TY - JOUR T1 - Absorption, Excretion, and Metabolism of the Endothelin Receptor Antagonist Bosentan in Healthy Male Subjects JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 810 LP - 815 VL - 27 IS - 7 AU - Cornelia Weber AU - Rodolfo Gasser AU - G. Hopfgartner Y1 - 1999/07/01 UR - http://dmd.aspetjournals.org/content/27/7/810.abstract N2 - The absorption, excretion, and metabolism of the endothelin receptor antagonist bosentan was investigated in healthy male subjects by administration of 14C-labeled compound. Four subjects received a single oral dose of 500 mg of bosentan (3.7 MBq), and four other subjects received a single i.v. dose of 250 mg of bosentan (3.7 MBq). Radioactivity and concentrations of bosentan and its metabolites were measured in plasma, urine, and feces samples. More than 97% of drug-related material was recovered on average within 3.5 days after oral dosing and within 5 days after i.v. dosing. More than 90% of radioactivity was found in feces after both oral and i.v. dosing. Most of the radioactivity in urine and feces represented bosentan and three metabolites. Ro 48-5033, the major metabolite in plasma, urine, and feces, is the result of hydroxylation at the t-butyl group of bosentan. The two other metabolites Ro 47-8634 and Ro 64-1056 represent minor metabolite species. Ro 47-8634 is the product ofO-demethylation of the phenolic methyl ester, and Ro 64-1056 is generated by both demethylation and hydroxylation. The radioactivity in plasma could almost entirely be attributed to bosentan and the two metabolites Ro 48-5033 and Ro 47-8634, whereby both metabolites exhibited much lower plasma levels than bosentan. Hepatic metabolism followed by biliary excretion of the metabolites apparently represents the major pathway of elimination for bosentan in humans. The American Society for Pharmacology and Experimental Therapeutics ER -