TY - JOUR T1 - Mechanism for inhibitory effect of cannabidiol on microsomal testosterone oxidation in male rat liver. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 880 LP - 889 VL - 16 IS - 6 AU - S Narimatsu AU - K Watanabe AU - I Yamamoto AU - H Yoshimura Y1 - 1988/11/01 UR - http://dmd.aspetjournals.org/content/16/6/880.abstract N2 - Effects of four cannabinoids [cannabidiol (CBD), delta 8-tetrahydrocannabinol, delta 9-tetrahydrocannabinol, and cannabinol] on hepatic microsomal oxidation of testosterone (17 beta-hydroxy-androst-4-ene-3-one) were examined in adult male rats. Only CBD (30 microM) competitively inhibited 2 alpha-hydroxy-testosterone (2 alpha-OH-T) and 16 alpha-OH-T formation by hepatic microsomes but did not affect androstenedione (androst-4-ene-3,17-dione) and 7 alpha-OH-T formation. Kinetic analyses demonstrated that the inhibitory profile of CBD for testosterone oxidation was different from those of SKF 525-A, which caused competitive inhibition for 2 alpha- and 16 alpha-hydroxylations and noncompetitive inhibition for 6 alpha-hydroxylation, and of metyrapone, which inhibited only 6 beta-hydroxylation competitively. CBD also suppressed formation of 2 alpha-OH-T, 16 alpha-OH-T, and androstenedione from testosterone, catalyzed by a reconstituted system containing hepatic cytochrome P-450 purified from phenobarbital-treated rats. Pretreatment of the rat with CBD (10 mg/kg, ip, once a day for 3 days) decreased testosterone oxidation at the 2 alpha-, 16 alpha-, and 17-positions and increased 7 alpha-OH-T formation, while total cytochrome P-450 content was decreased. These results suggest that CBD suppresses hepatic testosterone oxidation at the 2 alpha-, 16 alpha-, and 17-positions through selective inhibition of the male-specific cytochrome P-450 in the adult male rat. ER -