TY - JOUR T1 - Role of altered metabolism in dideoxynucleoside pharmacokinetics. Studies of 2'-beta-fluoro-2',3'-dideoxyinosine and 2'-beta-fluoro-2',3'-dideoxyadenosine in rats. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 1155 LP - 1161 VL - 24 IS - 10 AU - D Singhal AU - M E Morgan AU - B D Anderson Y1 - 1996/10/01 UR - http://dmd.aspetjournals.org/content/24/10/1155.abstract N2 - Enzymes of the purine salvage pathway play an important role in altering the in vivo pharmacokinetics of 2',3'-dideoxypurine nucleosides. This study examines the pharmacokinetics of enzyme-resistant 2'-beta-fluoro analogues of 2',3'-dideoxyinosine (ddI) and 2',3'-dideoxyadenosine (ddA). 2'-beta-Fluoro-2',3'-dideoxyinosine (F-ddI) is an acid-stable analogue of ddI that is highly resistant to purine nucleoside phosphorylase, the principal enzyme in ddI metabolism. 2'-beta-Fluoro-2',3'-dideoxyadenosine (F-ddA), an acid-stable and purine nucleoside phosphorylase-resistant analogue of ddA, is converted in vivo to F-ddI by adenosine deaminase (ADA) but is a much poorer substrate for this enzyme than is ddA. Both F-ddA and F-ddI have been shown to have activity against human immunodeficiency virus in vitro, and F-ddA has been selected by the National Cancer Institute for clinical trials as a new human immunodeficiency virus reverse transcriptase inhibitor. The pharmacokinetics of F-ddI and ddI were compared at equivalent doses in chronically catheterized rats. Because ddI and F-ddI are isosteres having nearly identical lipophilicity, this comparison is likely to reflect primarily metabolic differences. The clearance of F-ddI was substantially reduced, in comparison with that of ddI (27.3 ml/min/kg vs. 90.9 ml/min/kg), resulting in higher systemic concentrations at steady state and prolonged retention of F-ddI after termination of infusions, consistent with a significant metabolic component in the clearance of ddI. Concentrations of F-ddA and F-ddI during and after infusions of F-ddA were determined in both untreated and 2'-deoxycoformycin-pretreated rats. In untreated rats, F-ddA was rapidly eliminated from plasma, with a total clearance of 68.5 ml/kg/min. Metabolic clearance of F-ddA to F-ddI accounted for 58% of this value (bioconversion t1/2 = 9.8 +/- 1.9 min). Pretreatment with 2'-deoxycoformycin, an ADA inhibitor, reduced the clearance of F-ddA to 23.8 ml/min/kg, leading to 2.9 +/- 0.4-fold higher steady-state plasma concentrations of F-ddA, in agreement with a 2.5-fold enhancement predicted by a compartmental model assuming complete ADA inhibition. ER -