Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
OtherArticle

Time-Dependent Inhibition of CYP1A2 by Stiripentol and Structurally Related Methylenedioxyphenyl Compounds via Metabolic Intermediate Complex Formation

Yasuhiro Masubuchi, Chieko Takahashi and Rina Gendo
Drug Metabolism and Disposition November 6, 2023, DMD-AR-2023-001511; DOI: https://doi.org/10.1124/dmd.123.001511
Yasuhiro Masubuchi
1Chiba Institute of Science, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ymasubuchi@cis.ac.jp
Chieko Takahashi
1Chiba Institute of Science, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rina Gendo
1Chiba Institute of Science, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Stiripentol (STP), an antiepileptic agent, causes drug-drug interactions by inhibiting cytochrome P450 (P450) enzymes. STP contains a methylenedioxyphenyl (MDP) group, which could form inhibitory metabolic intermediate complexes (MICs) with P450. The present study examined the possible time-dependent inhibition of CYP1A2 via MIC formation by STP and structurally related MDP compounds such as isosafrole. Time-dependent inhibition was observed in human liver microsomes for CYP1A2, but not CYP3A4. Spectral analysis of the liver microsomes from CYP1A-induced rats incubated with STP and NADPH revealed a Soret peak at approximately 455 nm, which was largely eliminated by potassium ferricyanide. Similar spectra were obtained for all the other MDP compounds, albeit in varying amounts. Thus, the extent of time-dependent CYP1A2 inhibition and MIC formation were in good agreement. In addition, the dissociation of MIC by potassium ferricyanide partially attenuated the impairment of CYP1A2 activity, suggesting that MIC is involved in the time-dependent inhibition of CYP1A2 by STP. In conclusion, STP, like other MDP compounds, caused time-dependent CYP1A2 inhibition via MIC formation, and this may be involved in drug-drug interactions associated with the clinical use of STP.

Significance Statement The present study found that stiripentol, an antiepileptic agent, caused a time-dependent inhibition of CYP1A2. Stiripentol like isosafrole has a methylenedioxyphenyl group and generated MI complexes with CYP1A2. This is a new case of the time-dependent CYP inhibition by a methylenedioxyphenyl containing drug via MI complex formation.

  • CYP1A
  • mechanism-based inhibition
  • Copyright © 2023 American Society for Pharmacology and Experimental Therapeutics
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 51 (12)
Drug Metabolism and Disposition
Vol. 51, Issue 12
1 Dec 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Time-Dependent Inhibition of CYP1A2 by Stiripentol and Structurally Related Methylenedioxyphenyl Compounds via Metabolic Intermediate Complex Formation
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherArticle

Time-dependent CYP1A2 Inhibition by Stiripentol

Yasuhiro Masubuchi, Chieko Takahashi and Rina Gendo
Drug Metabolism and Disposition November 6, 2023, DMD-AR-2023-001511; DOI: https://doi.org/10.1124/dmd.123.001511

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherArticle

Time-dependent CYP1A2 Inhibition by Stiripentol

Yasuhiro Masubuchi, Chieko Takahashi and Rina Gendo
Drug Metabolism and Disposition November 6, 2023, DMD-AR-2023-001511; DOI: https://doi.org/10.1124/dmd.123.001511
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Gadoxetate-enhanced MRI and FXR in benign tumours
  • In vitro DDI assessment of peptide analogues
  • Endogenous substrates of rat organic cation transporters
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics