TY - JOUR T1 - FORMATION AND PROTEIN BINDING OF THE ACYL GLUCURONIDE OF A LEUKOTRIENE B<sub>4</sub> ANTAGONIST (SB-209247): RELATION TO SPECIES DIFFERENCES IN HEPATOTOXICITY JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 271 LP - 281 DO - 10.1124/dmd.104.001677 VL - 33 IS - 2 AU - Jane R. Kenny AU - James L. Maggs AU - Justice N. A. Tettey AU - Andrew W. Harrell AU - Steven G. Parker AU - Stephen E. Clarke AU - B. Kevin Park Y1 - 2005/02/01 UR - http://dmd.aspetjournals.org/content/33/2/271.abstract N2 - SB-209247 [(E)-3-[6-[[(2,6-dichlorophenyl)-thio]methyl]-3-(2-phenylethoxy)-2-pyridinyl]-2-propenoic acid], an anti-inflammatory leukotriene B4 receptor antagonist, was associated in beagle dogs but not male rats with an inflammatory hepatopathy. It also produced a concentration-dependent (10-1000 μM) but equal leakage of enzymes from dog and rat precision-cut liver slices. The hepatic metabolism of SB-209247 was investigated with reference to the formation of reactive acyl glucuronides. [14C]SB-209247 (100 μmol/kg) administered i.v. to anesthetized male rats was eliminated by biliary excretion of the acyl glucuronides of the drug and its sulfoxide. After 5 h, 1.03 ± 0.14% (mean ± S.E.M., n = 4) of the dose was bound irreversibly to liver tissue. The sulfoxide glucuronide underwent pH-dependent rearrangement in bile more rapidly than did the SB-209247 conjugate. [14C]SB-209247 was metabolized by sulfoxidation and glucuronidation in rat and dog hepatocytes, and approximately 1 to 2% of [14C]SB-209247 (100 μM) became irreversibly bound to cellular material. [14C]SB-209247 sulfoxide and glucuronide were the only metabolites produced by dog, rat, and human liver microsomes in the presence of NADPH and UDP-glucuronic acid (UDPGA), respectively. Vmax values for [14C]SB-209247 glucuronidation by dog, rat, and human microsomes were 2.6 ± 0.1, 1.2 ± 0.1, and 0.4 ± 0.0 nmol/min/mg protein, respectively. Hepatic microsomes from all three species catalyzed UDPGA-dependent but not NADPH-dependent irreversible binding of [14C]SB-209247 (100-250 μM) to microsomal protein. Although a reactive acyl glucuronide was formed by microsomes from every species, the binding did not differ between species. Therefore, neither the acute cellular injury nor glucuronidation-driven irreversible protein binding in vitro is predictive of the drug-induced hepatopathy. The American Society for Pharmacology and Experimental Therapeutics ER -