RT Journal Article SR Electronic T1 METABOLISM OF 26,26,26,27,27,27-F6-1α,23S,25-TRIHYDROXYVITAMIN D3 BY HUMAN UDP-GLUCURONOSYLTRANSFERASE 1A3* JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 102 OP 107 DO 10.1124/dmd.104.002303 VO 33 IS 1 A1 Noriyuki Kasai A1 Toshiyuki Sakaki A1 Raku Shinkyo A1 Shin-ichi Ikushiro A1 Takashi Iyanagi A1 Miho Ohta A1 Kuniyo Inouye YR 2005 UL http://dmd.aspetjournals.org/content/33/1/102.abstract AB 26,26,26,27,27,27-Hexafluoro-1α,25-dihydroxyvitamin D3 [F6-1α, 25(OH)2D3], which is now clinically used as a drug for secondary hyperparathyroidism, is a hexafluorinated analog of the active form of vitamin D3. Our previous studies demonstrated that CYP24A1 is responsible for the metabolism of F6-1α,25(OH)2D3 in the target tissues and that F6-1α,25(OH)2D3 was successively converted to F6-1α,23S,25(OH)3D3 and F6-23-oxo-1α,25(OH)2D3. In this study, we examined the metabolism of F6-1α,25(OH)2D3,F6-1α,23S,25(OH)3D3, and F6-23-oxo-1α,25(OH)2D3 by human UDP-glucuronosyltransferases (UGTs). Of these compounds, F6-1α,23S,25(OH)3D3 was remarkably glucuronidated both in human liver microsomes and in the recombinant system expressing human UGT. No significant interindividual differences were observed among 10 human liver samples. The recombinant system for 12 species of human UGTs revealed that F6-1α,23S,25(OH)3D3 glucuronidation was specifically catalyzed by UGT1A3. The information obtained in this study seems very useful to predict the metabolism and efficacy of vitamin D analogs in human bodies before clinical trials. In addition, note that for the first time a possible probe substrate for UGT1A3 has been found. The American Society for Pharmacology and Experimental Therapeutics