TY - JOUR T1 - Metabolism and Excretion of Asenapine in Healthy Male Subjects JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 580 LP - 590 DO - 10.1124/dmd.110.036715 VL - 39 IS - 4 AU - S. F. M. van de Wetering-Krebbers AU - P. L. Jacobs AU - G. J. Kemperman AU - E. Spaans AU - P. A. M. Peeters AU - L. P. C. Delbressine AU - M. L. P. S. van Iersel Y1 - 2011/04/01 UR - http://dmd.aspetjournals.org/content/39/4/580.abstract N2 - The metabolism and excretion of asenapine [(3aRS,12bRS)-5-chloro-2-methyl-2,3,3a,12b-tetrahydro-1H-dibenzo[2,3:6,7]-oxepino [4,5-c]pyrrole (2Z)-2-butenedioate (1:1)] were studied after sublingual administration of [14C]-asenapine to healthy male volunteers. Mean total excretion on the basis of the percent recovery of the total radioactive dose was ∼90%, with ∼50% appearing in urine and ∼40% excreted in feces; asenapine itself was detected only in feces. Metabolic profiles were determined in plasma, urine, and feces using high-performance liquid chromatography with radioactivity detection. Approximately 50% of drug-related material in human plasma was identified or quantified. The remaining circulating radioactivity corresponded to at least 15 very polar, minor peaks (mostly phase II products). Overall, >70% of circulating radioactivity was associated with conjugated metabolites. Major metabolic routes were direct glucuronidation and N-demethylation. The principal circulating metabolite was asenapine N+-glucuronide; other circulating metabolites were N-desmethylasenapine-N-carbamoyl-glucuronide, N-desmethylasenapine, and asenapine 11-O-sulfate. In addition to the parent compound, asenapine, the principal excretory metabolite was asenapine N+-glucuronide. Other excretory metabolites were N-desmethylasenapine-N-carbamoylglucuronide, 11-hydroxyasenapine followed by conjugation, 10,11-dihydroxy-N-desmethylasenapine, 10,11-dihydroxyasenapine followed by conjugation (several combinations of these routes were found) and N-formylasenapine in combination with several hydroxylations, and most probably asenapine N-oxide in combination with 10,11-hydroxylations followed by conjugations. In conclusion, asenapine was extensively and rapidly metabolized, resulting in several regio-isomeric hydroxylated and conjugated metabolites. ER -