RT Journal Article SR Electronic T1 Disposition and Chemical Stability of Telmisartan 1-O-Acylglucuronide JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1143 OP 1149 VO 27 IS 10 A1 T. Ebner A1 G. Heinzel A1 A. Prox A1 K. Beschke A1 H. Wachsmuth YR 1999 UL http://dmd.aspetjournals.org/content/27/10/1143.abstract AB Telmisartan 1-O-acylglucuronide, the principal metabolite of telmisartan in humans, was characterized in terms of chemical stability and the structure of its isomerization products was elucidated. In addition, pharmacokinetics of telmisartan 1-O-acylglucuronide were assessed in rats after i.v. dosing. Similar to other acylglucuronides, telmisartan 1-O-acylglucuronide and diclofenac 1-O-acylglucuronide, which was used for comparison, showed the formation of different isomeric acylglucuronides on incubation in aqueous buffer. The isomeric acylglucuronides of telmisartan consisted of the 2-O-, 3-O-, and 4-O-acylglucuronides (α,β-anomers). First order degradation half-lives of 26 and 0.5 h were observed on incubation in buffer of pH 7.4 for the 1-O-acylglucuronides of telmisartan and diclofenac, respectively. This indicated that the 1-O-acylglucuronide of telmisartan was among the most stable acylglucuronides reported to date. The high stability of telmisartan 1-O-acylglucuronide was confirmed by in vitro experiments that indicated only very low covalent binding of telmisartan acylglucuronide to human serum albumin but a considerable amount of covalently bound radioactivity with the acylglucuronide of diclofenac. After i.v. dosing to rats, telmisartan 1-O-acylglucuronide was rapidly cleared from plasma with a clearance of 180 ml/min/kg, compared with 15.6 ml/min/kg for the parent compound. Because telmisartan 1-O-acylglucuronide exhibited a comparably high chemical stability together with a high clearance that resulted in low systemic exposure, the amount of covalent binding to proteins should be negligible compared with other frequently used drugs, such as furosemide, ibuprofen, or salicylic acid. The American Society for Pharmacology and Experimental Therapeutics