TY - JOUR T1 - Caffeine, estradiol, and progesterone interact with human CYP1A1 and CYP1A2. Evidence from cDNA-directed expression in Saccharomyces cerevisiae. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 43 LP - 49 VL - 21 IS - 1 AU - H P Eugster AU - M Probst AU - F E Würgler AU - C Sengstag Y1 - 1993/01/01 UR - http://dmd.aspetjournals.org/content/21/1/43.abstract N2 - Heterologous expression of cytochrome P-450 cDNAs in yeast is a potent instrument for the study of enzyme-specific parameters and can be used to answer questions with regard to substrate specificity as well as drug interaction in a background with no interfering activities. Two cDNAs of human CYP1A1 and CYP1A2 were expressed in yeast Saccharomyces cerevisiae, and microsomes of transformed strains contained substantial amounts of functional heterologous enzymes. Enzyme kinetics with 7-ethoxyresorufin as substrate resulted in KM values of 0.017 and 1.67 microM and Vmax values of 840 and 387 pmol/mg/min for CYP1A1 and CYP1A2, respectively. Both heterologous enzymes showed an overlapping substrate specificity pattern assayed with different phenoxazone ethers and caffeine. Caffeine was shown to be metabolized by CYP1A2 and CYP1A1. Both enzymes formed paraxanthine and minor amounts of theobromine; however, trimethyluric acid was exclusively formed by CYP1A1. The fact that theophylline was not formed by either enzyme anticipates the involvement of additional enzyme(s) in the primary metabolism of caffeine. Inhibition studies with caffeine, phenacetin, 17 beta-estradiol, and progesterone as inhibitors of the CYP1A1 and CYP1A2 catalyzed O-deethylation of 7-ethoxyresorufin suggest all compounds as possible substrates of CYP1A enzymes. 17 beta-estradiol inhibited CYP1A1-catalyzed paraxanthine and trimethyluric acid formation. In contrast 17 beta-estradiol did not inhibit CYP1A2-catalyzed formation of primary caffeine metabolites. These data clearly demonstrate the capacity of human CYP1A1 and CYP1A2 to metabolize caffeine. Furthermore, possible consequences of CYP1A enzyme inhibition by caffeine, phenacetin, 17 beta-estradiol, and progesterone will be discussed. ER -