RT Journal Article SR Electronic T1 Pharmacokinetics, Metabolism, and Excretion of [14C]Axitinib, a Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor, in Humans JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 918 OP 931 DO 10.1124/dmd.113.056531 VO 42 IS 5 A1 Bill J. Smith A1 Yazdi Pithavala A1 Hai-Zhi Bu A1 Ping Kang A1 Brian Hee A1 Alan J. Deese A1 William F. Pool A1 Karen J. Klamerus A1 Ellen Y. Wu A1 Deepak K. Dalvie YR 2014 UL http://dmd.aspetjournals.org/content/42/5/918.abstract AB The disposition of a single oral dose of 5 mg (100 μCi) of [14C]axitinib was investigated in fasted healthy human subjects (N = 8). Axitinib was rapidly absorbed, with a median plasma Tmax of 2.2 hours and a geometric mean Cmax and half-life of 29.2 ng/ml and 10.6 hours, respectively. The plasma total radioactivity-time profile was similar to that of axitinib but the AUC was greater, suggesting the presence of metabolites. The major metabolites in human plasma (0–12 hours), identified as axitinib N-glucuronide (M7) and axitinib sulfoxide (M12), were pharmacologically inactive, and with axitinib comprised 50.4%, 16.2%, and 22.5% of the radioactivity, respectively. In excreta, the majority of radioactivity was recovered in most subjects by 48 hours postdose. The median radioactivity excreted in urine, feces, and total recovery was 22.7%, 37.0%, and 59.7%, respectively. The recovery from feces was variable across subjects (range, 2.5%–60.2%). The metabolites identified in urine were M5 (carboxylic acid), M12 (sulfoxide), M7 (N-glucuronide), M9 (sulfoxide/N-oxide), and M8a (methylhydroxy glucuronide), accounting for 5.7%, 3.5%, 2.6%, 1.7%, and 1.3% of the dose, respectively. The drug-related products identified in feces were unchanged axitinib, M14/15 (mono-oxidation/sulfone), M12a (epoxide), and an unidentified metabolite, comprising 12%, 5.7%, 5.1%, and 5.0% of the dose, respectively. The proposed mechanism to form M5 involved a carbon-carbon bond cleavage via M12a, followed by rearrangement to a ketone intermediate and subsequent Baeyer-Villiger rearrangement, possibly through a peroxide intermediate. In summary, the study characterized axitinib metabolites in circulation and primary elimination pathways of the drug, which were mainly oxidative in nature.