RT Journal Article SR Electronic T1 STEREOCHEMICAL ASPECTS OF ITRACONAZOLE METABOLISM IN VITRO AND IN VIVO JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 583 OP 590 DO 10.1124/dmd.105.008508 VO 34 IS 4 A1 Kunze, Kent L. A1 Nelson, Wendel L. A1 Kharasch, Evan D. A1 Thummel, Kenneth E. A1 Isoherranen, Nina YR 2006 UL http://dmd.aspetjournals.org/content/34/4/583.abstract AB Itraconazole (ITZ) has three chiral centers and is administered clinically as a mixture of four stereoisomers. This study evaluated stereoselectivity in ITZ metabolism. In vitro experiments were carried out using heterologously expressed CYP3A4. Only (2R,4S,2′R)-ITZ and (2R,4S,2′S)-ITZ were metabolized by CYP3A4 to hydroxy-ITZ, keto-ITZ, and N-desalkyl-ITZ. When (2S,4R,2′R)-ITZ or (2S,4R,2′S)-ITZ was incubated with CYP3A4, neither metabolites nor substrate depletion were detected. Despite these differences in metabolism, all four ITZ stereoisomers induced a type II binding spectrum with CYP3A4, characteristic of coordination of the triazole nitrogen to the heme iron (Ks 2.2–10.6 nM). All four stereoisomers of ITZ inhibited the CYP3A4-catalyzed hydroxylation of midazolam with high affinity (IC50 3.7–14.8 nM). Stereochemical aspects of ITZ pharmacokinetics were evaluated in six healthy volunteers after single and multiple oral doses. In vivo, after a single dose, ITZ disposition was stereoselective, with a 3-fold difference in Cmax and a 9-fold difference in Cmin between the (2R,4S)-ITZ and the (2S,4R)-ITZ pairs of diastereomers, with the latter reaching higher concentrations. Secondary and tertiary ITZ metabolites (keto-ITZ and N-desalkyl-ITZ) detected in plasma were of the (2R,4S) stereochemistry. After multiple doses of ITZ, the difference in Cmax and Cmin decreased to 1.5- and 3.8-fold, respectively. The initial difference between the stereoisomeric pairs was most likely due to stereoselective metabolism by CYP3A4, including stereoselective first-pass metabolism as well as stereoselective elimination. However, stereoselective elimination was diminished after multiple dosing, presumably as a result of CYP3A4 autoinhibition. In conclusion, the metabolism of ITZ is highly stereoselective in vitro and in vivo. The American Society for Pharmacology and Experimental Therapeutics