RT Journal Article SR Electronic T1 Isoform Specificity of N-Deacetyl Ketoconazole by Human and Rabbit Flavin-Containing Monooxygenases JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1083 OP 1086 VO 28 IS 9 A1 Rosita J. Rodriguez A1 Cristobal L. Miranda YR 2000 UL http://dmd.aspetjournals.org/content/28/9/1083.abstract AB N-Deacetyl ketoconazole (DAK) is the major metabolite of orally administered ketoconazole. This major metabolite has been demonstrated to be further metabolized predominately by the flavin-containing monooxygenases (FMOs) to the secondary hydroxylamine,N-deacetyl-N-hydroxyketoconazole (N-hydroxy-DAK) by adult and postnatal rat hepatic microsomes. Our current investigation evaluated the FMO isoform specificity of DAK in a pyrophosphate buffer (pH 8.8) containing the glucose 6-phosphate NADPH-generating system. cDNA-expressed human FMOs (FMO1, FMO3, and FMO5) and cDNA-expressed rabbit FMOs (FMO1, FMO2, FMO3, and FMO5) were used to assess the metabolism of DAK to its subsequent FMO-mediated metabolites by HPLC analysis. Human and rabbit cDNA-expressed FMO3 resulted in extensive metabolism of DAK in 1 h (71.2 and 64.5%, respectively) to N-hydroxy-DAK (48.2 and 47.7%, respectively) and two other metabolites, metabolite 1 (11.7 and 7.8%, respectively) and metabolite 3 (10.5 and 10.0%, respectively). Previous studies suggest that metabolite 1 is the nitrone formed after successive FMO-mediated metabolism ofN-hydroxy-DAK. Moreover, these studies display similar metabolic profiles seen with adult and postnatal rat hepatic microsomes. The human and rabbit FMO1 metabolized DAK predominately to the N-hydroxy-DAK in 1 h (36.2 and 25.3%, respectively) with minimal metabolism to the other metabolites (≤5%). Rabbit FMO2 metabolized DAK to N-hydroxy-DAK (15.9%) and metabolite 1 (6.6%). Last, DAK did not appear to be a substrate for human or rabbit FMO5. Heat inactivation of cDNA-expressed FMOs abolished DAK metabolite formation. These results suggest that DAK is a substrate for human and rabbit FMO1 and FMO3, rabbit FMO2, but not human or rabbit FMO5. The American Society for Pharmacology and Experimental Therapeutics