warfarin were assumed to be the same and were predicted using the Sim-S-Warfarin compound file with method 2 in Simcyp version 19 (Table 3) (Peters, 2008; Simcyp, 2020). The general form of the differential equation for a typical organ without elimination (brain (BR), spleen (SP), pancreas (PA), stomach (ST), heart (HT), muscle (MU), adipose (AD), skin (SK), bone (BO) and thymus (TH)) can be expressed using equation (1):

$$
\begin{equation*}
\frac{d C_{\text {organ }} \times V_{\text {organ }}}{d t}=Q_{\text {organ }} \times\left(C_{\text {arterial }}-\frac{C_{\text {organ }}}{\frac{K p_{\text {organ }}}{B P}}\right) \tag{1}
\end{equation*}
$$

Corgan is the concentration of drug in each organ, Vorgan is the organ volume, Qorgan is the tissue blood flow, Carterial is the drug concentration in arterial blood, Corgan is the drug concentration in each organ, Kporgan is the tissue partition coefficient defined as tissue to plasma drug concentration ratio and BP is the blood to plasma concentration ratio of the drug. The equation for gut (GU) is also expressed as equation (1) in general except for an additional first-order absorption input from the gut lumen (GL) compartment.

The equation for lung (LU) is expressed as equation (2) as shown below:

$$
\begin{equation*}
\frac{d C_{\text {lung }} \times V_{\text {lung }}}{d t}=Q_{L U} \times\left(C_{\text {venous }}-\frac{C_{L U}}{\frac{K p_{L U}}{B P}}\right) \tag{2}
\end{equation*}
$$

Elimination of S- and R-warfarin was incorporated for both liver and kidney. The clearance (CL) parameter values were taken from our previous warfarin population PK study (Table 3) (Cheng et al., 2022a). The differential equation for liver (LI) is shown as equation (3) assuming liver is receiving blood flow from the gut (GU), spleen (SP), hepatic artery (HA), pancreas (PA) and stomach (ST):

$$
\begin{align*}
& \frac{d C_{\text {liver }} \times V_{\text {liver }}}{d t} \\
& \\
& \quad=Q_{G U} \times\left(\frac{C_{G U}}{K p_{G U} / B P}\right)+Q_{S P} \times\left(\frac{C_{S P}}{K p_{S P} / B P}\right)+Q_{H A} \times C_{\text {arterial }} \\
& \tag{3}\\
& \quad+Q_{P A} \times\left(\frac{C_{P A}}{K p_{P A} / B P}\right)+Q_{S T} \times\left(\frac{C_{S T}}{K p_{S T} / B P}\right)-Q_{L I} \times\left(\frac{C_{L I}}{\frac{K p_{L I}}{B P}}\right) \\
& \\
& \quad-C L_{\text {int }} \times \frac{C_{L I} \times f_{u p}}{K p_{L I}} \text { (3) }
\end{align*}
$$

$C L_{\text {int }}$ represents the hepatic intrinsic $C L$ and $f_{\text {up }}$ represents the free fraction in plasma.

Similarly, the differential equation for the other elimination organ kidney (KI) is expressed as equation (4):

$$
\begin{equation*}
\frac{d C_{\text {kidney }} \times V_{\text {kidney }}}{d t}=Q_{K I} \times\left(C_{\text {arterial }}-\frac{C_{K I}}{\frac{K p_{K I}}{B P}}\right)-C L_{\text {int } K I} \times \frac{C_{K I} \times f_{u p}}{K p_{K I}} \tag{4}
\end{equation*}
$$

The hepatic $\mathrm{CL}_{\text {int }}$ was calculated in a retrograde fashion from the CL terms using equation (5) (Yang et al., 2007; Alhadab and Brundage, 2020):

$$
\begin{equation*}
C L_{i n t}=\frac{Q_{L I} \times C L_{L I}}{f_{u p} \times\left(Q_{L I}-\frac{C L_{L I}}{B P}\right)} \tag{5}
\end{equation*}
$$

CLli represents the hepatic CL calculated as the difference between overall CL and renal CL (CLR) as shown in Table 3. Similarly, renal CL was used to derive the intrinsic clearance by the kidney (CLintKI) using the same method (equation (6)).

$$
\begin{equation*}
C L_{i n t K I}=\frac{Q_{K I} \times C L_{K I}}{f_{u p} \times\left(Q_{K I}-\frac{C L_{R}}{B P}\right)} \tag{6}
\end{equation*}
$$

An empirical TMDD mechanism assuming constant total receptor levels was further included in the venous blood compartment to account for saturable tissue binding of warfarin. The TMDDrelated parameters were taken from our warfarin population PK study (Table 3) (Cheng et al., 2022a). The differential equations for the receptor compartment (R) and the drug-receptor complex compartment (DR) are shown as equations (7) and (8):

$$
\frac{d R}{d t}=-K_{o n} \times\left(\frac{C_{\text {venous }}}{B P}\right) \times R+K_{o f f} \times D R(7)
$$

$$
\begin{equation*}
\frac{d D R}{d t}=K_{o n} \times\left(\frac{C_{v e n o u s}}{B P}\right) \times R-K_{o f f} \times D R \tag{8}
\end{equation*}
$$

R is the receptor concentration and DR is the drug-receptor complex concentration. Kon and $\mathrm{K}_{\text {off }}$ are the association and dissociation rate constants. The initial condition for R was set as Rmax and the initial condition for DR was set as 0 .

The differential equations for venous and arterial blood compartments are shown as equations (9) and (10).

$$
\begin{gather*}
\frac{d C_{\text {venous }} \times V_{\text {venous }}}{d t}=\sum Q_{\text {organ }} \times\left(\frac{C_{\text {organ }}}{\frac{K p_{\text {organ }}}{B P}}\right)-Q_{L U} * C_{\text {venous }}-K_{\text {on }} \times\left(\frac{C_{\text {venous }}}{B P} \times V\right) \times R+ \\
K_{\text {off }} \times(D R \times V)(9) \\
\frac{d C_{\text {arterial }} \times V_{\text {arterial }}}{d t}=Q_{L U} \times\left(\frac{C_{L U}}{\frac{K p_{L U}}{B P}}-C_{\text {arterial }}\right)(10) \tag{10}
\end{gather*}
$$

In equation (9), the blood flows from brain, kidney, liver, heart, muscle, adipose, skin, bone and thymus are summed and are assumed as flowing to the venous blood compartment. V is an arbitrary volume term fixed at 1 L to convert a concentration into an amount. The plasma drug concentrations are predicted as $\mathrm{C}_{\text {venous }} / \mathrm{BP}$ for further analysis.

Multiplication factors were added on the absorption rate constants (MFka), tissue partition coefficients (MFkp), blood to plasma ratios (MFBP), free drug fractions in plasma (MFfup), association rate constant (MFkon), dissociation rate constant (MFkoff) and total receptor levels (MFRmax) for further parameter optimization, with initial values set at 1 (Peters, 2008; Alhadab and Brundage, 2020).

Clinical PK Data

The S- and R-warfarin plasma PK data used for developing our previous warfarin population PK model were utilized in this study for visualizing the PBPK model predictions (Cheng et al., 2022a).

The warfarin PK data was collected in a clinical drug-drug interaction (DDI) study conducted with 29 healthy subjects with various CYP2C9 genotypes (CYP2C9 *1/*1, *1B/*1B, *1/*3, *2/*3 and *3/*3). Briefly, after enrollment, each subject went through three treatment periods. During treatment period one, subjects were treated with a single 10 mg oral dose of racemic warfarin. Blood samples were collected up to 15 days post-dose based on the subject's CYP2C9 genotype, followed by a 7 -day washout phase before entering the next treatment period. During treatment period two, subjects were randomized to be treated with either 400 mg fluconazole or 300 mg rifampin once daily for 7 days consecutively, to allow the concentration of each interacting drug reach steady state. On day 8 , a single 10 mg oral dose of warfarin was administered in each subject with blood samples collected following the same sampling scheme as the treatment period one, followed by another 7 day washout phase. During the sampling phase of period two, interacting drugs were continuously administered with the same dosing regimens to maintain a steady state concentration. The design of treatment period three was the same as treatment period two, with subjects treated with the alternative interacting drug.

Model Parameter Optimizations

The S- and R-warfarin PK profiles in CYP2C9 * $1 / * 1$ subjects treated with warfarin only were used for initial model optimization. The multiplication factors (MFka, MFkp, MFBP and MFfup) in the PBPK model without TMDD and the multiplication factors (MFka, MFkp, MFBP, MFfup, MFkon, MFkoff and MFRmax) in the PBPK model with TMDD were adjusted $0.1,0.25,0.5,1,2,4,10$ fold for the simulations. The resulting PBPK model predictions were overlaid with the S - and Rwarfarin PK profiles in subjects with CYP2C9 *1/*1 treated with warfarin only to visualize the sensitivity of these multiplication factors on model predictions.

For the S-warfarin PK profiles in CYP2C9 *1/*1 subjects treated with warfarin only, MFkp and MFRmax were considered to be sensitive on model predictions and were selected to be further optimized. For R-warfarin PK profiles in CYP2C9 ${ }^{*} 1 /{ }^{*} 1$ subjects treated with warfarin only, MFkp, MFRmax and MFkon were considered to be sensitive on model predictions and were selected to be further optimized. Optimization was performed in R (version 3.6.3) using the Nelder-Mead method with the weighted least squared objective function (Baron, 2019).

Following parameter optimization, the median predictions of the S- and R-warfarin PK profiles, in subjects with various CYP2C9 genotypes (*1/*1, *1B/*1B, *1/*3, *2/*3 and *3/*3) when warfarin is administered alone, were simulated and overlaid with the observations to visualize the model predictions.

PK Models for Interacting Drugs

Empirical PK models for fluconazole and rifampin were extracted from the literature and translated in R (version 3.6.3) using mrgsolve package (version 0.11.1) (Roos et al., 2008; Svensson et al., 2018). Briefly, the extracted fluconazole PK model is a one-compartment model with linear elimination, linear absorption, and the absorption lag time. The extracted PK model for rifampin is a one-compartment PK model with a nonlinear (mechaelis-menten) elimination, a transitcompartment absorption process, a dose-dependent bioavailability component and an enzyme turnover model to account for the auto-induction of rifampin. Both the fluconazole and the rifampin models were extracted with fixed and random effects. Fluconazole and rifampin PK profiles extracted from the literature were used for validating model predictions (Gross et al., 2001; Kumar et al., 2008; Wilkins et al., 2008; Seng et al., 2015).

Incorporating Drug-Drug Interactions into Warfarin PBPK Models

The hepatic intrinsic CL values for S - and R -warfarin were separated into five metabolic pathways (4'-, 6-, 7-, 8-, 10-monohydroxylated (OH)) pathways. The proportion of each metabolite as a function of the overall clearance was based on the results of our previous warfarin metabolites population PK modeling study (Cheng et al., 2022b). The metabolic elimination of S- and Rwarfarin was assumed to be completely mediated by these five metabolic pathways. Thus, the metabolite proportions presented in the original study for each parent compound were summed and rescaled to 100% to calculate the new proportions of hepatic intrinsic CL mediated by the various metabolic pathways for use in this modeling analysis (Table 4).

The intrinsic hepatic CL of each metabolic pathway under the inhibitory effect of fluconazole was calculated using equation (11):

$$
\begin{equation*}
C L_{\text {int }, \text { meta } i}^{\text {inh }}=\frac{C L_{\text {int,meta } i}}{1+\frac{C_{f l u c}}{K_{i}}} \tag{11}
\end{equation*}
$$

$\mathrm{CL}_{\mathrm{int}, \text { meta }}^{\mathrm{inh}}$ is the intrinsic hepatic CL of a particular metabolite pathway in the presence of the inhibitor fluconazole. Cfluc is the fluconazole plasma concentration predicted using an empirical PK model. K_{i} is the fluconazole inhibition constant.

The intrinsic hepatic CL of each metabolic pathway under the induction effect of rifampin was calculated using equation (12).

$$
\begin{equation*}
C L_{\text {int }, \text { meta } i}^{i n d}=C L_{\text {int }, \text { meta } i} \times\left(1+\frac{\left(\text { ind }_{\max }-1\right) \times C_{\text {rifa }}}{\text { ind }_{C 50}+C_{\text {rifa }}}\right) \tag{12}
\end{equation*}
$$

CLind $L_{\text {int,meta } i}^{\text {ind }}$ is the intrinsic hepatic CL of a particular metabolite pathway in the presence of the inducer rifampin. Crifa is the rifampin plasma concentration predicted using an empirical PK model. ind $_{\text {max }}$ and indc50 ${ }^{2}$ are the maximum fold increase in $\mathrm{CL}_{\text {int }}$ that can occur following rifampin induction and the concentration of rifampin producing 50% of maximum induction of a particular metabolic pathway.

The overall hepatic intrinsic CL of each parent compound in the presence of fluconazole or rifampin was calculated as the summation of the hepatic intrinsic CL values of each metabolite pathway, under inhibition or induction conditions.

The fluconazole and rifampin effects on CLR were included as multiplication factors based on a warfarin parent compound population PK analysis (Cheng et al., 2022a).

Population Simulations

Following the development of the S- and R- warfarin PBPK models and the validation of the fluconazole and rifampin empirical PK models, 30% inter-individual variability was assumed as being log-normally distributed for the absorption rate constants, CL terms, TMDD-related
parameters and partition coefficients (Kp) for performing the population simulations (Einolf et al., 2017). A virtual population with 500 subjects was simulated, with 100 subjects in each CYP2C9 genotype group $(* 1 / * 1, * 1 B / * 1 B, * 1 / * 3, * 2 / * 3$ and $* 3 / * 3)$. The mean body weight of each genotype group was simulated based on the demographic information of the original study (Cheng et al., 2022a). Population-level simulations were performed using the dosing regimens of warfarin, fluconazole and rifampin in the original study (Cheng et al., 2022a). To visualize the predictions, the medians, $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the simulated PK profiles at each time point were calculated and overlaid with the observations of either S- or R-warfarin PK profiles in subjects with different CYP2C9 genotypes under different co-treatments. The model codes for final S- and R-warfarin PBPK models, as well as the S- and R-warfarin PBPK models with the interacting drug components, are provided in supplementary materials.

Results

PBPK Model Structure

The PBPK model structure for S- and R-warfarin is shown in Figure 1, with 14 physiological organ compartments (lungs (LU), heart (HT), brain (BR), muscle (MU), adipose (AD), skin (SK), spleen (SP), pancreas (PA), liver (LI), stomach (ST), gut (GU), bone (BO), kidney (KI) and thymus (TH)), venous and arterial blood compartments, a gut lumen (GL) compartment for drug administration, an empirical receptor compartment (R) and an empirical drug-receptor complex compartment (DR). Following the administration of drug in GL, drug is assumed to follow a first-order absorption (abs) into GU with a complete bioavailability and no delay (Table 2). LI and KI are assumed to be the organs of elimination. The empirical TMDD mechanism is arbitrarily embedded in the venous blood compartment.

To incorporate a drug-drug interaction mechanism, the hepatic $C L_{\text {int }}$ of S - and R-warfarin is separated into five metabolic pathways ($4^{\prime}-\mathrm{OH}, 6-\mathrm{OH}, 7-\mathrm{OH}, 8-\mathrm{OH}$ and $10-\mathrm{OH}$). Fluconazole inhibition and rifampin induction effects were included in each metabolite pathway using the approach describe in the methods section. The fluconazole and rifampin effects were also included as multiplication factors on the CLr. The inhibitory and induction parameters values used for simulations are displayed in Table 5 and Table 6, respectively.

Model Parameter Optimizations

The model predictions of the S- and R-warfarin PK profiles, with and without a TMDD mechanism, in CYP2C9 ${ }^{*} 1 / * 1$ subjects when warfarin is administered alone were overlaid with the observed values (Figure 2). Inclusion of the TMDD mechanism substantially improved the model predictions for S-warfarin, but only slightly improved the model predictions for R-warfarin.

Further sensitivity analyses were conducted on the multiplication factors, for both S- and Rwarfarin PBPK models with and without the TMDD mechanism, to visualize the influence of each factor on the model predictions (Figure S1-S4). MFka and MFfup had minimal influence on the model predictions for both the S- and R-warfarin PBPK models, with and without TMDD. For S-
warfarin, MFkp, MFBP and MFRmax substantially influenced the model predictions, whereas MFkon and MFkoff influenced the model predictions, but to a lesser extent. For R-warfarin, MFkp and MFBP substantially influenced the model predictions, whereas MFRmax, MFkon and MFkoff only slightly influenced the R-warfarin PK model predictions.

Sensitive parameters MFkp, MFRmax and MFkon were selected for optimizations. Both optimizations converged successfully with the optimized values of the multiplication factors displayed in the table insert of Figure 2. Optimization of the multiplication factors further improved the model predictions for both S- and R-warfarin PK profiles (Figure 2).

The PBPK models including a TMDD mechanism that were achieved following the optimizations were expanded to incorporate subjects with various CYP2C9 genotypes when warfarin is administered alone. The predicted S-and R-warfarin PK profiles adequately characterized the observations (Figure 3).

Validation of the Fluconazole and Rifampin Model Predictions

Fluconazole and rifampin PK profiles were extracted from the literature. The simulations conducted with the empirical PK models were able to capture the literature extracted PK profiles of fluconazole and rifampin (Figure S5-S6). These models were incorporated into the optimized S- and R-warfarin PBPK models that included a TMDD mechanism and utilized for predicting Sand R-warfarin PK profiles in both inhibition and induction DDI settings.

Population Simulations

Population simulations for the S - and R-warfarin PK profiles when warfarin is administered alone were conducted following the incorporation of inter-individual variation. The optimized PBPK models that include a TMDD mechanism were able to adequately characterize the S - and Rwarfarin PK profiles when warfarin was administered alone (Figure 4). Following the incorporation of the fluconazole inhibition and the rifampin induction, the optimized PBPK models that included a TMDD mechanism were also able to characterize the S - and R-warfarin PK profiles in respective inhibition and induction DDI scenarios. (Figure 5 and 6).

The areas-under-the-curve from time 0 to 360 hours (AUC_{0-360}) were calculated based on the population simulation for both S- and R- warfarin across various CYP2C9 genotypes, when warfarin is administered alone or together with fluconazole or rifampin (Figures 4-6 table insets). The AUC ratios for S- and R-warfarin when warfarin is administered together with fluconazole are 1.67 to 2.68 and 1.55 to 1.83 , respectively (Figure 5 table inset). The AUC ratios for S- and Rwarfarin when warfarin is administered together with rifampin are 0.423 to 0.488 and 0.297 to 0.324 , respectively (Figure 6 table inset).

Discussion

Leveraging information from the literature and available clinical PK data from our previous studies, the present study develops a PBPK model framework for each warfarin enantiomer. The developed PBPK model was able to capture the plasma PK profiles of each warfarin enantiomer collected up to 15 days following the administration of a single oral dose of warfarin in subjects with various CYP2C9 genotypes under different co-medications. The developed PBPK models were able to characterize warfarin disposition in a more mechanistic manner and will be valuable for investigating the complicated dose-response relationship of warfarin.

Initially, a traditional PBPK model schematic was adapted from literature to predict warfarin PK profiles (Peters, 2008). However, we found a traditional PBPK schematic fails to explain the warfarin enantiomer PK profiles (especially S-warfarin) when collected up to 11 days in CYP2C9 *1/*1 subjects following a single dose of warfarin administration, no matter how the model parameters were adjusted (Figure 2, S1 and S3). Interestingly, dose-disproportionality of warfarin has been reported preclinically due to the presence of high-affinity and low-capacity binding sites of warfarin, which introduces the possibility of saturable tissue binding (Takada and Levy, 1979; Takada and Levy, 1980). Clinically, the saturable tissue binding of warfarin is observed as dose-dependent changes in the apparent volume of distributions (King et al., 1995). In fact, the term target-mediated drug disposition (TMDD) was first proposed by Dr. Gerhard Levy in 1994 on the basis of extensive preclinical PK research with small molecule compounds like warfarin (Levy, 1994). Dr. Levy also proposed a TMDD model for warfarin to account for the observed PK nonlinearity in apparent volume of distribution observed clinically (Levy et al., 2003). Although the TMDD model is used frequently for modeling biologics, this model is gaining more attention recently to account for the saturable tissue or plasma binding observed in the PK profiles of small molecule compounds (Mager and Jusko, 2001; An et al., 2015; An, 2017; Bach et al., 2019). Our previous population PK analysis also suggested a TMDD model was needed to characterize the warfarin PK profiles when collected up to 15 days following a single dose of warfarin after the administration of both a CYP inhibitor or a CYP inducer (Cheng et al., 2022a). In the current study, after including an empirical TMDD mechanism, we obtained a significant improvement in the PBPK model predictions of the S-warfarin PK profile. Further optimization of the PBPK model with a TMDD mechanism (PBPK-TMDD) enabled the
characterization of both the S- and R-warfarin PK profiles adequately in subjects with various CYP2C9 genotypes when warfarin was administered alone (Figure 3 and 4).

CYP2C9 *2 and *3 variants are highly associated with the reduced metabolic activity of CYP2C9. Subjects possessing the CYP2C9 *2 and *3 variants experience higher S-warfarin exposure following warfarin administration and require lower warfarin maintenance doses (Dean, 2012). In subjects with the CYP2C9 *2 and *3 variants, non-CYP2C9 mediated elimination pathways occupy a higher proportion of overall S-warfarin elimination (Cheng et al., 2022b). A differential effect of fluconazole inhibition and rifampin induction on different metabolic pathways of S-warfarin was also noted, potentially explaining our observation of CYP2C9 genotype-dependent DDIs on S-warfarin PK in our previous population PK analysis (Cheng et al., 2022a). CYP2C9 mediated metabolic pathways constitute the largest proportion of S-warfarin elimination, yet elimination by CYP2C9 is reduced in subjects with *2 and *3 variants. Consequently, our findings suggest that the degree to which these individuals experience inhibition by fluconazole is lessened resulting in a lower degree of drug inhibition interaction (genotype-dependent drug interactions). In contrast, because CYP2C9 mediated metabolic pathways are less inducible, the overall S-warfarin elimination in subjects with a lower proportion of CYP2C9 mediated elimination, such as subjects with *2 and *3 variants, are more susceptible to rifampin induction. Indeed, the K_{i} values (Table 5) reported in the literature suggest that CYP2C9 mediated S-warfarin metabolic pathways ($6-\mathrm{OH}-\mathrm{S}$ and $7-\mathrm{OH}-\mathrm{S}$) are inhibited to a greater extent compared with some of the other S-warfarin metabolic pathways such as $10-\mathrm{OH}-\mathrm{S}$. Furthermore, the ind $_{\text {max }}$ values we identified suggest that CYP2C9 mediated S-warfarin metabolic pathways are less inducible compared with other S-warfarin metabolic pathways mediated by other CYP enzymes (Table 6). More importantly, incorporating these inhibition and induction related parameters, our PBPK-TMDD model reflected the S-warfarin PK profiles when warfarin was administered with either fluconazole or rifampin (Figure 5 and 6). Interestingly, a previous clinical DDI study conducted with flurbiprofen as the probe drug and fluconazole as the interacting drug showed differential inhibition of CYP2C9 and non-CYP2C9 mediated pathways also resulted in CYP2C9 genotype-dependent DDIs (Kumar et al., 2008). The results of the present PBPK modeling study using S-warfarin as a probe drug are consistent with these previous study findings with flurbiprofen and fluconazole.

Additionally, the PBPK-TMDD model may be useful in informing the clinical use of warfarin. For instance, to reduce the risk of bleeding during surgery, warfarin treatment is typically discontinued about 5 days prior to surgery (Douketis et al., 2012). Following the inclusion of a TMDD mechanism, the model simulations based on the long half-life observed in our extended plasma sampling, suggest that the pharmacologically more active S-warfarin may not be eliminated as fast as earlier literature would predict (Figure 2A). Taking advantage of warfarin pharmacodynamic (PD) models published in the literature, it will be interesting to conduct simulations linking our PBPK-TMDD model together with a PD model, to investigate the impact of this observed slower elimination of S-warfarin on the International Normalized Ratio and treatment outcomes following warfarin discontinuation.

Despite the potential uses of the warfarin PBPK-TMDD models, limitations exist in the current model structure. Firstly, it is relatively empirical and arbitrary to embed the TMDD mechanism inside the venous blood compartment of a PBPK model structure to account for saturable tissue binding. A physiologically more relevant approach might be to incorporate the saturable tissue binding of warfarin into relevant organs, such as liver (Levy et al., 2003). However, lacking explicit clinical evidence about which organs exhibit saturable warfarin tissue binding, it was arbitrarily decided to embed the TMDD mechanism in the venous blood compartment of our PBPK model. Collecting additional information to inform an organ specific TMDD mechanism clinically would be beneficial for future development of a more mechanistic PBPK model schematic for warfarin. In this regard, the PBPK model constructed in the present study can be easily adapted to incorporate organ specific TMDD mechanism considering our model is developed using an open-source tool. Secondly, a significant assumption of the current PBPK model is that the hepatic CL of S- or R-warfarin is mediated completely by the five monohydroxylation pathways. Incorporating additional metabolic pathways of warfarin such as ketone reduction and glucuronidation might provide additional mechanistic insights to warfarin disposition but would require an even more extensive dataset (Ufer, 2005).

In summary, the present study found a traditional PBPK model structure was inadequate to describe the PK profiles of warfarin enantiomers when collected up to 15 days following a single dose of warfarin. Instead, a PBPK model embedded with an empirical TMDD mechanism
(PBPK-TMDD) was able to characterize the single dose warfarin PK profiles in subjects with clinically important CYP2C9 genotypes. Following the integration of fluconazole inhibition and rifampin induction, the developed PBPK-TMDD models were able to describe the S - and Rwarfarin PK profiles under different co-treatments in subjects with various CYP2C9 genotypes. The developed PBPK models provide mechanistic insights regarding warfarin disposition and may also serve as a valuable tool to inform the clinical dosing of warfarin.

Acknowledgments:

The authors would like to thank Dr. Kyle Baron for the insightful discussions and suggestions.

Author Contributions:

Participated in research design: Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard C.
Brundage, Timothy S. Tracy
Participated in data collection: Darcy R. Flora, Allan E. Rettie, Richard C. Brundage, Timothy S. Tracy

Performed data analysis: Shen Cheng, Richard C. Brundage
Wrote or contributed to the writing of the manuscript: Shen Cheng, Darcy R. Flora, Allan E.
Rettie, Richard C. Brundage, Timothy S. Tracy

Reference

Alhadab AA and Brundage RC (2020) Physiologically-Based Pharmacokinetic Model of Sertraline in Human to Predict Clinical Relevance of Concentrations at Target Tissues. Clin Pharmacol Ther 108:136-144.
An G (2017) Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Minireview. J Clin Pharmacol 57:137-150.

An G, Liu W and Dutta S (2015) Small-molecule compounds exhibiting target-mediated drug disposition A case example of ABT-384. J Clin Pharmacol 55:1079-1085.
Anderson BJ and Holford NH (2009) Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24:25-36.
Bach T, Jiang Y, Zhang X and An G (2019) General Pharmacokinetic Features of Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Simulation-Based Study. J Clin Pharmacol 59:394-405.
Barnes GD, Lucas E, Alexander GC and Goldberger ZD (2015) National Trends in Ambulatory Oral Anticoagulant Use. Am J Med 128:1300-1305 e1302.
Baron KT (2019) Estimate parameters in a PBPK model, in, https://github.com/metrumresearchgroup/ub-cdse2019/blob/master/content/tools optimization methods.md
Brown HS, Galetin A, Hallifax D and Houston JB (2006) Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 45:1035-1050.
Chaudhry AS, Urban TJ, Lamba JK, Birnbaum AK, Remmel RP, Subramanian M, Strom S, You JH, Kasperaviciute D, Catarino CB, Radtke RA, Sisodiya SM, Goldstein DB and Schuetz EG (2010) CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose. J Pharmacol Exp Ther 332:599-611.
Cheng S, Flora DR, Tracy TS, Rettie AE and Brundage RC (2022a) Pharmacokinetic Modeling of Warfarin I - Model-based Analysis of Warfarin Racemates with a Target Mediated Drug Disposition Model Reveals CYP2C9 Genotype-dependent Drug-drug Interactions of S-Warfarin. Drug Metab Dispos 50:1287-1301.
Cheng S, Flora DR, Tracy TS, Rettie AE and Brundage RC (2022b) Pharmacokinetic Modeling of Warfarin II - Model-based Analysis of Warfarin Metabolites following Warfarin Administered either Alone or Together with Fluconazole or Rifampin. Drug Metab Dispos 50:1302-1311.
Damle B, Varma MV and Wood N (2011) Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use. Antimicrob Agents Chemother 55:5172-5177.
Dean L (2012) Warfarin Therapy and VKORC1 and CYP Genotype, in Medical Genetics Summaries (Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL and Malheiro AJ eds), Bethesda (MD).

Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, Dunn AS and Kunz R (2012) Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141:e326S-e350S.
Einolf HJ, Lin W, Won CS, Wang L, Gu H, Chun DY, He H and Mangold JB (2017) Physiologically Based Pharmacokinetic Model Predictions of Panobinostat (LBH589) as a Victim and Perpetrator of Drug-Drug Interactions. Drug Metab Dispos 45:1304-1316.
Elmokadem A, Riggs MM and Baron KT (2019) Quantitative Systems Pharmacology and PhysiologicallyBased Pharmacokinetic Modeling With mrgsolve: A Hands-On Tutorial. CPT Pharmacometrics Syst Pharmacol 8:883-893.

Flora DR, Rettie AE, Brundage RC and Tracy TS (2017) CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites. J Clin Pharmacol 57:382-393.
Goodman LS, Brunton LL, Chabner B and Knollmann BrC (2011) Goodman \& Gilman's pharmacological basis of therapeutics. McGraw-Hill, New York.
Grimstein M, Yang Y, Zhang X, Grillo J, Huang SM, Zineh I and Wang Y (2019) Physiologically Based Pharmacokinetic Modeling in Regulatory Science: An Update From the U.S. Food and Drug Administration's Office of Clinical Pharmacology. J Pharm Sci 108:21-25.
Gross AS, McLachlan AJ, Minns I, Beal JB and Tett SE (2001) Simultaneous administration of a cocktail of markers to measure renal drug elimination pathways: absence of a pharmacokinetic interaction between fluconazole and sinistrin, p-aminohippuric acid and pindolol. Br J Clin Pharmacol 51:547-555.
Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, Padrini R and Jonsson EN (2007) A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 81:529-538.
Hamberg AK, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, Rane A and Jonsson EN (2010) A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther 87:727-734.
Jaffer A and Bragg L (2003) Practical tips for warfarin dosing and monitoring. Cleve Clin J Med 70:361371.

Kawai VK, Cunningham A, Vear SI, Van Driest SL, Oginni A, Xu H, Jiang M, Li C, Denny JC, Shaffer C, Bowton E, Gage BF, Ray WA, Roden DM and Stein CM (2014) Genotype and risk of major bleeding during warfarin treatment. Pharmacogenomics 15:1973-1983.
King SY, Joslin MA, Raudibaugh K, Pieniaszek HJ, Jr. and Benedek IH (1995) Dose-dependent pharmacokinetics of warfarin in healthy volunteers. Pharm Res 12:1874-1877.
Krishna Machavaram LA, Kim Crewe, Alice Ke, Oliver Hatley, Howard Burt, lain Gardner, Karen RowlandYeo (2017) Evaluation of In Vitro-In Vivo Extrapolation (IVIVE) of the induction potential for known CYP 2C9 inducers, in International Society for the Study of Xenobiotics.
Kumar V, Brundage RC, Oetting WS, Leppik IE and Tracy TS (2008) Differential genotype dependent inhibition of CYP2C9 in humans. Drug Metab Dispos 36:1242-1248.
Kunze KL, Wienkers LC, Thummel KE and Trager WF (1996) Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 24:414-421.
Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56:248-252.
Levy G, Mager DE, Cheung WK and Jusko WJ (2003) Comparative pharmacokinetics of coumarin anticoagulants L: Physiologic modeling of S-warfarin in rats and pharmacologic target-mediated warfarin disposition in man. J Pharm Sci 92:985-994.
Mager DE and Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507-532.
Matalqah LMA (2019) Knowledge, Adherence, and Quality of Life among Warfarin Therapy Users, in Anticoagulation drugs - the Current State of the Art.
Pelletier RD, Lai WG and Wong YN (2013) Application of a substrate cocktail approach in the assessment of cytochrome P450 induction using cultured human hepatocytes. J Biomol Screen 18:199-210.
Peters SA (2008) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47:261-275.
Pouncey DL, Hartman JH, Moore PC, Dillinger DJ, Dickerson KW, Sappington DR, Smith ES, 3rd, Boysen G and Miller GP (2018) Novel isomeric metabolite profiles correlate with warfarin metabolism
phenotype during maintenance dosing in a pilot study of 29 patients. Blood Coagul Fibrinolysis 29:602-612.
PUBCHEM Fluconazole compound summary, in, National Library of Medicine; National Center for Biotechnology Information, Pubchem.
PUBCHEM Rifampicin compound summary, in, National Library of Medicine; National Center for Biotechnology Information, Pubchem.
Roos JF, Kirkpatrick CM, Tett SE, McLachlan AJ and Duffull SB (2008) Development of a sufficient design for estimation of fluconazole pharmacokinetics in people with HIV infection. Br J Clin Pharmacol 66:455-466.
Seng KY, Hee KH, Soon GH, Chew N, Khoo SH and Lee LS (2015) Population pharmacokinetics of rifampicin and 25 -deacetyl-rifampicin in healthy Asian adults. J Antimicrob Chemother 70:32983306.

Simcyp (2020) Simcyp Version 19 in, Certara, Inc.
Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ and Simonsson USH (2018) A Population Pharmacokinetic Model Incorporating Saturable Pharmacokinetics and Autoinduction for High Rifampicin Doses. Clin Pharmacol Ther 103:674-683.
Takada K and Levy G (1979) Comparative pharmacokinetics of coumarin anticoagulants XLIII: Concentration-dependent hepatic uptake of warfarin in rats. J Pharm Sci 68:1569-1571.
Takada K and Levy G (1980) Comparative pharmacokinetics of coumarin anticoagulants XLIV: Dosedependent pharmacokinetics of warfarin in rats. J Pharm Sci 69:9-14.
Trusler MB (2019) Quality of warfarin management. Can Fam Physician 65:530.
Udoamaka Ezuruike HH, Khaled Abduljalil, Sibylle Neuhoff (2019) Use of a physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model to guide dose adjustments to S-warfarin in different populations, in 20th Annual Simcyp Consortium Meeting.
Ufer M (2005) Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 44:1227-1246.
West GB, Brown JH and Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677-1679.
Wilkins JJ, Savic RM, Karlsson MO, Langdon G, Mcllleron H, Pillai G, Smith PJ and Simonsson US (2008) Population pharmacokinetics of rifampin in pulmonary tuberculosis patients, including a semimechanistic model to describe variable absorption. Antimicrob Agents Chemother 52:21382148.

Xue L, Holford N, Ding XL, Shen ZY, Huang CR, Zhang H, Zhang JJ, Guo ZN, Xie C, Zhou L, Chen ZY, Liu LS and Miao LY (2017) Theory-based pharmacokinetics and pharmacodynamics of S- and R-warfarin and effects on international normalized ratio: influence of body size, composition and genotype in cardiac surgery patients. Br J Clin Pharmacol 83:823-835.
Yamazaki S, Costales C, Lazzaro S, Eatemadpour S, Kimoto E and Varma MV (2019) Physiologically-Based Pharmacokinetic Modeling Approach to Predict Rifampin-Mediated Intestinal P-Glycoprotein Induction. CPT Pharmacometrics Syst Pharmacol 8:634-642.
Yang J, Jamei M, Yeo KR, Rostami-Hodjegan A and Tucker GT (2007) Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos 35:501-502.
Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang SM, Zhu H and Wang Y (2020) Application of PBPK Modeling and Simulation for Regulatory Decision Making and Its Impact on US Prescribing Information: An Update on the 2018-2019 Submissions to the US FDA's Office of Clinical Pharmacology. J Clin Pharmacol 60 Suppl 1:S160-S178.
Zhuang X and Lu C (2016) PBPK modeling and simulation in drug research and development. Acta Pharm $\operatorname{Sin} B$ 6:430-440.

Footnotes:

Conflict of interest: The authors declare no conflict of interest.
Funding: This manuscript was funded by National Institutes of Health Institute of General
Medical Sciences (GM069753 and GM032165).
Thesis information: This work is part of Shen Cheng's Ph.D. thesis work (Understanding the Impact of Pharmacogenetic Differences in Drug-Drug Interactions (DDIs): A Model-Based Approach to Predict Differences in Drug Exposure).

Citation of meeting abstracts: Cheng S., Flora D.R., Tracy T. S., Rettie A.E., Brundage R.C. A physiologically-based Pharmacokinetic (PBPK) Model embedded with a Target-Mediated Drug Disposition (TMDD) mechanism can characterize S-warfarin pharmacokinetic (PK) profiles in subjects with various CYP2C9 genotypes under different co-treatments. American Conference of Pharmacometrics (ACOP) 12

Person to receive reprint requests:
Richard C. Brundage
University of Minnesota
717 Delaware St. SE, Room 464
Minneapolis, MN 55455
612-624-3115 fax: 612-626-2595
brund001@umn.edu

Figure Legends

Figure 1. S- and R-warfarin PBPK model diagram. Notes: Cp (plasma concentration of drug); $\mathrm{C}_{\text {venous }}$ (venous blood concentration of drugs and BP stands for blood to plasma ratio); GL (gut lumen); GU (gut); LU (lung); LI (liver); KI (kidney);BR (brain); SP (spleen); PA (pancreas); ST (stomach); HT (heart); MU (muscle); AD (adipose); SK (skin); BO (bone); TH (thymus); R: receptor; DR: drug-receptor complex.
Figure 2. S-warfarin (A) and R-warfarin (B) PBPK model predictions in subjects with CYP2C9 *1/*1 when warfarin is administrated alone. Colors represent model predictions using a PBPK model without TMDD mechanism, with TMDD mechanism and with TMDD mechanism following optimization. Table displays the multiplication factors for S- and R-warfarin following optimization. The multiplication factors are estimated based on the assumption that the volume of saturable binding target of warfarin is 1 L (arbitrarily fixed due to lack of relevant clinical information). RSE: relative standard errors.
Figure 3. Optimized S-warfarin (A) and R-warfarin (B) PBPK model with TMDD mechanism predictions overlayed with observations in subjects with various CYP2C9 genotypes when warfarin is administered alone. Dots represent observations. Red lines represent median predictions.
Figure 4. Optimized S-warfarin (A) and R-warfarin (B) PBPK model with TMDD mechanism population predictions overlayed with observations in subjects with various CYP2C9 genotypes when warfarin is administered alone. Dots represent observations. Red lines represent median predictions. Gray shaded areas represent the area between $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the model predictions. Table shows the AUC $0-360$ hours of S- and R-warfarin by CYP2C9 genotypes. Values in table expressed as geometric means (coefficient of variations (CV)).
Figure 5. Optimized S-warfarin (A) and R-warfarin (B) PBPK model with TMDD mechanism population predictions overlayed with observations in subjects with various CYP2C9 genotypes when warfarin is administered together with fluconazole. Dots represent observations. Red lines represent median predictions. Gray shaded areas represent the area between $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the model predictions. Table inset shows the AUC $0-360$ hours and AUC ratios of Sand R-warfarin by CYP2C9 genotypes when warfarin is co-administered with fluconazole. Values in table expressed as geometric means (coefficient of variations (CV)).
Figure 6. Optimized S-warfarin (A) and R-warfarin (B) PBPK model with TMDD mechanism population predictions overlayed with observations in subjects with various CYP2C9 genotypes when warfarin is administered together with rifampin. Dots represent observations. Red lines represent median predictions. Gray shaded areas represent the area between $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the model predictions. Table inset shows the AUC $0-360$ hours and AUC ratios of Sand R-warfarin by CYP2C9 genotypes when warfarin is co-administered with rifampin. Values in table expressed as geometric means (coefficient of variations (CV)).

Tables

Table 1. Physiology parameter table. Values are extracted from literature (Peters, 2008).

Tissue	Volume (mL, 70kg human)	Flow (mL/min, 70kg human)
Brain	1450	700
Hepatic artery	1650	302
Gut	192	1100
Spleen	77	77
Pancreas	154	133
Stomach	1690	38
Liver	280	1650
Kidney	310	1100
Heart	1172	150
Lung	35000	5240
Muscle	10000	750
Adipose	7800	260
Skin	4579	300
Bone	29	250
Thymus	1698	80
Arterial blood	3396	
Venous blood		

Table 2. Warfarin drug-property specific parameters

	S-warfarin	R-warfarin	Definitions
MW	$308.3 \text { (Simcyp, 2020) }$ Monoprotic acid (Simcyp, 2020)		Molecular weight
Compound type			
$\log \mathrm{P}_{\mathrm{o} \text { :w }}$	0.27 (Simcyp, 2020)		Logarithmic neutral species octanol:buffer partition coefficient
pKa	5.1 (Simcyp, 2020)		Acid dissociation constant
CL (L/hour)	0.260 (Cheng et al., 2022a)	0.119 (Cheng et al., 2022a)	Total clearance
if $* 1 B / * 1 B$	$\times 0.885$ (Cheng et al., 2022a)		
if *1/*3	$\times 0.607$ (Cheng et al., 2022a)		Fractional multipliers of CL
if *2/*3	$\times 0.277$ (Cheng et al., 2022a)		if other CYP2C9 genotypes
if *3/*3	$\times 0.215$ (Cheng et al., 2022a)		
CL_{R} (L/hour)	0.00369 (Cheng et al., 2022a)	0.00436 (Cheng et al., 2022a)	Renal clearance
$\mathrm{K}_{\text {on }}(\mathrm{L} /(\mu \mathrm{g} *$ hour $)$)	0.00494 (Cheng et al., 2022a)	0.00137 (Cheng et al., 2022a)	Association rate constant
if *2/*3	$\times 0.837$ (Cheng et al., 2022a)		Fractional multipliers of $\mathrm{K}_{\text {on }}$
if *3/*3	$\times 0.518$ (Cheng et al., 2022a)		if other CYP2C9 genotypes
$\mathrm{K}_{\text {off }}(/$ hour $)$	0.0405 (Cheng et al., 2022a)	0.0405 (Cheng et al., 2022a)	Dissociation rate constant
$\mathrm{R}_{\text {max }}(\mu \mathrm{g} / \mathrm{L})$	182 (Cheng et al., 2022a)	188 (Cheng et al., 2022a)	Total receptor levels
if *1/*3		$\times 0.479$ (Cheng et al., 2022a)	
if *2/*3	$\times 2.51$ (Cheng et al., 2022a)	$\times 0.506$ (Cheng et al., 2022a)	Fractional multipliers of $\mathrm{R}_{\max }$ if other CYP2C9 genotypes
if *3/*3	$\times 1.89$ (Cheng et al., 2022a)	$\times 0.21$ (Cheng et al., 2022a)	
$\mathrm{F}_{\mathrm{a}}(\%)$	100	020)	Bioavailability
K_{a} (/hour)	1.85	2020)	Absorption rate constant
Lag time (hour)		020)	Absorption lag time
BP	0.59	2020)	Blood to plasma ratio
$\mathrm{fup}_{\text {up }}$	0.009	, 2020)	Fraction of unbound drug in plasma

Table 3. Predicted S- and R-warfarin partition coefficients $\left(\mathrm{K}_{\mathrm{p}} \mathrm{s}\right)$ using method 2 (Rodgers et.al) in Simcyp version 19 (Simcyp, 2020).

	K_{p}	Sources
Brain	0.052	Predicted
Gut	0.162	Predicted
Spleen	0.101	Predicted
Pancreas	0.064	Predicted
Stomach	0.127	Calculated as the average of non-adipose tissues
Liver	0.090	Predicted
Kidney	0.134	Predicted
Heart	0.160	Predicted
Lung	0.215	Predicted
Muscle	0.038	Predicted
Adipose	0.040	Predicted
Skin	0.281	Predicted
Bone	0.103	Predicted
Thymus	0.127	Calculated as the average of non-adipose tissues

Table 4. The fractions of warfarin metabolic clearance by each metabolic pathway. Fraction values are calculated based on literature (Cheng et al., 2022b). Notes: The metabolic fractions presented in the original study for each parent compound were summed and rescaled to 100% to calculate the new fractions of hepatic intrinsic CL mediated by the various metabolic pathways. The key assumption of this approach is to assume the metabolism of S- or R-warfarin is totally mediated by the respective five metabolic pathways.

S-warfarin					
	CYP2C9 * $1 / * 1$	CYP2C9 * 1 B/*1B	CYP2C9 * 1 * 3	CYP2C9 *2/*3	CYP2C9 *3/*3
4'-OH (\%)	2.8	2.9	4.7	10.4	28.2
6-OH (\%)	19.8	16.8	20.1	17.6	20.6
7-OH (\%)	75.3	78.4	72.6	68.5	42.5
8-OH (\%)	1.5	1.2	1.7	1.9	4.8
10-OH (\%)	0.6	0.7	0.9	1.5	4.0
R-warfarin					
	CYP2C9 * $1 / * 1$	CYP2C9 * $1 \mathrm{~B} / * 1 \mathrm{~B}$	CYP2C9 * 1 * 3	CYP2C9 *2/*3	CYP2C9*3/*3
4'-OH (\%)	2.8	3.3	1.8	1.8	1.8
6-OH (\%)	61.1	72.5	61.7	61.7	61.7
$7-\mathrm{OH}$ (\%)	9.8	11.7	9.9	9.9	9.9
$8-\mathrm{OH}$ (\%)	23.5	9.2	23.8	23.8	23.8
10-OH (\%)	2.8	3.3	2.8	2.8	2.8

Table 5. Fluconazole inhibitory parameters

MW $(\mathrm{g} / \mathrm{mol})$	306.271 (PUBCHEM)
$\mathrm{K}_{\mathrm{i}}(\mathrm{mg} / \mathrm{L})$	
4'-OH-S	8.88 (Brown et al., 2006; Damle et al., 2011)
6-OH-S	6.74 (Brown et al., 2006)
7-OH-S	6.74 (Brown et al., 2006)
8-OH-S	0.64 (Damle et al., 2011)
10-OH-S	19.3 (Brown et al., 2006; Damle et al., 2011)
4'-OH-R	8.88 (Brown et al., 2006; Damle et al., 2011)
6-OH-R	30.63 (Kunze et al., 1996)
7-OH-R	12.67
8-OH-R	0.64 (Brown et al., 2006)
10-OH-R	19.3 (Brown et al., 2006; Damle et al., 2011)
Fluconazole effects on CLR (multiplication factor)	
S-warfarin	0.847 (Cheng et al., 2022a)
R-warfarin	0.752 (Cheng et al., 2022a)

Table 6. Rifampin induction parameters

MW (g/mol)	822.94 (PUBCHEM)
ind $_{\text {max }}$	
4'-OH-S	8.4 (Krishna Machavaram, 2017; Yamazaki et al., 2019)
6-OH-S	3.6 (Krishna Machavaram, 2017)
7-OH-S	3.6 (Krishna Machavaram, 2017)
8-OH-S	5.5 (Yamazaki et al., 2019)
10-OH-S	16.0 (Yamazaki et al., 2019)
4'-OH-R	8.4 (Krishna Machavaram, 2017; Yamazaki et al., 2019)
6-OH-R	3.8 (Pelletier et al., 2013)
7-OH-R	7.8 (Pelletier et al., 2013; Krishna Machavaram, 2017; Yamazaki et al., 2019)
8-OH-R	5.5 (Yamazaki et al., 2019)
10-OH-R	16.0 (Yamazaki et al., 2019)
indC50 (mg/L)	
4'-OH-S	0.239 (Krishna Machavaram, 2017; Yamazaki et al., 2019)
6-OH-S	1.234 (Krishna Machavaram, 2017)
7-OH-S	1.234 (Krishna Machavaram, 2017)
8-OH-S	0.370 (Yamazaki et al., 2019)
10-OH-S	0.263 (Yamazaki et al., 2019)
4'-OH-R	0.239 (Krishna Machavaram, 2017; Yamazaki et al., 2019)
6-OH-R	0.181 (Pelletier et al., 2013)
7-OH-R	0.214 (Pelletier et al., 2013; Krishna Machavaram, 2017; Yamazaki et al., 2019)
8-OH-R	0.370 (Yamazaki et al., 2019)
10-OH-R	0.263 (Yamazaki et al., 2019)
Rifampin effects on CLR (multiplication factor)	
S-warfarin	1.30 (Cheng et al., 2022a)
R-warfarin	1.43 (Cheng et al., 2022a)

Figure 1

Figure 2

B

Multiplication factors	S-warfarin (Estimates (RSE))	R-warfarin (Estimates (RSE))
MFkp	$0.924(17.3 \%)$	$0.665(23.5 \%)$
MFRmax	$3.74(28.9 \%)$	$7.64(24.7 \%)$
MFkon		$13.9(95.8 \%)$

Figure 3
Figure 4

CYP2C9 genotypes	AUC_{0-360} hours $(\mathrm{ng} * \mathrm{hour} / \mathrm{mL})$	
	S-warfarin	R-warfarin
$* 1 / * 1(\mathrm{~N}=100)$	$19797(34.8 \%)$	$33852(35.5 \%)$
$* 1 B / * 1 B(\mathrm{~N}=100)$	$22645(32.1 \%)$	$33936(32.9 \%)$
$* 1 / * 3(\mathrm{~N}=100)$	$27580(30.6 \%)$	$34979(31.1 \%)$
$* 2 / * 3(\mathrm{~N}=100)$	$53342(30.4 \%)$	$42114(33.6 \%)$
$* 3 / * 3(\mathrm{~N}=100)$	$53561(27.7 \%)$	$33691(34.0 \%)$

Figure 5

$C Y P 2 C 9$ genotypes	AUC $_{0-360}$ hours $(\mathrm{ng} * \mathrm{hour} / \mathrm{mL})$		AUC Ratio	
	S-warfarin	R-warfarin	S-warfarin	R-warfarin
$* 1 / * l(\mathrm{~N}=100)$	$53061(32.8 \%)$	$59579(37.7 \%)$	2.68	1.76
$* 1 B / * 1 B(\mathrm{~N}=100)$	$59090(31.2 \%)$	$52576(32.7 \%)$	2.61	1.55
$* 1 / * 3(\mathrm{~N}=100)$	$69466(26.9 \%)$	$63620(28.8 \%)$	2.52	1.82
$* 2 / * 3(\mathrm{~N}=100)$	$102331(26.6 \%)$	$77007(31.2 \%)$	1.92	1.83
$* 3 / * 3(\mathrm{~N}=100)$	$89672(21.1 \%)$	$60985(31.0 \%)$	1.67	1.81

A

B

$C Y P 2 C 9$ genotypes	AUC_{0-360} hours $(\mathrm{ng} *$ hour $/ \mathrm{mL})$		AUC Ratio	
	S-warfarin	R-warfarin	S-warfarin	R-warfarin
$* l / * 1(\mathrm{~N}=100)$	$9017(42.0 \%)$	$10960(42.7 \%)$	0.455	0.324
$* 1 B / * 1 B(\mathrm{~N}=100)$	$10074(34.9 \%)$	$10702(35.5 \%)$	0.445	0.315
$* 1 / * 3(\mathrm{~N}=100)$	$12673(36.3 \%)$	$10611(38.2 \%)$	0.459	0.303
$* 2 / * 3(\mathrm{~N}=100)$	$26016(35.2 \%)$	$12513(40.1 \%)$	0.488	0.297
$* 3 / * 3(\mathrm{~N}=100)$	$22648(36.9 \%)$	$10328(41.6 \%)$	0.423	0.307

Drug Metabolism and Disposition: DMD-AR-2022-001048

A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

Supplementary materials

Contents:

Figure S1. Sensitivity analysis on multiplication factors of S-warfarin PBPK model without TMDD mechanism in subjects with CYP2C9 *1/*1 when warfarin is administered alone.

Figure S2. Sensitivity analysis on multiplication factors of S-warfarin PBPK model with TMDD mechanism in subjects with CYP2C9 ${ }^{*} 1 / * 1$ when warfarin is administered alone.

Figure S3. Sensitivity analysis on multiplication factors of R-warfarin PBPK model without TMDD mechanism in subjects with CYP2C9 *1/*1 when warfarin is administered alone.

Figure S4. Sensitivity analysis on multiplication factors of R-warfarin PBPK model with TMDD mechanism in subjects with CYP2C9 ${ }^{*} 1 / * 1$ when warfarin is administered alone.

Figure S5. Validation of fluconazole model predictions. Dots represent literature extracted observations. Gray shaded areas represent $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of fluconazole empirical PK model predictions.

Figure S6. Validation of rifampin model predictions. Dots represent literature extracted observations. Gray shaded areas represent $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of rifampin empirical PK model predictions.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

S-warfarin PBPK model mrgsolve model file

Shen Cheng

```
2021-09-13
[set] delta \(=0.1\),end=360 //360 hours/15 Days
[PARAM]
//Tissue volumes (L); for 70kg human
//source: Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVVbr = 1450/1000 //brain mL to L
TVVgu \(=1650 / 1000 \quad / / G u t\)
TVVsp = 192/1000 //spleen
TVVpa \(=77 / 1000 \quad / / p a n c r e a s\)
TVVst = 154/1000 //stomach (not in simcyp)
TVVli = 1690/1000 //liver
TVVki = 280/1000 //kidneys
TVVhe = 310/1000 //heart
TVVlu = 1172/1000 //lungs
TVVmu = 35000/1000 //muscle
TVVad = 10000/1000 //adipose
TVVsk \(=7800 / 1000 \quad / / s k i n\)
TVVbo \(=4579 / 1000 \quad / / b o n e\)
TVVth \(=29 / 1000 \quad / /\) thymus (not in simcyp)
TVVab = 1698/1000 //arterial blood
TVVvb \(=3396 / 1000 \quad / / v e n o u s\) blood
//Tissue blood flows (L/h); for 70kg human
//source: Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVQbr \(=(700 * 60) / 1000 \quad / / b r a i n \quad \mathrm{~mL} / \mathrm{min}\) to L/hr
TVQha \(=(302 * 60) / 1000 \quad / / h e p a t i c ~ a r t e r y ~\)
TVQgu \(=(1100 * 60) / 1000 \quad / / g u t\)
TVQsp \(=(77 * 60) / 1000 \quad / / s p l e e n\)
TVQpa \(=(133 * 60) / 1000 \quad / /\) pancreas
TVQst \(=(38 * 60) / 1000 \quad / /\) stomach
TVQli \(=(1650 * 60) / 1000\) //liver (total) ( \(=\) Qha + Qgu + Qsp + Qpa + Qst)
TVQki \(=(1100 * 60) / 1000 \quad / / k i d n e y\)
TVQhe \(=(150 * 60) / 1000 \quad / / h e a r t\)
TVQlu \(=(5240 * 60) / 1000 \quad / / l u n g\),
//should be same as cardiac output(adjusted to 5240, 5233 original)
//to match the total Q
TVQmu \(=(750 * 60) / 1000 \quad / / m u s c l e\)
TVQad \(=(260 * 60) / 1000 \quad / / a d i p o s e\)
TVQsk \(=(300 * 60) / 1000 \quad / / s k i n\)
TVQbo \(=(250 * 60) / 1000 \quad / / b o n e\)
TVQth \(=(80 * 60) / 1000 \quad / /\) thymus
```

```
//partition coefficients estimated by Rodgers et.al., method suggested by
//Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVKpbr = 0.0523693 //brain:plasma
    TVKpgu = 0.1618 //gut:plasma
    TVKpsp = 0.100666 //spleen:plasma
    TVKppa = 0.0639167 //pancreas:plasma
    TVKpst = 0.1271972 //stomach:plasma (not in simcyp) calculated as
average of non adipose Kps
    TVKpli = 0.089772 //liver:plasma
    TVKpki = 0.133745 //kidney:plasma
    TVKphe = 0.160367 //heart:plasma
    TVKplu = 0.215004 //lungs:plasma
    TVKpmu = 0.037509 //muscle:plasma
    TVKpad = 0.0396971 //adipose:plasma
    TVKpsk = 0.281144 //skin:plasma
    TVKpbo = 0.102876 //bone:plasma
    TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
    TVCL = 0.26 //(L/hr) in vivo clearance (simcyp sim-warfarin)
//renal clearance
    TVCL_Ki = 0.00369 //(L/hr) renal clearance (simcyp sim-warfarin)
//TMDD param (unpublished warfarin manuscript)
    TVkon = 0.00494 // L/(\mug*hour)
    TVkoff = 0.0405 // /hour
    TVRmax = 182 // ug/L
//other parameters
    TVka = 1.85 //absorption rate constant (/hr) assumed
    TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
    TVfup = 0.009 //fraction of unbound drug in plasma (simcyp sim-
warfarin)
//scalars
    GENO = 1 //1:*1/*1; 2:*1B/*1B; 3:*1*/3; 4: *2/*3; 5: *3/*3
    weight = 68.7
//(kg)
    MFka = 1 //scalar for Ka
    MFkp = 1 //scalar for Kps
    MFBP = 1 //scalar for BP
    MFfup = 1 //scalar for fup
    MFkon = 1 //scalar for kon
    MFkoff = 1 //scalar for koff
    MFRmax = 1 //scalar for Rmax
```

 //GENO effect on CL
    ```
CL_GENO2 = 0.885
CL_GENO3 = 0.607
CL_GENO4 = 0.277
CL_GENO5 = 0.215
```

//GENO on kon and Rmax
kon_GENO4 $=0.837$
kon_GENO5 $=0.518$
Rmax_GENO4 = 2.51
Rmax_GENO5 = 1.89
[CMT]
GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4
ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other tissue comp X10
ART VEN //circulation X2
R DR //TMDD comp x2

[MAIN]

//allometric scaling of volume
double Vbr $=$ TVVbr*pow(weight/70, 1) ; //brain
double Vgu $=$ TVVgu*pow(weight/70, 1) ; //Gut
double Vsp = TVVsp*pow(weight/70, 1) ; //spleen
double Vpa $=$ TVVpa*pow(weight/70, 1) ; //pancreas
double Vst = TVVst*pow(weight/70, 1) ; //stomach
double Vli $=$ TVVli*pow(weight/70, 1) ; //liver
double Vki $\quad=$ TVVki*pow(weight/70, 1) ; //kidneys
double Vhe $=$ TVVhe*pow(weight/70, 1) ; //heart
double Vlu $=$ TVVlu*pow(weight/70, 1) ; //lungs
double Vmu = TVVmu*pow(weight/70, 1) ; //muscle
double Vad $=$ TVVad*pow(weight/70, 1) ; //adipose
double Vsk = TVVsk*pow(weight/70, 1) ; //skin
double Vbo $=$ TVVbo*pow(weight/70, 1) ; //bone
double Vth $=$ TVVth*pow(weight/70, 1) ; //thymus
double Vab = TVVab*pow(weight/70, 1) ; //arterial blood
double Vvb = TVVvb*pow(weight/70, 1) ; //venous blood
//allometric scaling of flow
double Qbr = TVQbr*pow(weight/70, 0.75); //brain
double Qha $=$ TVQha*pow(weight/70, 0.75); //hepatic artery
double Qgu = TVQgu*pow(weight/70, 0.75); //gut
double Qsp $=$ TVQsp*pow(weight/70, 0.75); //spleen
double Qpa = TVQpa*pow(weight/70, 0.75); //pancreas
double Qst $\quad=$ TVQst*pow(weight/70, 0.75); //stomach
double Qli $\quad=$ TVQli*pow(weight/70, 0.75); //liver (total) (= Qha +
Qgu + Qsp + Qpa + Qst)

```
    double Qki = TVQki*pow(weight/70, 0.75); //kidney
    double Qhe = TVQhe*pow(weight/70, 0.75); //heart
    double Qlu = TVQlu*pow(weight/70, 0.75); //lung
    double Qmu = TVQmu*pow(weight/70, 0.75); //muscle
    double Qad = TVQad*pow(weight/70, 0.75); //adipose
    double Qsk = TVQsk*pow(weight/70, 0.75); //skin
    double Qbo = TVQbo*pow(weight/70, 0.75); //bone
    double Qth = TVQth*pow(weight/70, 0.75); //thymus
//scaled Kps
    double Kpbr = TVKpbr*MFkp*exp(ETA(1)) ; //brain:plasma
    double Kpgu = TVKpgu*MFkp*exp(ETA(2))
    double Kpsp = TVKpsp*MFkp*exp(ETA(3))
    double Kppa = TVKppa*MFkp*exp(ETA(4))
//pancreas:plasma
    double Kpst = TVKpst*MFkp*exp(ETA(5))
    double Kpli = TVKpli*MFkp*exp(ETA(6))
    double Kpki = TVKpki*MFkp*exp(ETA(7))
    double Kphe = TVKphe*MFkp*exp(ETA(8))
    double Kplu = TVKplu*MFkp*exp(ETA(9))
    double Kpmu = TVKpmu*MFkp*exp(ETA(10))
    double Kpad = TVKpad*MFkp*exp(ETA(11))
//adipose:plasma
    double Kpsk = TVKpsk*MFkp*exp(ETA(12))
    double Kpbo = TVKpbo*MFkp*exp(ETA(13)) ; //bone:plasma
    double Kpth = TVKpth*MFkp*exp(ETA(14)) ; //thymus:plasma
; //gut:plasma
    = TVKpsp*MFkp*exp(ETA(3)) ; //spleen:plasma
;
//stomach:plasma
//liver:plasma
//kidney:plasma
//heart:plasma
//lungs:plasma
= TVKpmu*MFkp*exp(ETA(10)) ; //muscle:plasma
;
, //skin:plasma
//allometric scaling of clearance (hepatic and renal)
    double CL_GENO = 1;
    if (GENO==2) CL_GENO = CL_GENO2;
    if (GENO==3) CL_GENO = CL_GENO3;
    if (GENO==4) CL_GENO = CL_GENO4;
    if (GENO==5) CL_GENO = CL_GENO5;
    double CL = TVCL*CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
    double CL_Ki = TVCL_Ki*exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
```

//CLint (liver intrinsic clearance: back calculated from liver clearance: CLCL_Ki)
//reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY \& THERAPEUTICS | VOLUME 108 NUMBER 1 | July 2020
//reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-9556/07/3503-501-502\$20.00
double CLint = Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
//CLint_Ki (kidney intrinsic clearance: back calculated from renal clearance: CL_Ki)

```
    double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
//TMDD param
    double kon = TVkon*MFkon*exp(ETA(17)) ;
        if (GENO == 4) kon = TVkon*MFkon*kon_GENO4*exp(ETA(17));
        if (GENO == 5) kon = TVkon*MFkon*kon_GENO5*exp(ETA(17));
    double koff = TVkoff*MFkoff ;
    double Rmax = TVRmax*MFRmax*exp(ETA(18)) ;
        if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
        if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
//other parameters
    double ka = TVka*MFka*exp(ETA(19)) ;
    double BP = TVBP*MFBP ;
    double fup = TVfup*MFfup ;
//receptor(R) baseline
    R_0 = Rmax;
[ODE]
    //Calculation of tissue drug concentrations (ug/L)
    double Cbrain = BRAIN/Vbr ;
    double Cgut = GUT/Vgu ;
    double Cspleen = SPLEEN/Vsp ;
    double Cpancreas = PANCREAS/Vpa;
    double Cstomach = STOMACH/Vst ;
    double Cliver = LIVER/Vli ;
    double Ckidney = KIDNEY/Vki ;
    double Cheart = HEART/Vhe ;
    double Clung = LUNG/Vlu ;
    double Cmuscle = MUSCLE/Vmu ;
    double Cadipose = ADIPOSE/Vad ;
    double Cskin = SKIN/Vsk ;
    double Cbone = BONE/Vbo ;
    double Cthymus = THYMUS/Vth ;
    double Carterial = ART/Vab ;
    double Cvenous = VEN/Vvb ;
    //ODEs
    dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
    dxdt_BRAIN = Qbr*(Carterial - Cbrain/(Kpbr/BP)) ;//(2)
    dxdt_GUT = ka*GUTLUMEN
    + Qgu*(Carterial - Cgut/(Kpgu/BP)) ;//(3) to liver
    dxdt_SPLEEN = Qsp*(Carterial - Cspleen/(Kpsp/BP)) ;//(4) to liver
    dxdt_PANCREAS = Qpa*(Carterial - Cpancreas/(Kppa/BP)) ;//(5) to liver
```

| dxdt_STOMACH | | | ;//(6) to liver |
| :---: | :---: | :---: | :---: |
| dxdt_LIVER | | Qgu*(Cgut/(Kpgu/BP)) | //from gut |
| | | Qsp*(Cspleen/(Kpsp/BP)) | //from spleen |
| | | Qpa*(Cpancreas/(Kppa/BP)) | //from pancreas |
| | | Qst*(Cstomach/(Kpst/BP)) | //from stomach |
| | | Qha*(Carterial) | //from hepatic |
| arterial | | | |
| | | Qli*(Cliver/(Kpli/BP)) | |
| | | CLint*(Cliver*fup/Kpli) | ;//(7) |
| dxdt_KIDNEY | $=$ | Qki*(Carterial - Ckidney/(Kpki/BP)) | |
| | - | CLint_Ki*(Ckidney*fup/Kpki) | ;//(8) |
| dxdt_HEART | $=$ | Qhe*(Carterial - Cheart/(Kphe/BP)) | ;//(9) |
| dxdt_LUNG | $=$ | Qlu*(Cvenous - Clung/(Kplu/BP)) | ;//(10) |
| dxdt_MUSCLE | $=$ | Qmu*(Carterial - Cmuscle/(Kpmu/BP)) | ;//(11) |
| dxdt_ADIPOSE | = | Qad*(Carterial - Cadipose/(Kpad/BP)) | ;//(12) |
| dxdt_SKIN | $=$ | Qsk*(Carterial - Cskin/(Kpsk/BP)) | ;//(13) |
| dxdt_BONE | $=$ | Qbo*(Carterial - Cbone/(Kpbo/BP)) | ;//(14) |
| dxdt_THYMUS | $=$ | Qth*(Carterial - Cthymus/(Kpth/BP)) | ;//(15) |
| dxdt_VEN | = | Qbr*(Cbrain/(Kpbr/BP)) | //from brain |
| | | Qli*(Cliver/(Kpli/BP)) | //from liver |
| | | Qki*(Ckidney/(Kpki/BP)) | //from kidney |
| | | Qhe*(Cheart/(Kphe/BP)) | //from heart |
| | | Qmu*(Cmuscle/(Kpmu/BP)) | //from muscle |
| | | Qad*(Cadipose/(Kpad/BP)) | //from adipose |
| | | Qsk*(Cskin/(Kpsk/BP)) | //from skin |
| | | Qbo*(Cbone/(Kpbo/BP)) | //from bone |
| | | Qth*(Cthymus/(Kpth/BP)) | //from thymus |
| | | $\begin{aligned} & \text { Qlu*Cvenous } \\ & \text { kon*(Cvenous/BP)*R } \end{aligned}$ | |
| | | koff*DR | ;//(16) |
| dxdt_ART | = | Qlu*(Clung/(Kplu/BP) - Carterial) | ;//(17) |
| dxdt_R | $=-$ | kon*(Cvenous/BP)*R + koff*DR | ;//(18) |
| dxdt_DR | $=$ | kon*(Cvenous/BP)*R - koff*DR | ;//(19) |
| [OMEGA] | | | |
| 0.090 .090 .090 .090 .09 | | | |
| 0.090 .090 .09 | 0.09 | 0.09 | |
| 0.090 .090 .09 | 0.09 | //Kps | |
| 0.09 //CL | | | |
| 0.09 //CL | _Ki | | |
| 0.09 //k | | | |
| 0.09 //Rm | | | |
| 0.09 //Ка | | | |

[TABLE]

capture CP = Cvenous/BP;
capture GENO = GENO;
capture WEIGHT =weight;

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

S-warfarin PBPK model with fluconazole inhibition mrgsolve model file

Shen Cheng

2021-09-13

```
[set] delta = 0.1 ,end = 720 //720 hours/30 Days
[PARAM]
    //Tissue volumes (L); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVVbr = 1450/1000 //brain mL to L
    TVVgu = 1650/1000 //Gut
    TVVsp = 192/1000 //spleen
    TVVpa = 77/1000 //pancreas
    TVVst = 154/1000 //stomach (not in simcyp)
    TVVli = 1690/1000 //liver
    TVVki = 280/1000 //kidneys
    TVVhe = 310/1000 //heart
    TVVlu = 1172/1000 //lungs
    TVVmu = 35000/1000 //muscle
    TVVad = 10000/1000 //adipose
    TVVsk = 7800/1000 //skin
    TVVbo = 4579/1000 //bone
    TVVth = 29/1000 //thymus (not in simcyp)
    TVVab = 1698/1000 //arterial blood
    TVVvb = 3396/1000 //venous blood
    //Tissue blood flows (L/h); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVQbr = (700*60)/1000 //brain mL/min to L/hr
    TVQha = (302*60)/1000 //hepatic artery
    TVQgu = (1100*60)/1000 //gut
    TVQsp = (77*60)/1000 //spleen
    TVQpa = (133*60)/1000 //pancreas
    TVQst = (38*60)/1000 //stomach
    TVQli = (1650*60)/1000 //liver (total) (= Qha + Qgu + Qsp + Qpa + Qst)
    TVQki = (1100*60)/1000 //kidney
    TVQhe = (150*60)/1000 //heart
    TVQlu = (5240*60)/1000 //lung,
    //should be same as cardiac output(adjusted to 5240, 5233 original)
    //to match the total Q
    TVQmu = (750*60)/1000 //muscle
    TVQad = (260*60)/1000 //adipose
    TVQsk = (300*60)/1000 //skin
    TVQbo = (250*60)/1000 //bone
```

TVQth $=(80 * 60) / 1000 \quad / /$ thymus
//partition coefficients estimated by Rodgers et.al., method suggested by //Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVKpbr $=0.0523693 \quad / / b r a i n: p l a s m a$
TVKpgu = $0.1618 \quad / /$ gut:plasma
TVKpsp $=0.100666$ //spleen:plasma
TVKppa $=0.0639167 \quad / /$ pancreas:plasma
TVKpst $=0.1271972 \quad / / s t o m a c h: p l a s m a(n o t ~ i n ~ s i m c y p) ~ c a l c u l a t e d ~ a s ~$
average of non adipose Kps
TVKpli $=0.089772 \quad / / l i v e r: p l a s m a$
TVKpki $=0.133745 \quad / / k i d n e y: p l a s m a$
TVKphe = 0.160367 //heart:plasma
TVKplu = 0.215004 //lungs:plasma
TVKpmu = 0.037509 //muscle:plasma
TVKpad = 0.0396971 //adipose:plasma
TVKpsk = 0.281144 //skin:plasma
TVKpbo = 0.102876 //bone:plasma
TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
TVCL = $0.26 \quad / /(\mathrm{L} / \mathrm{hr})$ in vivo clearance (unpublished warfarin manuscript, simcyp sim-warfarin)
//renal clearance
TVCL_Ki = 0.00369*0.847 //(L/hr) renal clearance (unpublished warfarin manuscript)
//0.847: fluconzole effect on S-warfarin renal clearance(unpublished manuscript)
//TMDD param (unpublished warfarin manuscript)
TVkon $=0.00494 \quad / / \mathrm{L} /\left(\mu \mathrm{g}^{*}\right.$ hour $)$
TVkoff $=0.0405$ // /hour
TVRmax $=182 \quad / / \mathrm{ug} / \mathrm{L}$
//other parameters
TVka = 1.85 //absorption rate constant (/hr) assumed (simcyp
sim-warfarin)
TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
TVfup $=0.009 \quad / / f r a c t i o n ~ o f ~ u n b o u n d ~ d r u g ~ i n ~ p l a s m a ~(s i m c y p ~ s i m-~$
warfarin)

| //scalars | |
| :--- | :--- |
| GENO $=1$ | |
| weight $=68.7$ | |
| MFka $=1$ | //(kg) |
| MFkp $=1$ | //scalar for Ka |
| MFBP | //scalar for Kps |

| MFfup | $=1$ | //scalar for fup |
| :--- | :--- | :--- |
| MFkon $=1$ | //scalar for kon | |
| MFkoff | $=1$ | //scalar for koff |
| MFRmax | 1 | //scalar for Rmax |

//GENO effect on CL
CL_GENO2 = 0.885
CL_GENO3 $=0.607$
CL_GENO4 = 0.277
CL_GENO5 = 0.215
//GENO on kon and Rmax
kon_GENO4 = 0.837
kon_GENO5 $=0.518$
Rmax_GENO4 = 2.51
Rmax_GENO5 = 1.89
//fluconzole empirical model
//A one-compartment model with lagged first-order input and first-order elimination
//Reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561119/
tvcl_fluc = 1.18 //fluconzole clearance L/hr
tvv_fluc = 55.7 //fluconzole volume of distribution L
tvka_fluc = 3.38 //fluconzole absorption rate constant /hr
//fluc inhibition parameters (ki: concentration of fluconazole that supports half maximal 2c9 inhibition)
//check calculation: https://www.graphpad.com/quickcalcs/Molarityform.cfm
//fluconazole mw: $306.271 \mathrm{~g} / \mathrm{mol}$
//fluconazole is a strong inhibitor for 2C19, but moderate for 2C9 and 3A4 (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers)
tvki_4oh = 8.88 //mg/L 29uM assumed to be eliminated by a mix effect of 2C9, 2C19 and 3A4 ($(\mathrm{Ki}, 2 \mathrm{C} 9+\mathrm{Ki}, 2 \mathrm{C} 19+\mathrm{Ki}, 3 \mathrm{~A} 4) / 3$)
tvki_6oh $=6.74 / / \mathrm{mg} / \mathrm{L} 22 \mathrm{uM}$ assumed to be eliminated through 2C9 (https://pubmed.ncbi.nlm.nih.gov/16984215/ table3, range: 7-22 uM)
tvki_7oh $=6.74 \mathrm{/} / \mathrm{mg} / \mathrm{L} 22 \mathrm{uM}$ assumed to be eliminated through 2C9 (https://pubmed.ncbi.nlm.nih.gov/16984215/ table3, range: 7-22 uM)
tvki_8oh $=0.64 \mathrm{/} / \mathrm{mg} / \mathrm{L} 2.1 \mathrm{uM}$ assumed to be eliminated through 2C19 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195022/\#:~:text=The\ inhibiti on\%20constant\%20(Ki, was\%202.1\%20\%CE\%BCM\%20(31) 2.1uM)
tvki_10oh $=19.30 \mathrm{/} / \mathrm{mg} / \mathrm{L} 63 \mathrm{uM}$ assumed to be eliminated through 3A4
(https://pubmed.ncbi.nlm.nih.gov/16984215/ table3, range: 1.27-40 uM)
//(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195022/\#:~:text=The\ inhibi
tion\%20constant\%20(Ki,was\%202.1\%20\%CE\%BCM\%20(31) range 1.9-63uM)
[CMT]

GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4 ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other tissue comp X10

ART VEN //circulation X2
R DR //TMDD comp x2
flucdepot //fluconazole depot comaprtment
fluccent //fluconazolecentral compartment

| [MAIN] | | |
| :---: | :---: | :---: |
| //allometric | scaling of volume | |
| double Vbr | = TVVbr*pow(weight/70, 1) | //brain |
| double Vgu | = TVVgu*pow(weight/70, 1) | //Gut |
| double Vsp | = TVVsp*pow(weight/70, 1) | //spleen |
| double Vpa | = TVVpa*pow(weight/70, 1) | //pancreas |
| double Vst | $=$ TVVst*pow(weight/70, 1) | //stomach |
| double Vli | = TVVli*pow(weight/70, 1) | //liver |
| double Vki | $=$ TVVki*pow(weight/70, 1) | //kidneys |
| double Vhe | = TVVhe*pow(weight/70, 1) | //heart |
| double Vlu | = TVVlu*pow(weight/70, 1) | //lungs |
| double Vmu | = TVVmu*pow(weight/70, 1) | //muscle |
| double Vad | = TVVad*pow(weight/70, 1) | //adipose |
| double Vsk | = TVVsk*pow(weight/70, 1) | //skin |
| double Vbo | $=$ TVVbo*pow(weight/70, 1) | //bone |
| double Vth | = TVVth*pow(weight/70, 1) ; | //thymus |
| double Vab | = TVVab*pow(weight/70, 1) | //arterial blood |
| double Vvb | $=$ TVVvb*pow(weight/70, 1) | //venous blood |
| //allometric scaling of flow | | |
| double Qbr | = TVQbr*pow(weight/70, 0.75); | //brain |
| double Qha | = TVQha*pow(weight/70, 0.75); | //hepatic artery |
| double Qgu | = TVQgu*pow(weight/70, 0.75); | //gut |
| double Qsp | = TVQsp*pow(weight/70, 0.75); | //spleen |
| double Qpa | = TVQpa*pow(weight/70, 0.75); | //pancreas |
| double Qst | $=$ TVQst*pow(weight/70, 0.75); | //stomach |
| double Qli | $=$ TVQli*pow(weight/70, 0.75); | //liver (total) (= Qha + |
| Qgu + Qsp + Qpa + Qst) | | |
| double Qki | = TVQki*pow(weight/70, 0.75); | //kidney |
| double Qhe | $=$ TVQhe*pow(weight/70, 0.75); | //heart |
| double Qlu | = TVQlu*pow(weight/70, 0.75); | //lung |
| double Qmu | = TVQmu*pow(weight/70, 0.75); | //muscle |
| double Qad | $=$ TVQad*pow(weight/70, 0.75); | //adipose |
| double Qsk | = TVQsk*pow(weight/70, 0.75); | //skin |
| double Qbo | = TVQbo*pow(weight/70, 0.75); | //bone |
| double Qth | $=$ TVQth*pow(weight/70, 0.75); | //thymus |

```
    //scaled Kps
    double Kpbr = TVKpbr*MFkp*exp(ETA(1)) ; //brain:plasma
    double Kpgu = TVKpgu*MFkp*exp(ETA(2)) ; //gut:plasma
    double Kpsp = TVKpsp*MFkp*exp(ETA(3)) ; //spleen:plasma
    double Kppa = TVKppa*MFkp*exp(ETA(4)) ; //pancreas:plasma
    double Kpst = TVKpst*MFkp*exp(ETA(5)) ; //stomach:plasma
    double Kpli = TVKpli*MFkp*exp(ETA(6)) ; //liver:plasma
    double Kpki = TVKpki*MFkp*exp(ETA(7)) ; //kidney:plasma
    double Kphe = TVKphe*MFkp*exp(ETA(8)) ; //heart:plasma
    double Kplu = TVKplu*MFkp*exp(ETA(9)) ; //lungs:plasma
    double Kpmu = TVKpmu*MFkp*exp(ETA(10)) ; //muscle:plasma
    double Kpad = TVKpad*MFkp*exp(ETA(11)) ; //adipose:plasma
    double Kpsk = TVKpsk*MFkp*exp(ETA(12)) ; //skin:plasma
    double Kpbo = TVKpbo*MFkp*exp(ETA(13)) ; //bone:plasma
    double Kpth = TVKpth*MFkp*exp(ETA(14)) ; //thymus:plasma
    //allometric scaling of clearance (hepatic and renal)
    double CL_GENO = 1;
    if (GENO==2) CL_GENO = CL_GENO2;
    if (GENO==3) CL_GENO = CL_GENO3;
    if (GENO==4) CL_GENO = CL_GENO4;
    if (GENO==5) CL_GENO = CL_GENO5;
    double CL = TVCL *CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
    double CL_Ki = TVCL_Ki *exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
//CLint (liver intrinsic clearance: back calculated from liver clearance: CL-CL_Ki)
//reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY \& THERAPEUTICS | VOLUME 108 NUMBER 1 | July 2020
//reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-9556/07/3503-501-502\$20.00
double CLint \(=\) Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
//CLint_Ki (kidney intrinsic clearance: back calculated from renal clearance: CL_Ki)
    double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
//TMDD param
double kon = TVkon*MFkon*exp(ETA(17));
if (GENO == 4) kon = TVkon*MFkon*kon_GENO4*exp(ETA(17));
if (GENO == 5) kon = TVkon*MFkon*kon_GENO5*exp(ETA(17));
double koff = TVkoff*MFkoff;
double Rmax = TVRmax*MFRmax*exp(ETA(18));
        if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
```

```
if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
```

```
    //other parameters
    double ka = TVka*MFka*exp(ETA(19));
    double BP = TVBP*MFBP;
    double fup = TVfup*MFfup;
    //receptor(R) baseline
    R_0 = Rmax;
    //fluconazole
    ALAG_flucdepot = 0.23 ; //absorption lag time h
    double cl_fluc = tvcl_fluc*exp(ETA(20)) ; //clearance L/hr
    double v_fluc = tvv_fluc *exp(ETA(21)) ; //volume of distribution L
    double ka_fluc = tvka_fluc*exp(ETA(22)) ; //absorption rate constant
/hr
```

 //fluconazole inhibitory effects
 double ki_4oh = tvki_4oh
 double ki_6oh = tvki_6oh
 double ki_7oh = tvki_7oh
 double ki_8oh = tvki_8oh
 double ki_10oh = tvki_10oh
 //parse intrinsic clearance (CLint)
 //based on figure 5 of warfarin metabolite manuscript (unpublish till
 3/23/2021)
//6-S, 7-S assumed to be eliminated through 2C9
//4-S is assumed to be eliminated by a mix effect of 2C9, 3A4 and 2C19
//8-S is assumed to be eliminated through 2C19
//10-S assumed to be eliminated through 3A4
double CLint_4oh $=(1.5 /(1.5+10.5+40.0+0.8+0.3))^{*}$ CLint;
if (GENO == 2) CLint_4oh = (1.7 / (1.7 + $10.0+46.5+0.7+0.4))^{*}$
CLint;
if (GENO == 3) CLint_4oh = (2.5 / (2.5 + $10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_4oh $=(5.5$ / (5.5 + $9.3+36.1+1.0+0.8))^{*}$
CLint;
if (GENO == 5) CLint_4oh = (7.1 / (7.1 + 5.2 + 10.7 + 1.2 + 1.0)) *
CLint;
double CLint_6oh $=(10.5 /(1.5+10.5+40.0+0.8+0.3))^{*}$ CLint;
if (GENO == 2) CLint_6oh $=(10.0 /(1.7+10.0+46.5+0.7+0.4))^{*}$
CLint;
if (GENO == 3) CLint_6oh = (10.7 / (2.5 + $10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_6oh $=(9.3 /(5.5+9.3+36.1+1.0+0.8))^{*}$
CLint;
if (GENO == 5) CLint_6oh = (5.2 / (7.1 + 5.2 + 10.7 + $1.2+1.0))^{*}$

```
CLint;
    double CLint_7oh = (40.0 / (1.5 + 10.5 + 40.0 + 0.8 + 0.3)) * CLint;
        if (GENO == 2) CLint_7oh = (46.5 / (1.7 + 10.0 + 46.5 + 0.7 + 0.4)) *
CLint;
    if (GENO == 3) CLint_7oh = (38.6 / (2.5 + 10.7 + 38.6 + 0.9 + 0.5)) *
CLint;
    if (GENO == 4) CLint_7oh = (36.1 / (5.5 + 9.3 + 36.1 + 1.0 + 0.8)) *
CLint;
    if (GENO == 5) CLint_7oh = (10.7 / (7.1 + 5.2 + 10.7 + 1.2 + 1.0)) *
CLint;
    double CLint_8oh = (0.8 / (1.5 + 10.5 + 40.0 + 0.8 + 0.3)) * CLint;
        if (GENO == 2) CLint_8oh = (0.7 / (1.7 + 10.0 + 46.5 + 0.7 + 0.4)) *
CLint;
    if (GENO == 3) CLint_8oh = (0.9 / (2.5 + 10.7 + 38.6 + 0.9 + 0.5)) *
CLint;
    if (GENO == 4) CLint_8oh = (1.0 / (5.5 + 9.3 + 36.1 + 1.0 + 0.8)) *
CLint;
    if (GENO == 5) CLint_8oh = (1.2 / (7.1 + 5.2 + 10.7 + 1.2 + 1.0)) *
CLint;
    double CLint_10oh = (0.3 / (1.5 + 10.5 + 40.0 + 0.8 + 0.3)) * CLint;
    if (GENO == 2) CLint_10oh = (0.4 / (1.7 + 10.0 + 46.5 + 0.7 + 0.4)) *
CLint;
    if (GENO == 3) CLint_10oh = (0.5 / (2.5 + 10.7 + 38.6 + 0.9 + 0.5)) *
CLint;
    if (GENO == 4) CLint_10oh = (0.8 / (5.5 + 9.3 + 36.1 + 1.0 + 0.8)) *
CLint;
    if (GENO == 5) CLint_10oh = (1.0 / (7.1 + 5.2 + 10.7 + 1.2 + 1.0)) *
CLint;
[ODE]
    //Calculation of tissue drug concentrations (ug/L)
    double Cbrain = BRAIN/Vbr ;
    double Cgut = GUT/Vgu ;
    double Cspleen = SPLEEN/Vsp ;
    double Cpancreas = PANCREAS/Vpa;
    double Cstomach = STOMACH/Vst ;
    double Cliver = LIVER/Vli ;
    double Ckidney = KIDNEY/Vki
    double Cheart = HEART/Vhe ;
    double Clung = LUNG/Vlu ;
    double Cmuscle = MUSCLE/Vmu ;
    double Cadipose = ADIPOSE/Vad ;
    double Cskin = SKIN/Vsk ;
    double Cbone = BONE/Vbo ;
    double Cthymus = THYMUS/Vth ;
    double Carterial = ART/Vab ;
    double Cvenous = VEN/Vvb ;
    //fluc inhibitory effect on CLint
```

```
    //CLint,i = CLint/(1 + [I]/ki)
```

//equation reference: https://pubmed.ncbi.nlm.nih.gov/16984215/ equation(1)
//equation reference: https://pubmed.ncbi.nlm.nih.gov/18378563/ equation(2) double cp_fluc = fluccent/v_fluc; //fluconazole central compartment concentration

```
    double CLint_4oh_inh = CLint_4oh / (1 + cp_fluc / ki_4oh );
    double CLint_6oh_inh = CLint_6oh / (1 + cp_fluc / ki_6oh );
    double CLint_7oh_inh = CLint_7oh / (1 + cp_fluc / ki_7oh );
    double CLint_8oh_inh = CLint_8oh / (1 + cp_fluc / ki_8oh );
    double CLint_10oh_inh = CLint_10oh / (1 + cp_fluc / ki_10oh );
    double CLint_inh = CLint_4oh_inh + CLint_6oh_inh + CLint_7oh_inh +
CLint_8oh_inh + CLint_10oh_inh;
    //ODEs
    dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
    dxdt_BRAIN = Qbr*(Carterial - Cbrain/(Kpbr/BP)) ;//(2)
    dxdt_GUT = ka*GUTLUMEN
    + Qgu*(Carterial - Cgut/(Kpgu/BP)) ;//(3) to liver
dxdt_SPLEEN = Qsp*(Carterial - Cspleen/(Kpsp/BP)) ;//(4) to liver
dxdt_PANCREAS = Qpa*(Carterial - Cpancreas/(Kppa/BP)) ;//(5) to liver
dxdt_STOMACH = Qst*(Carterial - Cstomach/(Kpst/BP)) ;//(6) to liver
dxdt_LIVER = Qgu*(Cgut/(Kpgu/BP)) //from gut
    + Qsp*(Cspleen/(Kpsp/BP)) //from spleen
    + Qpa*(Cpancreas/(Kppa/BP)) //from pancreas
    + Qst*(Cstomach/(Kpst/BP)) //from stomach
    + Qha*(Carterial) //from hepatic
arterial
    - Qli*(Cliver/(Kpli/BP))
    - CLint_inh*(Cliver*fup/Kpli) ;//(7)
dxdt_KIDNEY = Qki*(Carterial - Ckidney/(Kpki/BP))
    - CLint_Ki*(Ckidney*fup/Kpki) ;//(8)
dxdt_HEART = Qhe*(Carterial - Cheart/(Kphe/BP)) ;//(9)
dxdt_LUNG = Qlu*(Cvenous - Clung/(Kplu/BP)) ;//(10)
dxdt_MUSCLE = Qmu*(Carterial - Cmuscle/(Kpmu/BP)) ;//(11)
dxdt_ADIPOSE = Qad*(Carterial - Cadipose/(Kpad/BP)) ;//(12)
dxdt_SKIN = Qsk*(Carterial - Cskin/(Kpsk/BP)) ;//(13)
dxdt_BONE = Qbo*(Carterial - Cbone/(Kpbo/BP)) ;//(14)
dxdt_THYMUS = Qth*(Carterial - Cthymus/(Kpth/BP)) ;//(15)
dxdt_VEN = Qbr*(Cbrain/(Kpbr/BP)) //from brain
    + Qli*(Cliver/(Kpli/BP)) //from liver
    + Qki*(Ckidney/(Kpki/BP)) //from kidney
    + Qhe*(Cheart/(Kphe/BP)) //from heart
```

```
        + Qmu*(Cmuscle/(Kpmu/BP)) //from muscle
        + Qad*(Cadipose/(Kpad/BP))
        + Qsk*(Cskin/(Kpsk/BP))
        + Qbo*(Cbone/(Kpbo/BP))
        + Qth*(Cthymus/(Kpth/BP))
        - Qlu*Cvenous
        - kon*(Cvenous/BP)*R
        + koff*DR
        dxdt_ART = Qlu*(Clung/(Kplu/BP) - Carterial) ;//(17)
        dxdt_R = - kon*(Cvenous/BP)*R + koff*DR ;//(18)
        dxdt_DR = kon*(Cvenous/BP)*R - koff*DR ;//(19)
        dxdt_flucdepot = - ka_fluc*flucdepot ;//(20) fluc depot
compartment (mass)
    dxdt_fluccent = ka_fluc*flucdepot - cl_fluc*cp_fluc ;//(21) fluc
central compartment (mass)
[OMEGA]
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 //Kps
    0.09 //CL
    0.09 //CL_Ki
    0.09 //kon
    0.09 //Rmax
    0.09 //Kа
    0.0481 //cl_fluc
    0.0298 //v_fluc
    1.426 //ka_fluc
[TABLE]
    capture CP = Cvenous/BP;
    capture GENO = GENO;
    capture WEIGHT =weight;
    capture CP_FLUC = cp_fluc;
    capture CLINT = CLint_inh;
```

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

S-warfarin PBPK model with rifampin induction mrgsolve model file

Shen Cheng

2021-09-13

```
[set] delta = 0.1 ,end = 720 //720 hours/30 Days
[PARAM]
    //Tissue volumes (L); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVVbr = 1450/1000 //brain mL to L
    TVVgu = 1650/1000 //Gut
    TVVsp = 192/1000 //spleen
    TVVpa = 77/1000 //pancreas
    TVVst = 154/1000 //stomach (not in simcyp)
    TVVli = 1690/1000 //liver
    TVVki = 280/1000 //kidneys
    TVVhe = 310/1000 //heart
    TVVlu = 1172/1000 //lungs
    TVVmu = 35000/1000 //muscle
    TVVad = 10000/1000 //adipose
    TVVsk = 7800/1000 //skin
    TVVbo = 4579/1000 //bone
    TVVth = 29/1000 //thymus (not in simcyp)
    TVVab = 1698/1000 //arterial blood
    TVVvb = 3396/1000 //venous blood
    //Tissue blood flows (L/h); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVQbr = (700*60)/1000 //brain mL/min to L/hr
    TVQha = (302*60)/1000 //hepatic artery
    TVQgu = (1100*60)/1000 //gut
    TVQsp = (77*60)/1000 //spleen
    TVQpa = (133*60)/1000 //pancreas
    TVQst = (38*60)/1000 //stomach
    TVQli = (1650*60)/1000 //liver (total) (= Qha + Qgu + Qsp + Qpa + Qst)
    TVQki = (1100*60)/1000 //kidney
    TVQhe = (150*60)/1000 //heart
    TVQlu = (5240*60)/1000 //lung,
    //should be same as cardiac output(adjusted to 5240, 5233 original)
    //to match the total Q
    TVQmu = (750*60)/1000 //muscle
    TVQad = (260*60)/1000 //adipose
    TVQsk = (300*60)/1000 //skin
    TVQbo = (250*60)/1000 //bone
```

TVQth $=(80 * 60) / 1000 \quad / /$ thymus
//partition coefficients estimated by Rodgers et.al., method suggested by //Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVKpbr $=0.0523693 \quad / / b r a i n: p l a s m a$
TVKpgu = $0.1618 \quad / /$ gut:plasma
TVKpsp $=0.100666$ //spleen:plasma
TVKppa $=0.0639167 \quad / /$ pancreas:plasma
TVKpst $=0.1271972 \quad / / s t o m a c h: p l a s m a(n o t ~ i n ~ s i m c y p) ~ c a l c u l a t e d ~ a s ~$
average of non adipose Kps
TVKpli $=0.089772 \quad / / l i v e r: p l a s m a$
TVKpki $=0.133745 \quad / / k i d n e y: p l a s m a$
TVKphe = 0.160367 //heart:plasma
TVKplu = 0.215004 //lungs:plasma
TVKpmu = 0.037509 //muscle:plasma
TVKpad = 0.0396971 //adipose:plasma
TVKpsk = 0.281144 //skin:plasma
TVKpbo = 0.102876 //bone:plasma
TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
TVCL $=0.26 \quad / /(\mathrm{L} / \mathrm{hr})$ in vivo clearance (unpublished warfarin manuscript, simcyp sim-warfarin)
//renal clearance
TVCL_Ki = 0.00369*1.3 //(L/hr) renal clearance (unpublished warfarin manuscript)
//1.3: rifampin effect on S-warfarin renal
clearance(unpublished manuscript)
//TMDD param (unpublished warfarin manuscript)
TVkon $=0.00494 \quad / / \mathrm{L} /(\mu \mathrm{g} *$ hour $)$
TVkoff $=0.0405$ // /hour
TVRmax = 182 // ug/L
//other parameters
TVka = 1.85 //absorption rate constant (/hr) assumed (simcyp
sim-warfarin)
TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
TVfup $=0.009 \quad / / f r a c t i o n ~ o f ~ u n b o u n d ~ d r u g ~ i n ~ p l a s m a ~(s i m c y p ~ s i m-~$
warfarin)

| //scalars | |
| :--- | :--- |
| GENO $=1$ | |
| weight $=68.7$ | |
| MFka $=1$ | //(kg) |
| MFkp $=1$ | //scalar for Ka |
| MFBP | //scalar for Kps |

//rifampin is a strong inhibitor for 2C19 and 3A4, but moderate for 2C9 (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers)
tvindmax_4oh = 7.4 //fold increase, assumed to be eliminated by a mix effect of 2C9, 2C19 and 3A4 $((3.6+5.5+16) / 3=8.4)$
tvindmax_6oh = 2.6 //fold increase, assumed to be eliminated through 2C9 (3.6, https://www.certara.com/app/uploads/2017/10/Machavaram_2017_ISSX_CYP2C9.pdf) tvindmax_7oh = 2.6 //fold increase, assumed to be eliminated through 2C9 (3.6, https://www.certara.com/app/uploads/2017/10/Machavaram_2017_ISSX_CYP2C9.pdf) tvindmax_8oh = 4.5 //fold increase, assumed to be eliminated through 2 C19 (5.5, table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/) tvindmax_10oh = 15 //fold increase, assumed to be eliminated through 3A4 (16, table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/)
tvindc50_4oh $=0.239 \mathrm{/} / \mathrm{mg} / \mathrm{L} 0.29 \mathrm{uM}$ assumed to be eliminated by a mix effect of 2C9, 2C19 and 3A4 ((0.1 + 0.45 + 0.32)/3) tvindc50_6oh = $1.234 \mathrm{/} / \mathrm{mg} / \mathrm{L} 1.5$ uM assumed to be eliminated through 2C9 (https://www.certara.com/app/uploads/2017/10/Machavaram_2017_ISSX_CYP2C9.pdf) tvindc50_7oh = $1.234 \mathrm{/} / \mathrm{mg} / \mathrm{L} 1.5$ uM assumed to be eliminated through 2C9 (https://www.certara.com/app/uploads/2017/10/Machavaram_2017_ISSX_CYP2C9.pdf) tvindc50_8oh $=0.370 \mathrm{l} / \mathrm{mg} / \mathrm{L} 0.45 \mathrm{uM}$ assumed to be eliminated through 2C19 (table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/) tvindc50_10oh $=0.263 \mathrm{l} / \mathrm{mg} / \mathrm{L} 0.32 \mathrm{uM}$ assumed to be eliminated through 3A4 (table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/)
[global]
int ndose = 0;
double dosetime[300];
double dose[300];
[PREAMBLE]
double last_dose = 0;
[CMT]
GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4
ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other
tissue comp X10
ART VEN //circulation X2
R DR //TMDD comp x2
rifadepot //rifampin depot comaprtment
rifacent //rifampin central compartment
rifaenz //rifampin enzyme compartment
[MAIN]

| //allometric | scaling of volume | |
| :---: | :---: | :---: |
| double Vbr | = TVVbr*pow(weight/70, 1) | //brain |
| double Vgu | = TVVgu*pow(weight/70, 1) | //Gut |
| double Vsp | = TVVsp*pow(weight/70, 1) | //spleen |
| double Vpa | = TVVpa*pow(weight/70, 1) | //pancreas |
| double Vst | = TVVst*pow(weight/70, 1) | //stomach |
| double Vli | = TVVli*pow(weight/70, 1) | //liver |
| double Vki | = TVVki*pow(weight/70, 1) | //kidneys |
| double Vhe | = TVVhe*pow(weight/70, 1) | //heart |
| double Vlu | = TVVlu*pow(weight/70, 1) | //lungs |
| double Vmu | = TVVmu*pow(weight/70, 1) | //muscle |
| double Vad | = TVVad*pow(weight/70, 1) | //adipose |
| double Vsk | = TVVsk*pow(weight/70, 1) | //skin |
| double Vbo | = TVVbo*pow(weight/70, 1) | //bone |
| double Vth | = TVVth*pow(weight/70, 1) | //thymus |
| double Vab | = TVVab*pow(weight/70, 1) | //arterial blood |
| double Vvb | = TVVvb*pow(weight/70, 1) | //venous blood |
| //allometric scaling of flow | | |
| double Qbr | = TVQbr*pow(weight/70, 0.75); | //brain |
| double Qha | = TVQha*pow(weight/70, 0.75); | //hepatic artery |
| double Qgu | = TVQgu*pow(weight/70, 0.75); | //gut |
| double Qsp | = TVQsp*pow(weight/70, 0.75); | //spleen |
| double Qpa | = TVQpa*pow(weight/70, 0.75); | //pancreas |
| double Qst | = TVQst*pow(weight/70, 0.75); | //stomach |
| double Qli | = TVQli*pow(weight/70, 0.75); | //liver (total) (= Qha + |
| Qgu + Qsp + Qpa + Qst) | | |
| double Qki | = TVQki*pow(weight/70, 0.75); | //kidney |
| double Qhe | = TVQhe*pow(weight/70, 0.75); | //heart |
| double Qlu | = TVQlu*pow(weight/70, 0.75); | //lung |
| double Qmu | = TVQmu*pow(weight/70, 0.75); | //muscle |
| double Qad | = TVQad*pow(weight/70, 0.75); | //adipose |
| double Qsk | = TVQsk*pow(weight/70, 0.75); | //skin |
| double Qbo | = TVQbo*pow(weight/70, 0.75); | //bone |
| double Qth | = TVQth*pow(weight/70, 0.75); | //thymus |
| //scaled Kps | | |
| double Kpbr | $=$ TVKpbr*MFkp*exp(ETA (1)) | //brain:plasma |
| double Kpgu | = TVKpgu*MFkp*exp(ETA (2)) | //gut:plasma |
| double Kpsp | = TVKpsp*MFkp*exp(ETA (3)) | //spleen:plasma |
| double Kppa | = TVKppa*MFkp*exp(ETA (4)) | //pancreas:plasma |
| double Kpst | $=$ TVKpst*MFkp*exp(ETA (5)) | //stomach:plasma |
| double Kpli | $=$ TVKpli*MFkp*exp(ETA (6)) | //liver:plasma |
| double Kpki | $=$ TVKpki*MFkp*exp(ETA (7)) | //kidney:plasma |
| double Kphe | $=$ TVKphe*MFkp*exp(ETA (8)) | //heart:plasma |
| double Kplu | $=$ TVKplu*MFkp*exp(ETA (9)) | //lungs:plasma |
| double Kpmu | $=$ TVKpmu*MFkp*exp(ETA (10)) | //muscle:plasma |
| double Kpad | $=$ TVKpad*MFkp*exp(ETA (11)) | //adipose:plasma |
| double Kpsk | $=$ TVKpsk*MFkp*exp(ETA (12)) | //skin:plasma |

```
    double Kpbo = TVKpbo*MFkp*exp(ETA(13)) ; //bone:plasma
    double Kpth = TVKpth*MFkp*exp(ETA(14)) ; //thymus:plasma
    //allometric scaling of clearance (hepatic and renal)
    double CL_GENO = 1;
        if (GENO==2) CL_GENO = CL_GENO2;
        if (GENO==3) CL_GENO = CL_GENO3;
        if (GENO==4) CL_GENO = CL_GENO4;
        if (GENO==5) CL_GENO = CL_GENO5;
    double CL = TVCL *CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
    double CL_Ki = TVCL_Ki *exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
    //CLint (liver intrinsic clearance: back calculated from liver clearance:
CL-CL_Ki)
    //reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY & THERAPEUTICS |
VOLUME 108 NUMBER 1 | July 2020
    //reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-
9556/07/3503-501-502$20.00
    double CLint = Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
    //CLint_Ki (kidney intrinsic clearance: back calculated from renal
clearance: CL_Ki)
    double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
    //TMDD param
    double kon = TVkon*MFkon*exp(ETA(17));
        if (GENO == 4) kon = TVkon*MFkon*kon_GENO4*exp(ETA(17));
        if (GENO == 5) kon = TVkon*MFkon*kon_GENO5*exp(ETA(17));
    double koff = TVkoff*MFkoff;
    double Rmax = TVRmax*MFRmax*exp(ETA(18));
        if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
        if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
    //other parameters
    double ka = TVka*MFka*exp(ETA(19));
    double BP = TVBP*MFBP;
    double fup = TVfup*MFfup;
    //receptor(R) baseline
    R_0 = Rmax;
    //rifampin empirical pk model start------------------------------------------
    //rifampin empirical pk model parameters
```

```
    double vmax_rifa = tvvmax_rifa * exp(ETA(20))
; //maximal elimination rate L/hr
    double km_rifa = tvkm_rifa * exp(ETA(21)) *
exp(iovkm_rifa) ; //rifampicin concentration at which the elimination is
half-maximal
    double v_rifa = tvv_rifa *(ffm / 70) * exp(ETA(22)) *
exp(iovv_rifa) ; //volume of distribution L
    double ka_rifa = tvka_rifa * exp(ETA(23))*
exp(iovka_rifa) ; //absorption rate constant /hr
    double ec50_rifa = tvec50_rifa
; //rifampicin concentration at which half the emax is reached
    double emax_rifa = tvemax_rifa
; //maximal increase in enzyme production rate
    double kenz_rifa = tvkenz_rifa
; //first-order rate constant for enzyme pool degradation
    double femax_rifa = tvfemax_rifa
; //maximal increase in relative bioavailability above 450mg
    double fed50_rifa = tvfed50_rifa
; //difference in rifampicin dose from 450mg at which half the fmax is
reached
    double mtt_rifa = tvmtt_rifa * exp(ETA(24))
; //mean transit time hr
    double nn_rifa = tvnn_rifa * exp(ETA(25))
; //number of transit compartments
```

 //calculate dose******
 if(EVID == 1 \&\& self.cmt == 20)\{
 last_dose = self.amt; //reference:
 https://mrgsolve.github.io/user_guide/model-specification.html\#self.amt
\}
//dose dependent relative bioavailability
double f450 = 1; //assuming bioavailability for 450mg dose is 1
double f_rifa = f450*(1 + femax_rifa*(last_dose-450) / (fed50_rifa +
(last_dose - 450))) * exp(iovf_rifa); //Emax on bioavailability
//define ktr
double ktr_rifa = (nn_rifa + 1) / mtt_rifa; //rate constant for
transit compartments
//logarithm of the approximation to the gamma function
double l $\quad 0.9189385+\left(n n _r i f a+0.5\right)$ * $\log \left(n n _r i f a\right)$ - nn_rifa +
$\log (1+1 /(12$ * nn_rifa)) ; //logarithm of gamma_n
double lbpd = log(f_rifa * last_dose)
; //logarithm of f*dose
double lktr = log(ktr_rifa)
; //logarithm of ktr
double cumul = lbpd + lktr - l
; //logarithm of f*dose*ktr/gamma_n

```
//interoccasion vaibility(IOV)
double iovkm_rifa = ETA(26);
if (occ != 1) iovkm_rifa = ETA(27);
double iovv_rifa = ETA(28);
if (occ != 1) iovv_rifa = ETA(29);
double iovka_rifa = ETA(30);
if (occ != 1) iovka_rifa = ETA(31);
double iovf_rifa = ETA(32);
if (occ != 1) iovf_rifa = ETA(33);
//Initialize compartments
F_rifadepot = 0 ; //transit absorption compartment
rifacent_0 = 0.0001 ; //central compartment
rifaenz_0 = 1 ; //enzyme compartment
//compute ndose (the index of dose)
//dosetime: time after dose
//dose: dosage
if(NEWIND < 2) ndose = 0; //index of dose
if(self.amt > 0 && self.cmt == 20) {
    ndose = ndose + 1;
    dosetime[ndose] = self.time;
    dose[ndose] = self.amt; //reference:
https://mrgsolve.github.io/user_guide/model-specification.html#self.amt
}
//rifampin empirical pk model end---------------------------------------------
```


//rifampin inducing effects

double indmax_4oh = tvindmax_4oh
double indmax_6oh = tvindmax_6oh
double indmax_7oh = tvindmax_7oh
double indmax_8oh = tvindmax_8oh
double indmax_10oh = tvindmax_10oh
double indc50 4oh = tvindc50 4oh
double indc50_6oh = tvindc50_6oh
double indc50_7oh = tvindc50_7oh
double indc50_8oh = tvindc50_8oh
double indc50_10oh = tvindc50_10oh

```
--------------------------------------------------
```

```
//parse intrinsic clearance (CLint)
```

//based on figure 5 of warfarin metabolite manuscript (unpublish till 3/23/2021)
//6-S, 7-S assumed to be eliminated through 2C9
//4S is assumed to be eliminated by a mix effect of 2C9, 3A4 and 2C19
//8-S is assumed to be eliminated through 2C19
//10-S assumed to be eliminated through 3A4
double CLint_4oh $=(1.5 /(1.5+10.5+40.0+0.8+0.3)) *$ CLint;
if (GENO == 2) CLint_4oh = (1.7 / (1.7 + $10.0+46.5+0.7+0.4))^{*}$
CLint; if (GENO == 3) CLint_4oh $=(2.5 /(2.5+10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_4oh $=(5.5 /(5.5+9.3+36.1+1.0+0.8))^{*}$
CLint;
if (GENO == 5) CLint_4oh = (7.1 / (7.1 + 5.2 + 10.7 + $1.2+1.0))^{*}$
CLint;
double CLint_6oh = (10.5 / (1.5 + $10.5+40.0+0.8+0.3))^{*}$ CLint; if (GENO == 2) CLint_6oh = (10.0 / (1.7 + $10.0+46.5+0.7+0.4))^{*}$
CLint;
if (GENO == 3) CLint_6oh = (10.7 / (2.5 + $10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_6oh = (9.3 / (5.5 + 9.3 + 36.1 + 1.0 + 0.8)) *
CLint;
if (GENO == 5) CLint_6oh = (5.2 / (7.1 + 5.2 + 10.7 + $1.2+1.0)$) *
CLint;
double CLint_7oh $=(40.0 /(1.5+10.5+40.0+0.8+0.3))^{*}$ CLint; if (GENO == 2) CLint_7oh $=(46.5 /(1.7+10.0+46.5+0.7+0.4))^{*}$
CLint;
if (GENO == 3) CLint_7oh $=(38.6 /(2.5+10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO $==4)$ CLint_7oh $=(36.1 /(5.5+9.3+36.1+1.0+0.8))^{*}$
CLint;
if (GENO == 5) CLint_7oh = (10.7 / (7.1 + 5.2 + 10.7 + $1.2+1.0))^{*}$
CLint;
double CLint_8oh = (0.8 / (1.5 + $10.5+40.0+0.8+0.3)$) * CLint; if (GENO == 2) CLint_8oh = (0.7 / (1.7 + $10.0+46.5+0.7+0.4))^{*}$
CLint;
if (GENO == 3) CLint_8oh = (0.9 / (2.5 + $10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_8oh $=(1.0 /(5.5+9.3+36.1+1.0+0.8))^{*}$
CLint;
if (GENO == 5) CLint_8oh = (1.2 / (7.1 + 5.2 + 10.7 + $1.2+1.0))^{*}$
CLint;
double CLint_10oh $=(0.3 /(1.5+10.5+40.0+0.8+0.3))^{*}$ CLint; if (GENO == 2) CLint_10oh $=(0.4 /(1.7+10.0+46.5+0.7+0.4))^{*}$ CLint;
if (GENO == 3) CLint_10oh $=(0.5 /(2.5+10.7+38.6+0.9+0.5))^{*}$
CLint;
if (GENO == 4) CLint_10oh $=(0.8 /(5.5+9.3+36.1+1.0+0.8))^{*}$ CLint;

```
    if (GENO == 5) CLint_10oh = (1.0 / (7.1 + 5.2 + 10.7 + 1.2 + 1.0)) *
CLint;
```

```
[ODE]
    //Calculation of tissue drug concentrations (ug/L)
    double Cbrain = BRAIN/Vbr ;
    double Cgut = GUT/Vgu ;
    double Cspleen = SPLEEN/Vsp ;
    double Cpancreas = PANCREAS/Vpa;
    double Cstomach = STOMACH/Vst ;
    double Cliver = LIVER/Vli ;
    double Ckidney = KIDNEY/Vki ;
    double Cheart = HEART/Vhe ;
    double Clung = LUNG/Vlu ;
    double Cmuscle = MUSCLE/Vmu ;
    double Cadipose = ADIPOSE/Vad ;
    double Cskin = SKIN/Vsk ;
    double Cbone = BONE/Vbo ;
    double Cthymus = THYMUS/Vth ;
    double Carterial = ART/Vab ;
    double Cvenous = VEN/Vvb ;
    //rifampin inducing effect on CLint
    //CLint,i = CLint*(1 + (indmax*cp_rifa)/(indc50 + cp_rifa))
    //equation reference: https://pubmed.ncbi.nlm.nih.gov/29365101/ equation(1)
    double cp_rifa = rifacent/v_rifa ; //central compartment
concentration mg/L
    double cl_rifa = vmax_rifa/(km_rifa + cp_rifa) ; //nonlinear clearance
L/hr
    double k_rifa = cl_rifa/v_rifa ; //elimination rate
constant mg/hr
    double CLint_4oh_ind = CLint_4oh * (1 + (indmax_4oh*cp_rifa) /
(indc50_4oh + cp_rifa));
    double CLint_6oh_ind = CLint_6oh * (1 + (indmax_6oh*cp_rifa) /
(indc50_6oh + cp_rifa));
    double CLint_7oh_ind = CLint_7oh * (1 + (indmax_7oh*cp_rifa) /
(indc50_7oh + cp_rifa));
    double CLint_8oh_ind = CLint_8oh * (1 + (indmax_8oh*cp_rifa) /
(indc50_8oh + cp_rifa));
    double CLint_10oh_ind = CLint_10oh * (1 + (indmax_10oh*cp_rifa) /
(indc50_10oh + cp_rifa));
    double CLint_ind = CLint_4oh_ind + CLint_6oh_ind + CLint_7oh_ind +
CLint_8oh_ind + CLint_10oh_ind;
    //ODEs
    dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
```

| dxdt_BRAIN | | Qbr*(Carterial - Cbrain/(Kpbr/BP)) | ;//(2) |
| :---: | :---: | :---: | :---: |
| dxdt_GUT | | ka*GUTLUMEN | |
| | | Qgu*(Carterial - Cgut/(Kpgu/BP)) | ;//(3) to liver |
| dxdt_SPLEEN | $=$ | Qsp*(Carterial - Cspleen/(Kpsp/BP)) | ;//(4) to liver |
| dxdt_PANCREAS | = | Qpa*(Carterial - Cpancreas/(Kppa/BP)) | ;//(5) to liver |
| dxdt_STOMACH | $=$ | Qst*(Carterial - Cstomach/(Kpst/BP)) | ;//(6) to liver |
| dxdt_LIVER | $=$ | Qgu*(Cgut/(Kpgu/BP)) | //from gut |
| | | Qsp*(Cspleen/(Kpsp/BP)) | //from spleen |
| | | + Qpa*(Cpancreas/(Kppa/BP)) | //from pancreas |
| | | Qst*(Cstomach/(Kpst/BP)) | //from stomach |
| | | Qha*(Carterial) | //from hepatic |
| arterial | | | |
| | | Qli*(Cliver/(Kpli/BP)) | |
| | | CLint_ind*(Cliver*fup/Kpli) | ;//(7) |
| dxdt_KIDNEY | | Qki*(Carterial - Ckidney/(Kpki/BP)) | |
| | | CLint_Ki*(Ckidney*fup/Kpki) | ;//(8) |
| dxdt_HEART | $=$ | Qhe*(Carterial - Cheart/(Kphe/BP)) | ;//(9) |
| dxdt_LUNG | $=$ | Qlu*(Cvenous - Clung/(Kplu/BP)) | ;//(10) |
| dxdt_MUSCLE | $=$ | Qmu*(Carterial - Cmuscle/(Kpmu/BP)) | ;//(11) |
| dxdt_ADIPOSE | $=$ | Qad*(Carterial - Cadipose/(Kpad/BP)) | ;//(12) |
| dxdt_SKIN | $=$ | Qsk*(Carterial - Cskin/(Kpsk/BP)) | ;//(13) |
| dxdt_BONE | $=$ | Qbo*(Carterial - Cbone/(Kpbo/BP)) | ;//(14) |
| dxdt_THYMUS | $=$ | Qth*(Carterial - Cthymus/(Kpth/BP)) | ;//(15) |
| dxdt_VEN | $=$ | Qbr*(Cbrain/(Kpbr/BP)) | //from brain |
| | | Qli*(Cliver/(Kpli/BP)) | //from liver |
| | | Qki*(Ckidney/(Kpki/BP)) | //from kidney |
| | | Qhe*(Cheart/(Kphe/BP)) | //from heart |
| | | Qmu*(Cmuscle/(Kpmu/BP)) | //from muscle |
| | | Qad*(Cadipose/(Kpad/BP)) | //from adipose |
| | | Qsk*(Cskin/(Kpsk/BP)) | //from skin |
| | | Qbo*(Cbone/(Kpbo/BP)) | //from bone |
| | | Qth*(Cthymus/(Kpth/BP)) | //from thymus |
| | | Qlu*Cvenous
 kon*(Cvenous/BP)*R | |
| | | + koff*DR | ;//(16) |
| dxdt_ART | $=$ | Qlu*(Clung/(Kplu/BP) - Carterial) | ;//(17) |
| dxdt_R | = - | kon*(Cvenous/BP)*R + koff*DR | ;//(18) |
| dxdt_DR | | kon*(Cvenous/BP)*R - koff*DR | ;//(19) |
| //des for rifampin model | | | |
| int i | $=0$; | | |

```
    while(i <= ndose) {
        double delta = SOLVERTIME - dosetime[i];
        if(SOLVERTIME > dosetime[i]) {
            double ktt_rifa = ktr_rifa*delta;
            dxdt_rifadepot = exp(cumul + nn_rifa*log(ktt_rifa) - ktt_rifa) -
ka_rifa*rifadepot
                                    ; //(20) rifampin depot compartment (mass)
            }else{
            ktt_rifa = 0;
            dxdt_rifadepot = 0;
        }
        ++i;
    }
    double eff_rifa = (emax_rifa * cp_rifa) / (ec50_rifa + cp_rifa)
; //rifampin induction effect on enzyme
    dxdt_rifacent = ka_rifa * rifadepot - (cl_rifa *pow(ffm / 70, 0.75) /
v_rifa) * rifacent * rifaenz ; //(21)rifampin central compartment (mass)
    dxdt_rifaenz = kenz_rifa * (1 + eff_rifa) - kenz_rifa*rifaenz
; //(22)rifampin compartment (mass)
[OMEGA]
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 //Kps
    0.09 //CL
    0.09 //CL_Ki
    0.09 //kon
    0.09 //Rmax
    0.09 //Ka
[OMEGA] @correlation
    0.0862 //vmax_rifa
    0.389 0.121 //km_rifa
[OMEGA]
    0.00616 //v_rifa
    0.108 //ka_rifa
    0.136 //mtt_rifa
    0.474 //n_rifa
[OMEGA]
    0.0351 //iovkm_rifa occ1
    0.0351 //iovkm_rifa occ other than 1
    0.0940 //iovv_rifa occ1
    0.0940 //iovv_rifa occ other than 1
    0.276 //iovka_rifa occ1
    0.276 //iovka_rifa occ other than 1
    0.0244 //iovf_rifa occ1
```

0.0244 //iovf_rifa occ other than 1

```
[TABLE]
capture CP = Cvenous/BP;
capture GENO = GENO;
capture WEIGHT = weight;
capture CP_RIFA = cp_rifa;
capture CLINT = CLint_ind;
capture dos = last_dose;
capture DELTA = delta;
capture CL_RIFA = cl_rifa;
capture BIO_RIFA = f_rifa;
```

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

R-warfarin PBPK model mrgsolve model file

Shen Cheng

2021-09-13
[set] delta $=0.1$,end=360 //360 hours/15 Days


```
//partition coefficients estimated by Rodgers et.al., method suggested by
//Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVKpbr = 0.0523693 //brain:plasma
    TVKpgu = 0.1618 //gut:plasma
    TVKpsp = 0.100666 //spleen:plasma
    TVKppa = 0.0639167 //pancreas:plasma
    TVKpst = 0.1271972 //stomach:plasma (not in simcyp) calculated as
average of non adipose Kps
    TVKpli = 0.089772 //liver:plasma
    TVKpki = 0.133745 //kidney:plasma
    TVKphe = 0.160367 //heart:plasma
    TVKplu = 0.215004 //lungs:plasma
    TVKpmu = 0.037509 //muscle:plasma
    TVKpad = 0.0396971 //adipose:plasma
    TVKpsk = 0.281144 //skin:plasma
    TVKpbo = 0.102876 //bone:plasma
    TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
    TVCL = 0.119 //(L/hr) in vivo clearance (simcyp sim-warfarin)
//renal clearance
    TVCL_Ki = 0.00436 //(L/hr) renal clearance (simcyp sim-warfarin)
//TMDD param (unpublished warfarin manuscript)
    TVkon = 0.00137 // L/(\mug*hour)
    TVkoff = 0.0405 // /hour
    TVRmax = 188 // ug/L
//other parameters
    TVka = 1.85 //absorption rate constant (/hr) assumed
    TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
    TVfup = 0.009 //fraction of unbound drug in plasma (simcyp sim-
warfarin)
//scalars
    GENO = 1 //1:*1/*1; 2:*1B/*1B; 3:*1*/3; 4: *2/*3; 5: *3/*3
    weight = 68.7 //(kg)
    MFka = 1 //scalar for Ka
    MFkp = 1 //scalar for Kps
    MFBP = 1 //scalar for BP
    MFfup = 1 //scalar for fup
    MFkon = 1 //scalar for kon
    MFkoff = 1 //scalar for koff
    MFRmax = 1 //scalar for Rmax
```

//GENO on Rmax

```
Rmax_GENO3 = 0.479
Rmax_GENO4 = 0.506
Rmax_GENO5 = 0.21
```

```
[CMT]
GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4
ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other tissue
comp X10
ART VEN //circulation X2
R DR //TMDD comp x2
```

[MAIN]
//allometric scaling of volume
double Vbr = TVVbr*pow(weight/70, 1) ; //brain
double Vgu = TVVgu*pow(weight/70, 1) ; //Gut
double Vsp = TVVsp*pow(weight/70, 1) ; //spleen
double Vpa = TVVpa*pow(weight/70, 1) ; //pancreas
double Vst = TVVst*pow(weight/70, 1) ; //stomach
double Vli $=$ TVVli*pow(weight/70, 1) ; //liver
double Vki $\quad=$ TVVki*pow(weight/70, 1) ; //kidneys
double Vhe $\quad=$ TVVhe*pow(weight/70, 1) ; //heart
double Vlu $\quad=$ TVVlu*pow(weight/70, 1) ; //lungs
double Vmu = TVVmu*pow(weight/70, 1) ; //muscle
double Vad = TVVad*pow(weight/70, 1) ; //adipose
double Vsk = TVVsk*pow(weight/70, 1) ; //skin
double Vbo = TVVbo*pow(weight/70, 1) ; //bone
double Vth = TVVth*pow(weight/70, 1) ; //thymus
double Vab = TVVab*pow(weight/70, 1) ; //arterial blood
double Vvb = TVVvb*pow(weight/70, 1) ; //venous blood
//allometric scaling of flow
double Qbr = TVQbr*pow(weight/70, 0.75); //brain
double Qha \quad TVQha*pow(weight/70, 0.75); //hepatic artery
double Qgu = TVQgu*pow(weight/70, 0.75); //gut
double Qsp = TVQsp*pow(weight/70, 0.75); //spleen
double Qpa = TVQpa*pow(weight/70, 0.75); //pancreas
double Qst = TVQst*pow(weight/70, 0.75); //stomach
double Qli $=$ TVQli*pow(weight/70, 0.75); //liver (total) (= Qha +
Qgu + Qsp + Qpa + Qst)
double Qki
double Qhe $\quad=$ TVQhe*pow(weight/70, 0.75); //heart
double Qlu = TVQlu*pow(weight/70, 0.75); //lung
double Qmu = TVQmu*pow(weight/70, 0.75); //muscle
double Qad = TVQad*pow(weight/70, 0.75); //adipose
double Qsk = TVQsk*pow(weight/70, 0.75); //skin
double Qbo = TVQbo*pow(weight/70, 0.75); //bone

```
    double Qth = TVQth*pow(weight/70, 0.75); //thymus
//scaled Kps
    double Kpbr = TVKpbr*MFkp*exp(ETA(1)) ; //brain:plasma
    Mouble Kpgu = TVKpgu*MFkp*exp(ETA(2))
    louble Kpgu = TVKpgu*MFkp*exp(ETA(2))
    double Kppa = TVKppa*MFkp*exp(ETA(4))
//pancreas:plasma
    double Kpst = TVKpst*MFkp*exp(ETA(5))
    double Kpli = TVKpli*MFkp*exp(ETA(6))
    double Kpki = TVKpki*MFkp*exp(ETA(7))
    double Kphe = TVKphe*MFkp*exp(ETA(8))
    double Kplu = TVKplu*MFkp*exp(ETA(9))
    double Kpmu = TVKpmu*MFkp*exp(ETA(10))
    double Kpad = TVKpad*MFkp*exp(ETA(11))
//adipose:plasma
    double Kpsk = TVKpsk*MFkp*exp(ETA(12))
    double Kpbo = TVKpbo*MFkp*exp(ETA(13))
    double Kpth = TVKpth*MFkp*exp(ETA(14))
    //stomach:plasma
    //liver:plasma
    //kidney:plasma
    //heart:plasma
    //lungs:plasma
    ; //muscle:plasma
    ;
    ; //skin:plasma
    //bone:plasma
    = TVKpth*MFkp*exp(ETA(14)) ; //thymus:plasma
//allometric scaling of clearance (hepatic and renal)
    double CL_GENO = 1;
    double CL = TVCL*CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
    double CL_Ki = TVCL_Ki*exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
//CLint (liver intrinsic clearance: back calculated from liver clearance: CL-
CL_Ki)
//reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY & THERAPEUTICS |
VOLUME 108 NUMBER 1 | July 2020
//reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-9556/07/3503-
501-502$20.00
    double CLint = Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
//CLint_Ki (kidney intrinsic clearance: back calculated from renal clearance:
CL_Ki)
    double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
//TMDD param
    double kon = TVkon*MFkon*exp(ETA(17)) ;
    double koff = TVkoff*MFkoff ;
    double Rmax = TVRmax*MFRmax*exp(ETA(18)) ;
        if (GENO == 3) Rmax = TVRmax*MFRmax*Rmax_GENO3*exp(ETA(18));
        if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
        if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
```

```
//other parameters
    double ka = TVka*MFka*exp(ETA(19)) ;
    double BP = TVBP*MFBP ;
    double fup = TVfup*MFfup ;
//receptor(R) baseline
    R_0 = Rmax;
[ODE]
    //Calculation of tissue drug concentrations (ug/L)
    double Cbrain = BRAIN/Vbr ;
    double Cgut = GUT/Vgu ;
    double Cspleen = SPLEEN/Vsp ;
    double Cpancreas = PANCREAS/Vpa;
    double Cstomach = STOMACH/Vst ;
    double Cliver = LIVER/Vli ;
    double Ckidney = KIDNEY/Vki ;
    double Cheart = HEART/Vhe ;
    double Clung = LUNG/Vlu ;
    double Cmuscle = MUSCLE/Vmu ;
    double Cadipose = ADIPOSE/Vad ;
    double Cskin = SKIN/Vsk ;
    double Cbone = BONE/Vbo ;
    double Cthymus = THYMUS/Vth ;
    double Carterial = ART/Vab ;
    double Cvenous = VEN/Vvb ;
    //ODEs
    dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
    dxdt_BRAIN = Qbr*(Carterial - Cbrain/(Kpbr/BP)) ;//(2)
    dxdt_GUT = ka*GUTLUMEN
        + Qgu*(Carterial - Cgut/(Kpgu/BP)) ;//(3) to liver
    dxdt_SPLEEN = Qsp*(Carterial - Cspleen/(Kpsp/BP)) ;//(4) to liver
    dxdt_PANCREAS = Qpa*(Carterial - Cpancreas/(Kppa/BP)) ;//(5) to liver
    dxdt_STOMACH = Qst*(Carterial - Cstomach/(Kpst/BP)) ;//(6) to liver
    dxdt_LIVER = Qgu*(Cgut/(Kpgu/BP)) //from gut
    + Qsp*(Cspleen/(Kpsp/BP)) //from spleen
    + Qpa*(Cpancreas/(Kppa/BP)) //from pancreas
    + Qst*(Cstomach/(Kpst/BP)) //from stomach
    + Qha*(Carterial) //from hepatic
arterial
    - Qli*(Cliver/(Kpli/BP))
    - CLint*(Cliver*fup/Kpli) ;//(7)
    dxdt_KIDNEY = Qki*(Carterial - Ckidney/(Kpki/BP))
        - CLint_Ki*(Ckidney*fup/Kpki)
        ;//(8)
```

```
dxdt_HEART = Qhe*(Carterial - Cheart/(Kphe/BP)) ;//(9)
dxdt_LUNG = Qlu*(Cvenous - Clung/(Kplu/BP)) ;//(10)
dxdt_MUSCLE = Qmu*(Carterial - Cmuscle/(Kpmu/BP)) ;//(11)
dxdt_ADIPOSE = Qad*(Carterial - Cadipose/(Kpad/BP)) ;//(12)
dxdt_SKIN = Qsk*(Carterial - Cskin/(Kpsk/BP)) ;//(13)
dxdt_BONE = Qbo*(Carterial - Cbone/(Kpbo/BP)) ;//(14)
dxdt_THYMUS = Qth*(Carterial - Cthymus/(Kpth/BP)) ;//(15)
dxdt_VEN = Qbr*(Cbrain/(Kpbr/BP)) //from brain
    + Qli*(Cliver/(Kpli/BP)) //from liver
        + Qki*(Ckidney/(Kpki/BP)) //from kidney
        + Qhe*(Cheart/(Kphe/BP)) //from heart
        + Qmu*(Cmuscle/(Kpmu/BP)) //from muscle
        + Qad*(Cadipose/(Kpad/BP)) //from adipose
        + Qsk*(Cskin/(Kpsk/BP)) //from skin
        + Qbo*(Cbone/(Kpbo/BP)) //from bone
        + Qth*(Cthymus/(Kpth/BP)) //from thymus
        - Qlu*Cvenous
        - kon*(Cvenous/BP)*R
        + koff*DR
;//(16)
dxdt_ART = Qlu*(Clung/(Kplu/BP) - Carterial) ;//(17)
dxdt_R = - kon*(Cvenous/BP)*R + koff*DR ;//(18)
dxdt_DR = kon*(Cvenous/BP)*R - koff*DR ;//(19)
```


[OMEGA]

0.090 .090 .090 .090 .09
0.090 .090 .090 .090 .09
$0.090 .090 .090 .09 \quad / / K p s$
0.09 //CL
0.09 //CL_Ki
0.09 //kon
0.09 //Rmax
0.09 //Ка
[TABLE]
capture CP = Cvenous/BP;
capture GENO = GENO;
capture WEIGHT =weight;

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

R-warfarin PBPK model with fluconazole inhibition mrgsolve model file

Shen Cheng

2021-09-13

```
[set] delta = 0.1 ,end = 720 //720 hours/30 Days
[PARAM]
    //Tissue volumes (L); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVVbr = 1450/1000 //brain mL to L
    TVVgu = 1650/1000 //Gut
    TVVsp = 192/1000 //spleen
    TVVpa = 77/1000 //pancreas
    TVVst = 154/1000 //stomach (not in simcyp)
    TVVli = 1690/1000 //liver
    TVVki = 280/1000 //kidneys
    TVVhe = 310/1000 //heart
    TVVlu = 1172/1000 //lungs
    TVVmu = 35000/1000 //muscle
    TVVad = 10000/1000 //adipose
    TVVsk = 7800/1000 //skin
    TVVbo = 4579/1000 //bone
    TVVth = 29/1000 //thymus (not in simcyp)
    TVVab = 1698/1000 //arterial blood
    TVVvb = 3396/1000 //venous blood
    //Tissue blood flows (L/h); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVQbr = (700*60)/1000 //brain mL/min to L/hr
    TVQha = (302*60)/1000 //hepatic artery
    TVQgu = (1100*60)/1000 //gut
    TVQsp = (77*60)/1000 //spleen
    TVQpa = (133*60)/1000 //pancreas
    TVQst = (38*60)/1000 //stomach
    TVQli = (1650*60)/1000 //liver (total) (= Qha + Qgu + Qsp + Qpa + Qst)
    TVQki = (1100*60)/1000 //kidney
    TVQhe = (150*60)/1000 //heart
    TVQlu = (5240*60)/1000 //lung,
    //should be same as cardiac output(adjusted to 5240, 5233 original)
    //to match the total Q
    TVQmu = (750*60)/1000 //muscle
    TVQad = (260*60)/1000 //adipose
    TVQsk = (300*60)/1000 //skin
    TVQbo = (250*60)/1000 //bone
```

TVQth $=(80 * 60) / 1000 \quad / /$ thymus
//partition coefficients estimated by Rodgers et.al., method suggested by //Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVKpbr $=0.0523693 \quad / / b r a i n: p l a s m a$
TVKpgu = $0.1618 \quad / /$ gut:plasma
TVKpsp $=0.100666$ //spleen:plasma
TVKppa $=0.0639167 \quad / /$ pancreas:plasma
TVKpst $=0.1271972 \quad / / s t o m a c h: p l a s m a(n o t ~ i n ~ s i m c y p) ~ c a l c u l a t e d ~ a s ~$
average of non adipose Kps
TVKpli $=0.089772 \quad / / l i v e r: p l a s m a$
TVKpki $=0.133745 \quad / / k i d n e y: p l a s m a$
TVKphe = 0.160367 //heart:plasma
TVKplu = 0.215004 //lungs:plasma
TVKpmu = 0.037509 //muscle:plasma
TVKpad = 0.0396971 //adipose:plasma
TVKpsk = 0.281144 //skin:plasma
TVKpbo = 0.102876 //bone:plasma
TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
TVCL = 0.119 //(L/hr) in vivo clearance (unpublished warfarin manuscript, simcyp sim-warfarin)
//renal clearance
TVCL_Ki = 0.00436*0.752 //(L/hr) renal clearance (unpublished warfarin manuscript)
//0.752: fluconzole effect on R-warfarin renal clearance(unpublished manuscript)
//TMDD param (unpublished warfarin manuscript)
TVkon $=0.00137$ // L/($\mu \mathrm{g} *$ hour $)$
TVkoff $=0.0405$ // /hour
TVRmax $=188 \quad / / \mathrm{ug} / \mathrm{L}$
//other parameters
TVka = 1.85 //absorption rate constant (/hr) assumed (simcyp
sim-warfarin)
TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
TVfup $=0.009 \quad / / f r a c t i o n ~ o f ~ u n b o u n d ~ d r u g ~ i n ~ p l a s m a ~(s i m c y p ~ s i m-~$
warfarin)

| //scalars | |
| :--- | :--- |
| GENO $=1$ | |
| weight $=68.7$ | |
| MFka $=1$ | //(kg) |
| MFkp $=1$ | //scalar for Ka |
| MFBP | //scalar for Kps |

| MFfup | $=1$ | //scalar for fup |
| :--- | :--- | :--- |
| MFkon | $=1$ | //scalar for kon |
| MFkoff | $=1$ | //scalar for koff |
| MFRmax | $=1$ | //scalar for Rmax |

//GENO on Rmax
Rmax_GENO3 = 0.479
Rmax_GENO4 = 0.506
Rmax_GENO5 = 0.21
//fluconzole empirical model
//A one-compartment model with lagged first-order input and first-order
elimination
//Reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561119/
tvcl_fluc = 1.18 //fluconzole clearance L/hr
tvv_fluc = 55.7 //fluconzole volume of distribution L
tvka_fluc = 3.38 //fluconzole absorption rate constant /hr
//fluc inhibition parameters (ki: concentration of fluconazole that supports half maximal 2c9 inhibition)
//check calculation: https://www.graphpad.com/quickcalcs/Molarityform.cfm
//fluconazole mw: $306.271 \mathrm{~g} / \mathrm{mol}$
//fluconazole is a strong inhibitor for 2C19, but moderate for 2C9 and 3A4 (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers)
tvki_4oh = $8.88 \mathrm{l} / \mathrm{mg} / \mathrm{L} 29 \mathrm{uM}$ assumed to be eliminated by a mix effect of 2C9, 2 C 19 and $3 \mathrm{~A} 4((\mathrm{Ki}, 2 \mathrm{C} 9+\mathrm{Ki}, 2 \mathrm{C} 19+\mathrm{Ki}, 3 \mathrm{~A} 4) / 3)$
tvki_6oh $=30.63 \mathrm{/} / \mathrm{mg} / \mathrm{L}$ 100uM assumed to be eliminated through 1A2 (https://pubmed.ncbi.nlm.nih.gov/8801056/, very weak inhibitor, range: >800 uM)
tvki_7oh = 12.67 //mg/L 41.4uM assumed to be eliminated through 2C9, 1A2 and 2C19 ((Ki,2C9 + Ki,2C19 + Ki,1A2)/3)
tvki_8oh $=0.64 \mathrm{/} / \mathrm{mg} / \mathrm{L} 2.1 \mathrm{uM}$ assumed to be eliminated through 2 C 19 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195022/\#:~:text=The\ inhibiti on\%20constant\%20(Ki,was\%202.1\%20\%CE\%BCM\%20(31) 2.1uM)
tvki_10oh = $19.30 \mathrm{/} / \mathrm{mg} / \mathrm{L} 63 \mathrm{uM}$ assumed to be eliminated through 3A4
(https://pubmed.ncbi.nlm.nih.gov/16984215/ table3, range: 1.27-40 uM)
//(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195022/\#:~:text=The\ inhibi
tion\%20constant\%20(Ki,was\%202.1\%20\%CE\%BCM\%20(31) range 1.9 -63uM)
[CMT]
GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4
ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other
tissue comp X10
ART VEN //circulation X2
R DR //TMDD comp x2
flucdepot //fluconazole depot comaprtment fluccent //fluconazolecentral compartment

| [MAIN] | | |
| :---: | :---: | :---: |
| //allometric | scaling of volume | |
| double Vbr | = TVVbr*pow(weight/70, 1) | //brain |
| double Vgu | = TVVgu*pow(weight/70, 1) | //Gut |
| double Vsp | = TVVsp*pow(weight/70, 1) | //spleen |
| double Vpa | = TVVpa*pow(weight/70, 1) | //pancreas |
| double Vst | = TVVst*pow(weight/70, 1) | //stomach |
| double Vli | = TVVli*pow(weight/70, 1) | //liver |
| double Vki | = TVVki*pow(weight/70, 1) | //kidneys |
| double Vhe | = TVVhe*pow(weight/70, 1) | //heart |
| double Vlu | = TVVlu*pow(weight/70, 1) | //lungs |
| double Vmu | = TVVmu*pow(weight/70, 1) | //muscle |
| double Vad | = TVVad*pow(weight/70, 1) | //adipose |
| double Vsk | = TVVsk*pow(weight/70, 1) | //skin |
| double Vbo | = TVVbo*pow(weight/70, 1) | //bone |
| double Vth | = TVVth*pow(weight/70, 1) | //thymus |
| double Vab | $=$ TVVab*pow(weight/70, 1) | //arterial blood |
| double Vvb | $=$ TVVvb*pow(weight/70, 1) | //venous blood |
| //allometric scaling of flow | | |
| double Qbr | $=$ TVQbr*pow(weight/70, 0.75); | //brain |
| double Qha | = TVQha*pow(weight/70, 0.75); | //hepatic artery |
| double Qgu | $=$ TVQgu*pow(weight/70, 0.75); | //gut |
| double Qsp | = TVQsp*pow(weight/70, 0.75); | //spleen |
| double Qpa | $=$ TVQpa*pow(weight/70, 0.75); | //pancreas |
| double Qst | $=$ TVQst*pow(weight/70, 0.75); | //stomach |
| double Qli | = TVQli*pow(weight/70, 0.75); | //liver (total) (= Qha + |
| Qgu + Qsp + Qpa + Qst) | | |
| double Qki | = TVQki*pow(weight/70, 0.75); | //kidney |
| double Qhe | = TVQhe*pow(weight/70, 0.75); | //heart |
| double Qlu | = TVQlu*pow(weight/70, 0.75); | //lung |
| double Qmu | $=$ TVQmu*pow(weight/70, 0.75); | //muscle |
| double Qad | $=$ TVQad*pow(weight/70, 0.75); | //adipose |
| double Qsk | = TVQsk*pow(weight/70, 0.75); | //skin |
| double Qbo | $=$ TVQbo*pow(weight/70, 0.75); | //bone |
| double Qth | $=$ TVQth*pow(weight/70, 0.75); | //thymus |
| //scaled Kps | | |
| double Kpbr | $=$ TVKpbr*MFkp*exp(ETA (1)) | //brain:plasma |
| double Kpgu | $=$ TVKpgu*MFkp*exp(ETA (2)) | //gut:plasma |
| double Kpsp | $=$ TVKpsp*MFkp*exp(ETA (3)) | //spleen:plasma |
| double Kppa | $=$ TVKppa*MFkp*exp(ETA (4)) | //pancreas:plasma |
| double Kpst | $=$ TVKpst*MFkp*exp(ETA (5)) ; | //stomach:plasma |

double Kpli = TVKpli*MFkp*exp(ETA(6)) ; //liver:plasma
double Kpki = TVKpki*MFkp*exp(ETA(7)) ; //kidney:plasma
double Kphe = TVKphe*MFkp*exp(ETA(8)) ; //heart:plasma
double Kplu = TVKplu*MFkp*exp(ETA(9)) ; //lungs:plasma
double Kpmu = TVKpmu*MFkp*exp(ETA(10)) ; //muscle:plasma
double Kpad = TVKpad*MFkp*exp(ETA(11)) ; //adipose:plasma
double Kpsk = TVKpsk*MFkp*exp(ETA(12)) ; //skin:plasma
double Kpbo = TVKpbo*MFkp*exp(ETA(13)) ; //bone:plasma
double Kpth = TVKpth*MFkp*exp(ETA(14)) ; //thymus:plasma
//allometric scaling of clearance (hepatic and renal)
double CL_GENO = 1;
double CL = TVCL *CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
double CL_Ki = TVCL_Ki *exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
//CLint (liver intrinsic clearance: back calculated from liver clearance: CL-CL_Ki)
//reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY \& THERAPEUTICS | VOLUME 108 NUMBER 1 | July 2020
//reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-
9556/07/3503-501-502\$20.00
double CLint $=$ Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
//CLint_Ki (kidney intrinsic clearance: back calculated from renal clearance: CL_Ki)
double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
//TMDD param
double kon = TVkon*MFkon*exp(ETA(17));
double koff = TVkoff*MFkoff;
double Rmax = TVRmax*MFRmax*exp(ETA(18));
if (GENO == 3) Rmax = TVRmax*MFRmax*Rmax_GENO3*exp(ETA(18));
if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
//other parameters
double ka = TVka*MFka*exp(ETA(19));
double BP = TVBP*MFBP;
double fup = TVfup*MFfup;
//receptor(R) baseline
R_0 = Rmax;
//fluconazole
ALAG_flucdepot $=0.23 \quad$; //absorption lag time h

```
double cl_fluc = tvcl_fluc*exp(ETA(20)) ; //clearance L/hr
double v_fluc = tvv_fluc *exp(ETA(21)) ; //volume of distribution L
double ka_fluc = tvka_fluc*exp(ETA(22)) ; //absorption rate constant
```

/hr
//fluconazole inhibitory effects
double ki_4oh = tvki_4oh ;
double ki_6oh = tvki_6oh ;
double ki_7oh = tvki_7oh ;
double ki_8oh = tvki_8oh ;
double ki_10oh = tvki_10oh ;
//parse intrinsic clearance (CLint)
//based on figure 6 of warfarin metabolite manuscript (unpublish till
4/25/2021)
//4-R is assumed to be eliminated by a mix effect of 2C9, 3A4 and 2C19
//6-R is assumed to be eliminated by 1A2
//7-R assumed to be eliminated through 2C9, 1A2, 2C19
//8-R is assumed to be eliminated through 2C19
//10-S assumed to be eliminated through 3A4
double CLint_4oh $=(0.8 /(0.8+17.4+2.8+6.7+0.8)) *$ CLint;
if (GENO == 2) CLint_4oh $=(0.8 /(0.8+17.4+2.8+2.2+0.8))^{*}$
CLint;
if (GENO == 3) CLint_4oh = (0.5 / (0.5 + $17.4+2.8+6.7+0.8))^{*}$
CLint;
if (GENO == 4) CLint_4oh $=(0.5 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
if (GENO == 5) CLint_4oh $=(0.5 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
double CLint_6oh $=(17.4 /(0.8+17.4+2.8+6.7+0.8))$ * CLint;
if (GENO == 2) CLint_6oh $=(17.4 /(0.8+17.4+2.8+2.2+0.8))^{*}$
CLint;
if $(G E N O==3)$ CLint_6oh $=(17.4 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
if $(G E N O==4)$ CLint_6oh $=(17.4 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
if (GENO == 5) CLint_6oh $=(17.4 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
double CLint_7oh $=(2.8 /(0.8+17.4+2.8+6.7+0.8))$ * CLint;
if (GENO == 2) CLint_7oh $=(2.8 /(0.8+17.4+2.8+2.2+0.8))^{*}$
CLint;
if (GENO == 3) CLint_7oh $=(2.8 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
if (GENO == 4) CLint_7oh $=(2.8 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
if (GENO == 5) CLint_7oh $=(2.8 /(0.5+17.4+2.8+6.7+0.8))^{*}$
CLint;
double CLint_8oh $=(6.7 /(0.8+17.4+2.8+6.7+0.8))$ * CLint;
if (GENO == 2) CLint_8oh $=(2.2 /(0.8+17.4+2.8+2.2+0.8))^{*}$

```
CLint;
    if (GENO == 3) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
    if (GENO == 4) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
    if (GENO == 5) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
    double CLint_10oh = (0.8 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
        if (GENO == 2) CLint_10oh = (0.8 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
CLint;
    if (GENO == 3) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
    if (GENO == 4) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
    if (GENO == 5) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
```

[ODE]
//Calculation of tissue drug concentrations (ug/L)
double Cbrain = BRAIN/Vbr ;
double Cgut = GUT/Vgu ;
double Cspleen = SPLEEN/Vsp ;
double Cpancreas = PANCREAS/Vpa;
double Cstomach = STOMACH/Vst ;
double Cliver = LIVER/Vli ;
double Ckidney = KIDNEY/Vki ;
double Cheart = HEART/Vhe ;
double Clung = LUNG/Vlu ;
double Cmuscle = MUSCLE/Vmu ;
double Cadipose = ADIPOSE/Vad ;
double Cskin = SKIN/Vsk ;
double Cbone = BONE/Vbo ;
double Cthymus = THYMUS/Vth ;
double Carterial = ART/Vab ;
double Cvenous = VEN/Vvb ;
//fluc inhibitory effect on CLint
//CLint,i = CLint/(1 + [I]/ki)
//equation reference: https://pubmed.ncbi.nlm.nih.gov/16984215/ equation(1)
//equation reference: https://pubmed.ncbi.nlm.nih.gov/18378563/ equation(2)
double cp_fluc = fluccent/v_fluc; //fluconazole central compartment
concentration


```
    double CLint_inh = CLint_4oh_inh + CLint_6oh_inh + CLint_7oh_inh +
CLint_8oh_inh + CLint_10oh_inh;
//ODEs
dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
dxdt_BRAIN = Qbr*(Carterial - Cbrain/(Kpbr/BP)) ;//(2)
dxdt_GUT = ka*GUTLUMEN
    + Qgu*(Carterial - Cgut/(Kpgu/BP)) ;//(3) to liver
dxdt_SPLEEN = Qsp*(Carterial - Cspleen/(Kpsp/BP)) ;//(4) to liver
dxdt_PANCREAS = Qpa*(Carterial - Cpancreas/(Kppa/BP)) ;//(5) to liver
dxdt_STOMACH = Qst*(Carterial - Cstomach/(Kpst/BP)) ;//(6) to liver
dxdt_LIVER = Qgu*(Cgut/(Kpgu/BP)) //from gut
    + Qsp*(Cspleen/(Kpsp/BP)) //from spleen
    + Qpa*(Cpancreas/(Kppa/BP)) //from pancreas
    + Qst*(Cstomach/(Kpst/BP)) //from stomach
    + Qha*(Carterial) //from hepatic
arterial
    - Qli*(Cliver/(Kpli/BP))
    - CLint_inh*(Cliver*fup/Kpli) ;//(7)
dxdt_KIDNEY = Qki*(Carterial - Ckidney/(Kpki/BP))
    - CLint_Ki*(Ckidney*fup/Kpki)
    ;//(8)
dxdt_HEART = Qhe*(Carterial - Cheart/(Kphe/BP)) ;//(9)
dxdt_LUNG = Qlu*(Cvenous - Clung/(Kplu/BP)) ;//(10)
dxdt_MUSCLE = Qmu*(Carterial - Cmuscle/(Kpmu/BP)) ;//(11)
dxdt_ADIPOSE = Qad*(Carterial - Cadipose/(Kpad/BP)) ;//(12)
dxdt_SKIN = Qsk*(Carterial - Cskin/(Kpsk/BP)) ;//(13)
dxdt_BONE = Qbo*(Carterial - Cbone/(Kpbo/BP)) ;//(14)
dxdt_THYMUS = Qth*(Carterial - Cthymus/(Kpth/BP)) ;//(15)
dxdt_VEN = Qbr*(Cbrain/(Kpbr/BP)) //from brain
    + Qli*(Cliver/(Kpli/BP)) //from liver
    + Qki*(Ckidney/(Kpki/BP)) //from kidney
    + Qhe*(Cheart/(Kphe/BP)) //from heart
    + Qmu*(Cmuscle/(Kpmu/BP)) //from muscle
    + Qad*(Cadipose/(Kpad/BP)) //from adipose
    + Qsk*(Cskin/(Kpsk/BP)) //from skin
    + Qbo*(Cbone/(Kpbo/BP)) //from bone
    + Qth*(Cthymus/(Kpth/BP)) //from thymus
    - Qlu*Cvenous
    - kon*(Cvenous/BP)*R
    + koff*DR
;//(16)
dxdt_ART = Qlu*(Clung/(Kplu/BP) - Carterial) ;//(17)
```

```
    dxdt_R = - kon*(Cvenous/BP)*R + koff*DR ;//(18)
    dxdt_DR = kon*(Cvenous/BP)*R - koff*DR ;//(19)
    dxdt_flucdepot = - ka_fluc*flucdepot ;//(20) fluc depot
compartment (mass)
    dxdt_fluccent = ka_fluc*flucdepot - cl_fluc*cp_fluc ;//(21) fluc
central compartment (mass)
[OMEGA]
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 0.09
    0.09 0.09 0.09 0.09 //Kps
    0.09 //CL
    0.09 //CL_Ki
    0.09 //kon
    0.09 //Rmax
    0.09 //Kа
    0.0481 //cl_fluc
    0.0298 //v_fluc
    1.426 //ka_fluc
[TABLE]
    capture CP = Cvenous/BP;
    capture GENO = GENO;
    capture WEIGHT =weight;
    capture CP_FLUC = cp_fluc;
    capture CLINT = CLint_inh;
```

Drug Metabolism and Disposition: DMD-AR-2022-001048
A physiological-based pharmacokinetic model embedded with a target mediated drug disposition mechanism can characterize single dose warfarin pharmacokinetic profiles in subjects with various CYP2C9 genotypes under different co-treatments

Shen Cheng, Darcy R. Flora, Allan E. Rettie, Richard, C. Brundage, Timothy S. Tracy

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities (S.C., D.R.F., R.C.B.), Tracy Consultants (T.S.T.), Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle (A.E.R.), Present Affiliation: Metrum Research Group, Tariffville, Connecticut (S.C.), Present Affiliation: GRYT Health Inc., Rochester (D.R.F)

R-warfarin PBPK model with rifampin induction mrgsolve model file

Shen Cheng

2021-09-13

```
[set] delta = 0.1 ,end = 720 //720 hours/30 Days
[PARAM]
    //Tissue volumes (L); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVVbr = 1450/1000 //brain mL to L
    TVVgu = 1650/1000 //Gut
    TVVsp = 192/1000 //spleen
    TVVpa = 77/1000 //pancreas
    TVVst = 154/1000 //stomach (not in simcyp)
    TVVli = 1690/1000 //liver
    TVVki = 280/1000 //kidneys
    TVVhe = 310/1000 //heart
    TVVlu = 1172/1000 //lungs
    TVVmu = 35000/1000 //muscle
    TVVad = 10000/1000 //adipose
    TVVsk = 7800/1000 //skin
    TVVbo = 4579/1000 //bone
    TVVth = 29/1000 //thymus (not in simcyp)
    TVVab = 1698/1000 //arterial blood
    TVVvb = 3396/1000 //venous blood
    //Tissue blood flows (L/h); for 70kg human
    //source: Sheila Annie Peters, Clin Pharmacokinet 2008 47 (4): 261-275
    TVQbr = (700*60)/1000 //brain mL/min to L/hr
    TVQha = (302*60)/1000 //hepatic artery
    TVQgu = (1100*60)/1000 //gut
    TVQsp = (77*60)/1000 //spleen
    TVQpa = (133*60)/1000 //pancreas
    TVQst = (38*60)/1000 //stomach
    TVQli = (1650*60)/1000 //liver (total) (= Qha + Qgu + Qsp + Qpa + Qst)
    TVQki = (1100*60)/1000 //kidney
    TVQhe = (150*60)/1000 //heart
    TVQlu = (5240*60)/1000 //lung,
    //should be same as cardiac output(adjusted to 5240, 5233 original)
    //to match the total Q
    TVQmu = (750*60)/1000 //muscle
    TVQad = (260*60)/1000 //adipose
    TVQsk = (300*60)/1000 //skin
    TVQbo = (250*60)/1000 //bone
```

TVQth $=(80 * 60) / 1000 \quad / /$ thymus
//partition coefficients estimated by Rodgers et.al., method suggested by //Sheila Annie Peters, Clin Pharmacokinet 200847 (4): 261-275
TVKpbr $=0.0523693 \quad / / b r a i n: p l a s m a$
TVKpgu = $0.1618 \quad / /$ gut:plasma
TVKpsp $=0.100666$ //spleen:plasma
TVKppa $=0.0639167 \quad / /$ pancreas:plasma
TVKpst $=0.1271972 \quad / / s t o m a c h: p l a s m a(n o t ~ i n ~ s i m c y p) ~ c a l c u l a t e d ~ a s ~$
average of non adipose Kps
TVKpli $=0.089772 \quad / / l i v e r: p l a s m a$
TVKpki $=0.133745 \quad / / k i d n e y: p l a s m a$
TVKphe = 0.160367 //heart:plasma
TVKplu = 0.215004 //lungs:plasma
TVKpmu = 0.037509 //muscle:plasma
TVKpad = 0.0396971 //adipose:plasma
TVKpsk = 0.281144 //skin:plasma
TVKpbo = 0.102876 //bone:plasma
TVKpth = 0.1271972 //thymus:plasma (not in simcyp) calculated as
average of non adipose Kps
//in vivo clearance
TVCL = $0.119 \quad / /(\mathrm{L} / \mathrm{hr})$ in vivo clearance (unpublished warfarin manuscript, simcyp sim-warfarin)
//renal clearance
TVCL_Ki = 0.00436*1.43 //(L/hr) renal clearance (unpublished warfarin manuscript)
//1.43: rifampin effect on R-warfarin renal
clearance(unpublished manuscript)
//TMDD param (unpublished warfarin manuscript)
TVkon $=0.00137$ // L/($\mu \mathrm{g} *$ hour $)$
TVkoff $=0.0405$ // /hour
TVRmax $=188 \quad / / \mathrm{ug} / \mathrm{L}$
//other parameters
TVka = 1.85 //absorption rate constant (/hr) assumed (simcyp
sim-warfarin)
TVBP = 0.59 //blood:plasma ratio (simcyp sim-warfarin)
TVfup $=0.009 \quad / / f r a c t i o n ~ o f ~ u n b o u n d ~ d r u g ~ i n ~ p l a s m a ~(s i m c y p ~ s i m-~$
warfarin)

| //scalars | |
| :--- | :--- |
| GENO $=1$ | |
| weight $=68.7$ | |
| MFka $=1$ | //(kg) |
| MFkp $=1$ | //scalar for Ka |
| MFBP | //scalar for Kps |

```
\begin{tabular}{lll} 
MFfup & \(=1\) & //scalar for fup \\
MFkon & \(=1\) & //scalar for kon \\
MFkoff & \(=1\) & //scalar for koff \\
MFRmax & \(=1\) & //scalar for Rmax
\end{tabular}
//GENO on Rmax
Rmax_GENO3 = 0.479
Rmax_GENO4 = 0.506
Rmax_GENO5 = 0.21
//rifampin empirical model
//A one-compartment model with M-M elimination and transit compartments
//enzyme turnover model accounting for autoinduction
//dose dependent bioabailability (Emax equation)
//Reference: https://pubmed.ncbi.nlm.nih.gov/28653479/
tvvmax_rifa \(=525 \quad / / \mathrm{mg} / \mathrm{h} / 70 \mathrm{~kg}\) maximal elimination rate
tvkm_rifa \(=35.3\) // mg/L rifampincin concentration at which the
elimination is half-maximal
tvv_rifa \(=87.2\) // L/70kg volume of distribution
tvka_rifa \(=1.77\) // /hr absorption rate constant
tvmtt_rifa \(=0.513\) // hr mean transit time
tvnn_rifa \(=23.8\) // number of transit compartments
tvemax_rifa = 1.16 // maximal increase in enzyme production
rate
tvec50_rifa \(=0.0699\) // mg/L rifampicin concentration at which half
the emax is reached
tvkenz_rifa \(=0.00603 / / / h r \quad\) first-order rate constant for enzyme
pool degradation
tvfemax_rifa = 0.504 // maximal increase in relative
bioavailability above 450mg
tvfed50_rifa \(=67.0 \quad / / \mathrm{mg}\) difference in rifampicin dose from
450mg at which half the fmax is reached
\begin{tabular}{llll}
ffm & \(=45\) & // kg & fat free mass \\
occ & \(=1\) & \(/ /\) &
\end{tabular}
//rifa inducing parameters
//indmax: maximal induction fold over vehicle
//indc50: inducer concentration that supports half-maximal induction ( \(\mu \mathrm{M}\) )
//check calculation: https://www.graphpad.com/quickcalcs/Molarityform.cfm //rifampin mw: \(822.94 \mathrm{~g} / \mathrm{mol}\)
//rifampin is a strong inhibitor for 2C19 and 3A4, but moderate for 2C9 (https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers)
//4-R is assumed to be eliminated by a mix effect of 2C9, 3A4 and 2C19 //6-R is assumed to be eliminated by 1A2
//7-R assumed to be eliminated through 2C9, 1A2, 2C19
```

//8-R is assumed to be eliminated through 2 C19
//10-S assumed to be eliminated through 3A4
tvindmax_4oh = 7.4 //fold increase, assumed to be eliminated by a mix effect of 2C9, 2C19 and 3A4 $((3.6+5.5+16) / 3=8.4)$
tvindmax_6oh = 2.8 //fold increase, assumed to be eliminated through 1A2 (https://journals.sagepub.com/doi/pdf/10.1177/1087057112463732, table 6 (a))
tvindmax_7oh = 6.8 //fold increase, assumed to be eliminated through 2C9, 1 A 2 and $2 \mathrm{C} 19((3.6+3.8+16) / 3=7.8)$
tvindmax_8oh = 4.5 //fold increase, assumed to be eliminated through 2 C19 (5.5, table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/) tvindmax_10oh = 15 //fold increase, assumed to be eliminated through 3A4 (16, table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/)
tvindc50_4oh $=0.239 \mathrm{/} / \mathrm{mg} / \mathrm{L} 0.29 \mathrm{uM}$ assumed to be eliminated by a mix effect of 2C9, 2C19 and 3A4 ((0.1 + 0.45 + 0.32)/3)
tvindc50_6oh = 0.181 //mg/L 0.22 uM uM assumed to be eliminated through 1A2 (https://journals.sagepub.com/doi/pdf/10.1177/1087057112463732, table 6 (a))
tvindc50_7oh $=0.214 \mathrm{/} / \mathrm{mg} / \mathrm{L} 0.26 \mathrm{uM}$ assumed to be eliminated through $2 C 9,1 A 2$ and $2 C 19((0.1+0.22+0.45) / 3=8.4)$
tvindc50_8oh $=0.370 \mathrm{I} / \mathrm{mg} / \mathrm{L} 0.45 \mathrm{uM}$ assumed to be eliminated through 2C19 (table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/) tvindc50_10oh $=0.263 \mathrm{l} / \mathrm{mg} / \mathrm{L} 0.32 \mathrm{uM}$ assumed to be eliminated through 3A4 (table S1 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765699/)
[global]
int ndose = 0;
double dosetime[300];
double dose[300];
[PREAMBLE]
double last_dose = 0;
[CMT]
GUTLUMEN //dosing compartment X1
GUT STOMACH SPLEEN PANCREAS //tissue comp connected with liver X4 ADIPOSE BRAIN HEART BONE KIDNEY LIVER LUNG MUSCLE SKIN THYMUS //other
tissue comp X10
ART VEN //circulation X2
R DR //TMDD comp x2
rifadepot //rifampin depot comaprtment
rifacent //rifampin central compartment
rifaenz //rifampin enzyme compartment
[MAIN]
//allometric scaling of volume
double Vbr = TVVbr*pow(weight/70, 1) ; //brain

| double Vgu | = TVVgu*pow(weight/70, 1) | //Gut |
| :---: | :---: | :---: |
| double Vsp | = TVVsp*pow(weight/70, 1) | //spleen |
| double Vpa | = TVVpa*pow(weight/70, 1) | //pancreas |
| double Vst | = TVVst*pow(weight/70, 1) | //stomach |
| double Vli | = TVVli*pow(weight/70, 1) | //liver |
| double Vki | = TVVki*pow(weight/70, 1) | //kidneys |
| double Vhe | = TVVhe*pow(weight/70, 1) | //heart |
| double Vlu | = TVVlu*pow(weight/70, 1) | //lungs |
| double Vmu | = TVVmu*pow(weight/70, 1) | //muscle |
| double Vad | = TVVad*pow(weight/70, 1) | //adipose |
| double Vsk | = TVVsk*pow(weight/70, 1) | //skin |
| double Vbo | = TVVbo*pow(weight/70, 1) | //bone |
| double Vth | = TVVth*pow(weight/70, 1) | //thymus |
| double Vab | = TVVab*pow(weight/70, 1) | //arterial blood |
| double Vvb | = TVVvb*pow(weight/70, 1) | //venous blood |
| //allometric scaling of flow | | |
| double Qbr | = TVQbr*pow(weight/70, 0.75); | //brain |
| double Qha | = TVQha*pow(weight/70, 0.75); | //hepatic artery |
| double Qgu | = TVQgu*pow(weight/70, 0.75); | //gut |
| double Qsp | = TVQsp*pow(weight/70, 0.75); | //spleen |
| double Qpa | = TVQpa*pow(weight/70, 0.75); | //pancreas |
| double Qst | = TVQst*pow(weight/70, 0.75); | //stomach |
| double Qli | $=$ TVQli*pow(weight/70, 0.75); | //liver (total) (= Qha + |
| Qgu + Qsp + Qpa + Qst) | | |
| double Qki | = TVQki*pow(weight/70, 0.75); | //kidney |
| double Qhe | = TVQhe*pow(weight/70, 0.75); | //heart |
| double Qlu | = TVQlu*pow(weight/70, 0.75); | //lung |
| double Qmu | = TVQmu*pow(weight/70, 0.75); | //muscle |
| double Qad | = TVQad*pow(weight/70, 0.75); | //adipose |
| double Qsk | = TVQsk*pow(weight/70, 0.75); | //skin |
| double Qbo | = TVQbo*pow(weight/70, 0.75); | //bone |
| double Qth | = TVQth*pow(weight/70, 0.75); | //thymus |
| //scaled Kps | | |
| double Kpbr | $=$ TVKpbr*MFkp*exp(ETA (1)) | //brain:plasma |
| double Kpgu | = TVKpgu*MFkp*exp(ETA (2)) | //gut:plasma |
| double Kpsp | $=$ TVKpsp*MFkp*exp(ETA (3)) | //spleen:plasma |
| double Kppa | = TVKppa*MFkp*exp(ETA (4)) | //pancreas:plasma |
| double Kpst | $=$ TVKpst*MFkp*exp(ETA (5)) | //stomach:plasma |
| double Kpli | $=$ TVKpli*MFkp*exp(ETA (6)) | //liver:plasma |
| double Kpki | $=$ TVKpki*MFkp*exp(ETA (7)) | //kidney:plasma |
| double Kphe | = TVKphe*MFkp*exp(ETA (8)) | //heart:plasma |
| double Kplu | = TVKplu*MFkp*exp(ETA (9)) | //lungs:plasma |
| double Kpmu | = TVKpmu*MFkp*exp(ETA (10)) | //muscle:plasma |
| double Kpad | $=$ TVKpad*MFkp*exp(ETA (11)) | //adipose:plasma |
| double Kpsk | $=$ TVKpsk*MFkp*exp(ETA (12)) | //skin:plasma |
| double Kpbo | $=$ TVKpbo*MFkp*exp(ETA (13)) | //bone:plasma |
| double Kpth | $=$ TVKpth*MFkp*exp(ETA (14)) | //thymus:plasma |

```
    //allometric scaling of clearance (hepatic and renal)
    double CL_GENO = 1;
    double CL = TVCL *CL_GENO*exp(ETA(15))*pow(weight/70, 0.75) ;
//total in vivo clearance
    double CL_Ki = TVCL_Ki *exp(ETA(16))*pow(weight/70, 0.75) ;
//renal clearance
    //CLint (liver intrinsic clearance: back calculated from liver clearance:
CL-CL_Ki)
    //reference: Ali A. Alhadab et.al., CLINICAL PHARMACOLOGY & THERAPEUTICS |
VOLUME 108 NUMBER 1 | July 2020
    //reference: JIANSONG YANG et.al.,DMD 35:501-502, 2007 DOI:0090-
9556/07/3503-501-502$20.00
    double CLint = Qli*(CL-CL_Ki)/(fup*(Qli-(CL-CL_Ki)/BP));
    //CLint_Ki (kidney intrinsic clearance: back calculated from renal
clearance: CL_Ki)
    double CLint_Ki = Qki*CL_Ki/(fup*(Qki-CL_Ki/BP)) ;
    //TMDD param
    double kon = TVkon*MFkon*exp(ETA(17));
    double koff = TVkoff*MFkoff;
    double Rmax = TVRmax*MFRmax*exp(ETA(18));
        if (GENO == 3) Rmax = TVRmax*MFRmax*Rmax_GENO3*exp(ETA(18));
        if (GENO == 4) Rmax = TVRmax*MFRmax*Rmax_GENO4*exp(ETA(18));
        if (GENO == 5) Rmax = TVRmax*MFRmax*Rmax_GENO5*exp(ETA(18));
    //other parameters
    double ka = TVka*MFka*exp(ETA(19));
    double BP = TVBP*MFBP;
    double fup = TVfup*MFfup;
    //receptor(R) baseline
    R_0 = Rmax;
    //rifampin empirical pk model start-------------------------------------------
    //rifampin empirical pk model parameters
    double vmax_rifa = tvvmax_rifa * exp(ETA(20))
; //maximal elimination rate L/hr
    double km_rifa = tvkm_rifa * exp(ETA(21)) *
exp(iovkm_rifa) ; //rifampicin concentration at which the elimination is
half-maximal
    double v_rifa = tvv_rifa *(ffm / 70) * exp(ETA(22)) *
exp(iovv_rifa) ; //volume of distribution L
    double ka_rifa = tvka_rifa * exp(ETA(23)) *
```

```
exp(iovka_rifa) ; //absorption rate constant /hr
    double ec50_rifa = tvec50_rifa
; //rifampicin concentration at which half the emax is reached
    double emax_rifa = tvemax_rifa
; //maximal increase in enzyme production rate
    double kenz_rifa = tvkenz_rifa
; //first-order rate constant for enzyme pool degradation
    double femax_rifa = tvfemax_rifa
; //maximal increase in relative bioavailability above 450mg
    double fed50_rifa = tvfed50_rifa
; //difference in rifampicin dose from 450 mg at which half the fmax is
reached
    double mtt_rifa \(\quad=\) tvmtt_rifa \(\quad * \exp (E T A(24))\)
; //mean transit time hr
    double nn_rifa \(\quad\) tvnn_rifa \(\quad * \exp (E T A(25))\)
; //number of transit compartments
```

```
    //calculate dose******
```

 //calculate dose******
 if(EVID == 1 && self.cmt == 20){
 if(EVID == 1 && self.cmt == 20){
 last_dose = self.amt; //reference:
 last_dose = self.amt; //reference:
 https://mrgsolve.github.io/user_guide/model-specification.html\#self.amt
https://mrgsolve.github.io/user_guide/model-specification.html\#self.amt
}
}
//dose dependent relative bioavailability
//dose dependent relative bioavailability
double f450 = 1; //assuming bioavailability for 450mg dose is 1
double f450 = 1; //assuming bioavailability for 450mg dose is 1
double f_rifa = f450*(1 + femax_rifa*(last_dose-450) / (fed50_rifa +
double f_rifa = f450*(1 + femax_rifa*(last_dose-450) / (fed50_rifa +
(last_dose - 450))) * exp(iovf_rifa); //Emax on bioavailability
(last_dose - 450))) * exp(iovf_rifa); //Emax on bioavailability
//define ktr
//define ktr
double ktr_rifa = (nn_rifa + 1) / mtt_rifa; //rate constant for
double ktr_rifa = (nn_rifa + 1) / mtt_rifa; //rate constant for
transit compartments
transit compartments
//logarithm of the approximation to the gamma function
double $1=0.9189385+\left(n n _r i f a+0.5\right) * \log \left(n n _r i f a\right)-n n _r i f a+$
$\log (1+1 /(12 *$ nn_rifa)) ; //logarithm of gamma_n
double lbpd = log(f_rifa * last_dose)
; //logarithm of f*dose
double lktr $=\log \left(k t r _r i f a\right)$
; //logarithm of ktr
double cumul = lbpd + lktr - l
; //logarithm of f*dose*ktr/gamma_n
//interoccasion vaibility(IOV)
double iovkm_rifa $=\operatorname{ETA}(26)$;
if (occ != 1) iovkm_rifa = ETA(27);
double iovv_rifa = ETA(28);
if (occ != 1) iovv_rifa = ETA(29);

```
```

 double iovka_rifa = ETA(30);
 if (occ != 1) iovka_rifa = ETA(31);
 double iovf_rifa = ETA(32);
 if (occ != 1) iovf_rifa = ETA(33);
 //Initialize compartments
 F_rifadepot = 0 ; //transit absorption compartment
 rifacent_0 = 0.0001 ; //central compartment
 rifaenz_0 = 1 ; //enzyme compartment
 //compute ndose (the index of dose)
 //dosetime: time after dose
 //dose: dosage
 if(NEWIND < 2) ndose = 0; //index of dose
 if(self.amt > 0 && self.cmt == 20) {
 ndose = ndose + 1;
 dosetime[ndose] = self.time;
 dose[ndose] = self.amt; //reference:
 https://mrgsolve.github.io/user_guide/model-specification.html\#self.amt
}
//rifampin empirical pk model end

```

\section*{//rifampin inducing effects}
```

double indmax_4oh = tvindmax_4oh
double indmax_6oh = tvindmax_6oh
double indmax_7oh = tvindmax_7oh
double indmax_8oh = tvindmax_8oh
double indmax_10oh = tvindmax_10oh
double indc50_4oh = tvindc50_4oh
double indc50_6oh = tvindc50_6oh
double indc50_7oh = tvindc50_7oh
double indc50_8oh = tvindc50_8oh
double indc50_10oh = tvindc50_10oh
//parse intrinsic clearance (CLint)
//based on figure 6 of warfarin metabolite manuscript (unpublish till
4/25/2021)
//4-R is assumed to be eliminated by a mix effect of 2C9, 3A4 and 2C19
//6-R is assumed to be eliminated by 1A2
//7-R assumed to be eliminated through 2C9, 1A2, 2C19
//8-R is assumed to be eliminated through 2C19
//10-S assumed to be eliminated through 3A4

```
```

 double CLint_4oh = (0.8 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
 if (GENO == 2) CLint_4oh = (0.8 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
 CLint;
if (GENO == 3) CLint_4oh = (0.5 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 4) CLint_4oh = (0.5 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 5) CLint_4oh = (0.5 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
double CLint_6oh = (17.4 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
if (GENO == 2) CLint_6oh = (17.4 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
CLint;
if (GENO == 3) CLint_6oh = (17.4 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 4) CLint_6oh = (17.4 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 5) CLint_6oh = (17.4 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
double CLint_7oh = (2.8 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
if (GENO == 2) CLint_7oh = (2.8 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
CLint;
if (GENO == 3) CLint_7oh = (2.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 4) CLint_7oh = (2.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 5) CLint_7oh = (2.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
double CLint_8oh = (6.7 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
if (GENO == 2) CLint_8oh = (2.2 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
CLint;
if (GENO == 3) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 4) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 5) CLint_8oh = (6.7 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
double CLint_10oh = (0.8 / (0.8 + 17.4 + 2.8 + 6.7 + 0.8)) * CLint;
if (GENO == 2) CLint_10oh = (0.8 / (0.8 + 17.4 + 2.8 + 2.2 + 0.8)) *
CLint;
if (GENO == 3) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 4) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;
if (GENO == 5) CLint_10oh = (0.8 / (0.5 + 17.4 + 2.8 + 6.7 + 0.8)) *
CLint;

```
[ODE]
//Calculation of tissue drug concentrations (ug/L)
double Cbrain = BRAIN/Vbr ; double Cgut = GUT/Vgu ;
```

 double Cspleen = SPLEEN/Vsp ;
 double Cpancreas = PANCREAS/Vpa;
 double Cstomach = STOMACH/Vst ;
 double Cliver = LIVER/Vli ;
 double Ckidney = KIDNEY/Vki ;
 double Cheart = HEART/Vhe ;
 double Clung = LUNG/Vlu ;
 double Cmuscle = MUSCLE/Vmu ;
 double Cadipose = ADIPOSE/Vad ;
 double Cskin = SKIN/Vsk ;
 double Cbone = BONE/Vbo ;
 double Cthymus = THYMUS/Vth ;
 double Carterial = ART/Vab ;
 double Cvenous = VEN/Vvb ;
 //rifampin inducing effect on CLint
 //CLint,i = CLint*(1 + (indmax*cp_rifa)/(indc50 + cp_rifa))
 //equation reference: https://pubmed.ncbi.nlm.nih.gov/29365101/ equation(1)
 double cp_rifa = rifacent/v_rifa ; //central compartment
 concentration mg/L
double cl_rifa = vmax_rifa/(km_rifa + cp_rifa) ; //nonlinear clearance
L/hr
double k_rifa = cl_rifa/v_rifa ; //elimination rate
constant mg/hr
double CLint_4oh_ind = CLint_4oh * (1 + (indmax_4oh*cp_rifa) /
(indc50_4oh + cp_rifa));
double CLint_6oh_ind = CLint_6oh * (1 + (indmax_6oh*cp_rifa) /
(indc50_6oh + cp_rifa));
double CLint_7oh_ind = CLint_7oh * (1 + (indmax_7oh*cp_rifa) /
(indc50_7oh + cp_rifa));
double CLint_8oh_ind = CLint_8oh * (1 + (indmax_8oh*cp_rifa) /
(indc50_8oh + cp_rifa));
double CLint_10oh_ind = CLint_10oh * (1 + (indmax_10oh*cp_rifa) /
(indc50_10oh + cp_rifa));
double CLint_ind = CLint_4oh_ind + CLint_6oh_ind + CLint_7oh_ind +
CLint_8oh_ind + CLint_10oh_ind;
//ODEs
dxdt_GUTLUMEN = - ka*GUTLUMEN ;//(1) absorption
dxdt_BRAIN = Qbr*(Carterial - Cbrain/(Kpbr/BP)) ;//(2)
dxdt_GUT = ka*GUTLUMEN
+ Qgu*(Carterial - Cgut/(Kpgu/BP)) ;//(3) to liver
dxdt_SPLEEN = Qsp*(Carterial - Cspleen/(Kpsp/BP)) ;//(4) to liver
dxdt_PANCREAS = Qpa*(Carterial - Cpancreas/(Kppa/BP)) ;//(5) to liver
dxdt_STOMACH = Qst*(Carterial - Cstomach/(Kpst/BP)) ;//(6) to liver

```
```

 dxdt_LIVER = Qgu*(Cgut/(Kpgu/BP)) //from gut
 + Qsp*(Cspleen/(Kpsp/BP))
 + Qpa*(Cpancreas/(Kppa/BP))
 + Qst*(Cstomach/(Kpst/BP))
 + Qha*(Carterial)
 //from spleen
 //from pancreas
 //from stomach
 //from hepatic
 arterial
- Qli*(Cliver/(Kpli/BP))
- CLint_ind*(Cliver*fup/Kpli)
;//(7)
dxdt_KIDNEY = Qki*(Carterial - Ckidney/(Kpki/BP))
- CLint_Ki*(Ckidney*fup/Kpki) ;//(8)
dxdt_HEART = Qhe*(Carterial - Cheart/(Kphe/BP)) ;//(9)
dxdt_LUNG = Qlu*(Cvenous - Clung/(Kplu/BP)) ;//(10)
dxdt_MUSCLE = Qmu*(Carterial - Cmuscle/(Kpmu/BP)) ;//(11)
dxdt_ADIPOSE = Qad*(Carterial - Cadipose/(Kpad/BP)) ;//(12)
dxdt_SKIN = Qsk*(Carterial - Cskin/(Kpsk/BP)) ;//(13)
dxdt_BONE = Qbo*(Carterial - Cbone/(Kpbo/BP)) ;//(14)
dxdt_THYMUS = Qth*(Carterial - Cthymus/(Kpth/BP)) ;//(15)
dxdt_VEN = Qbr*(Cbrain/(Kpbr/BP)) //from brain
+ Qli*(Cliver/(Kpli/BP)) //from liver
+ Qki*(Ckidney/(Kpki/BP)) //from kidney
+ Qhe*(Cheart/(Kphe/BP)) //from heart
+ Qmu*(Cmuscle/(Kpmu/BP)) //from muscle
+ Qad*(Cadipose/(Kpad/BP)) //from adipose
+ Qsk*(Cskin/(Kpsk/BP)) //from skin
+ Qbo*(Cbone/(Kpbo/BP)) //from bone
+ Qth*(Cthymus/(Kpth/BP)) //from thymus
- Qlu*Cvenous
- kon*(Cvenous/BP)*R
+ koff*DR
;//(16)
dxdt_ART = Qlu*(Clung/(Kplu/BP) - Carterial) ;//(17)
dxdt_R = - kon*(Cvenous/BP)*R + koff*DR ;//(18)
dxdt_DR = kon*(Cvenous/BP)*R - koff*DR ;//(19)
//des for rifampin model
int i = 0;
while(i <= ndose) {
double delta = SOLVERTIME - dosetime[i];
if(SOLVERTIME > dosetime[i]) {
double ktt_rifa = ktr_rifa*delta;
dxdt_rifadepot = exp(cumul + nn_rifa*log(ktt_rifa) - ktt_rifa) -
ka_rifa*rifadepot ; //(20) rifampin depot compartment (mass)
}else{

```
```

 ktt_rifa = 0;
 dxdt_rifadepot = 0;
 }
 ++i;
 }
 double eff_rifa = (emax_rifa * cp_rifa) / (ec50_rifa + cp_rifa)
 ; //rifampin induction effect on enzyme
dxdt_rifacent = ka_rifa * rifadepot - (cl_rifa *pow(ffm / 70, 0.75) /
v_rifa) * rifacent * rifaenz ; //(21)rifampin central compartment (mass)
dxdt_rifaenz = kenz_rifa * (1 + eff_rifa) - kenz_rifa*rifaenz
; //(22)rifampin compartment (mass)
[OMEGA]
0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 0.09
0.09 0.09 0.09 0.09 //Kps
0.09 //CL
0.09 //CL_Ki
0.09 //kon
0.09 //Rmax
0.09 //Kа
[OMEGA] @correlation
0.0862 //vmax_rifa
0.389 0.121 //km_rifa
[OMEGA]
0.00616 //v_rifa
0.108 //ka_rifa
0.136 //mtt_rifa
0.474 //n_rifa
[OMEGA]
0.0351 //iovkm_rifa occ1
0.0351 //iovkm_rifa occ other than 1
0.0940 //iovv_rifa occ1
0.0940 //iovv_rifa occ other than 1
0.276 //iovka_rifa occ1
0.276 //iovka_rifa occ other than 1
0.0244 //iovf_rifa occ1
0.0244 //iovf_rifa occ other than 1
[TABLE]
capture CP = Cvenous/BP;
capture GENO = GENO;
capture WEIGHT = weight;
capture CP_RIFA = cp_rifa;

```
```

capture CLINT = CLint_ind;
capture dos = last_dose;
capture DELTA = delta;
capture CL_RIFA = cl_rifa;
capture BIO_RIFA = f_rifa;

```
```

