RT Journal Article SR Electronic T1 Metabolism and Excretion of Asenapine in Healthy Male Subjects JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 580 OP 590 DO 10.1124/dmd.110.036715 VO 39 IS 4 A1 van de Wetering-Krebbers, S. F. M. A1 Jacobs, P. L. A1 Kemperman, G. J. A1 Spaans, E. A1 Peeters, P. A. M. A1 Delbressine, L. P. C. A1 van Iersel, M. L. P. S. YR 2011 UL http://dmd.aspetjournals.org/content/39/4/580.abstract AB The metabolism and excretion of asenapine [(3aRS,12bRS)-5-chloro-2-methyl-2,3,3a,12b-tetrahydro-1H-dibenzo[2,3:6,7]-oxepino [4,5-c]pyrrole (2Z)-2-butenedioate (1:1)] were studied after sublingual administration of [14C]-asenapine to healthy male volunteers. Mean total excretion on the basis of the percent recovery of the total radioactive dose was ∼90%, with ∼50% appearing in urine and ∼40% excreted in feces; asenapine itself was detected only in feces. Metabolic profiles were determined in plasma, urine, and feces using high-performance liquid chromatography with radioactivity detection. Approximately 50% of drug-related material in human plasma was identified or quantified. The remaining circulating radioactivity corresponded to at least 15 very polar, minor peaks (mostly phase II products). Overall, >70% of circulating radioactivity was associated with conjugated metabolites. Major metabolic routes were direct glucuronidation and N-demethylation. The principal circulating metabolite was asenapine N+-glucuronide; other circulating metabolites were N-desmethylasenapine-N-carbamoyl-glucuronide, N-desmethylasenapine, and asenapine 11-O-sulfate. In addition to the parent compound, asenapine, the principal excretory metabolite was asenapine N+-glucuronide. Other excretory metabolites were N-desmethylasenapine-N-carbamoylglucuronide, 11-hydroxyasenapine followed by conjugation, 10,11-dihydroxy-N-desmethylasenapine, 10,11-dihydroxyasenapine followed by conjugation (several combinations of these routes were found) and N-formylasenapine in combination with several hydroxylations, and most probably asenapine N-oxide in combination with 10,11-hydroxylations followed by conjugations. In conclusion, asenapine was extensively and rapidly metabolized, resulting in several regio-isomeric hydroxylated and conjugated metabolites.