TY - JOUR T1 - Inactivation of Cytochrome P450s 2B1, 2B4, 2B6, and 2B11 by Arylalkynes JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 1242 LP - 1248 VL - 25 IS - 11 AU - Elizabeth S. Roberts AU - Nancy Eddy Hopkins AU - Maryam Foroozesh AU - William L. Alworth AU - James R. Halpert AU - Paul F. Hollenberg Y1 - 1997/11/01 UR - http://dmd.aspetjournals.org/content/25/11/1242.abstract N2 - The time-dependent loss of the 7-ethoxy-4-trifluoromethylcoumarin (EFC) O-deethylase activity of rat P450 2B1, rabbit P450 2B4, or dog P450 2B11 by 1-ethynylnaphthalene (1EN), 2-ethynylnaphthalene (2EN), 2-(1-propynyl)naphthalene (2PN), 1-ethynylanthracene (1EA), 2-ethynylanthracene, 2-ethynylphenanthrene, 3-ethynylphenanthrene, 9-ethynylphenanthrene (9EPh), 9-(1-propynyl)phenanthrene (9PPh), 4-ethynylpyrene (4EP), and 4-(1-propynyl)biphenyl (4PbP) was investigated. The rate constants for inactivation by the arylalkynes in descending order of effectiveness for the top five compounds were 9EPh>9PPh>1EN, 2EN, 2PN for 2B1, 9EPh>2EN>4EP>1EN, 1EA for 2B4, and 9EPh>1EA>4EP, 9PPh>2EN for 2B11. The size and the shape of the aromatic ring system and the placement of the alkyne functional group were important for inactivation. The most effective inactivator with all the isozymes was 9EPh. This compound also inactivated the EFC activity in microsomes from human lymphoblastoid cells expressing human P450 2B6. The specificity of 9EPh for the inhibition or inactivation of different P450 activities in microsomes from rats treated with various inducing agents was determined by measuring lidocaine, testosterone,p-nitrophenol, or erythromycin metabolism. The greatest effect was observed with the 2B-specific products from lidocaine and testosterone, whereas no effect was seen with p-nitrophenol or erythromycin. When the covalent binding of [3H]2EN to microsomal protein was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, a radiolabeled protein band that corresponds to 2B1 was observed in the lanes containing microsomes from rats treated with phenobarbital and, to a lesser extent, pyridine and isosafrole after incubation with NADPH. When these microsomes were incubated with [3H]9EPh or [3H]1EP, two NADPH-dependent bands were radiolabeled. One corresponded to 2B1/2 and the other to a protein of approximately 59 kDa, which was observed in the lanes from phenobarbital-treated male and female rats and pyridine-treated male rats. No radiolabeled bands were observed with [3H,14C]4PbP with any of the microsomes. The American Society for Pharmacology and Experimental Therapeutics ER -