PT - JOURNAL ARTICLE AU - I. S. Haslam AU - J. A. Wright AU - D. A. O'Reilly AU - D. J. Sherlock AU - T. Coleman AU - N. L. Simmons TI - Intestinal Ciprofloxacin Efflux: The Role of Breast Cancer Resistance Protein (ABCG2) AID - 10.1124/dmd.111.038323 DP - 2011 Dec 01 TA - Drug Metabolism and Disposition PG - 2321--2328 VI - 39 IP - 12 4099 - http://dmd.aspetjournals.org/content/39/12/2321.short 4100 - http://dmd.aspetjournals.org/content/39/12/2321.full SO - Drug Metab Dispos2011 Dec 01; 39 AB - Intestinal secretory movement of the fluoroquinolone antibiotic, ciprofloxacin, may limit its oral bioavailability. Active ATP-binding cassette (ABC) transporters such as breast cancer resistance protein (BCRP) have been implicated in ciprofloxacin transport. The aim of this study was to test the hypothesis that BCRP alone mediates intestinal ciprofloxacin secretion. The involvement of ABC transport proteins in ciprofloxacin secretory flux was investigated with the combined use of transfected cell lines [bcrp1/BCRP-Madin-Darby canine kidney II (MDCKII) and multidrug resistance-related protein 4 (MRP4)-human embryonic kidney (HEK) 293] and human intestinal Caco-2 cells, combined with pharmacological inhibition using 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6, 7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143), cyclosporine, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), and verapamil as ABC-selective inhibitors. In addition, the regional variation in secretory capacity was investigated using male Han Wistar rat intestine mounted in Ussing chambers, and the first indicative measurements of ciprofloxacin transport by ex vivo human jejunum were made. Active, Ko143-sensitive ciprofloxacin secretion was observed in bcrp1-MDCKII cell layers, but in low-passage (BCRP-expressing) Caco-2 cell layers only a 54% fraction was Ko143-sensitive. Ciprofloxacin accumulation was lower in MRP4-HEK293 cells than in the parent line, indicating that ciprofloxacin is also a substrate for this transporter. Ciprofloxacin secretion by Caco-2 cell layers was not inhibited by MK571. Secretory flux showed marked regional variability in the rat intestine, increasing from the duodenum to peak in the ileum. Ciprofloxacin secretion was present in human jejunum and was reduced by Ko143 but showed marked interindividual variability. Ciprofloxacin is a substrate for human and rodent BCRP. An additional pathway for ciprofloxacin secretion exists in Caco-2 cells, which is unlikely to be MRP(4)-mediated. BCRP is likely to be the dominant transport mechanism for ciprofloxacin efflux in both rat and human jejunum.