RT Journal Article SR Electronic T1 Pharmacokinetics of Humanized Monoclonal Anti-Tumor Necrosis Factor-α Antibody and Its Neonatal Fc Receptor Variants in Mice and Cynomolgus Monkeys JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 600 OP 605 DO 10.1124/dmd.109.031310 VO 38 IS 4 A1 Rong Deng A1 Kelly M. Loyet A1 Samantha Lien A1 Suhasini Iyer A1 Laura E. DeForge A1 Frank-Peter Theil A1 Henry B. Lowman A1 Paul J. Fielder A1 Saileta Prabhu YR 2010 UL http://dmd.aspetjournals.org/content/38/4/600.abstract AB The neonatal Fc receptor (FcRn) plays a critical role in maintaining homeostasis of IgG antibodies. Recent studies have shown that the FcRn-IgG interaction can be modulated to alter the pharmacokinetics of the antibody. This has been achieved by altering amino acid residues in the FcRn-binding domain of the antibody, resulting in a change in the pH-dependent binding affinity of the antibody to FcRn. The purpose of this study was to examine the impact of the pH-dependent FcRn binding affinity on the pharmacokinetics of the antibody with changes in the Asn434 residue. Two anti-tumor necrosis factor-α monoclonal antibody (mAb) FcRn variants (N434A and N434H) were engineered, and pharmacokinetic studies of the two FcRn variants together with the wild type (WT) were conducted in mice and cynomolgus monkeys. N434A, which had binding properties to murine FcRn similar to those of the WT, had the same pharmacokinetic profile as the WT in mice. N434H, with the highest binding affinity to murine FcRn at pH 7.4, had a faster clearance (16.1 ml/day/kg) and a lower bioavailability (61.3%) compared with the WT (5.07 ml/day/kg, 73.2%) and N434A (5.90 ml/day/kg, 72.4%) in mice. N434A and N434H, which had higher binding affinity at pH 6.0 to monkey FcRn with comparable affinity at pH 7.4, had significantly higher areas under the serum concentration-time curve from time 0 to day 7 than the WT (749 ± 71.9 and 819 ± 81.5 versus 592 ± 56.8 μg/ml · day) in monkeys. Thus, increasing the binding affinity of mAbs to FcRn at pH 6.0 while keeping a low binding affinity at pH 7.4 improves the pharmacokinetics of these molecules. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics