RT Journal Article SR Electronic T1 Mechanistic Understanding of Translational Pharmacokinetic-Pharmacodynamic Relationships in Nonclinical Tumor Models: A Case Study of Orally Available Novel Inhibitors of Anaplastic Lymphoma Kinase JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 54 OP 62 DO 10.1124/dmd.114.061143 VO 43 IS 1 A1 Shinji Yamazaki A1 Justine L Lam A1 Helen Y Zou A1 Hui Wang A1 Tod Smeal A1 Paolo Vicini YR 2015 UL http://dmd.aspetjournals.org/content/43/1/54.abstract AB The orally available novel small molecules PF06463922 [(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile] and PF06471402 [(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(azeno)pyrazolo[4,3-h][2,5,11]benzoxadiazacyclo-tetradecine-3-carbonitrile] are second-generation anaplastic lymphoma kinase (ALK) inhibitors targeted to both naïve and resistant patients with non–small cell lung cancer (NSCLC) to the first-generation ALK inhibitor, crizotinib. The objectives of the present study were to characterize and compare the pharmacokinetic-pharmacodynamic (PKPD) relationships of PF06463922 and PF06471402 for target modulation in tumor and antitumor efficacy in athymic mice implanted with H3122 NSCLC cells expressing a crizotinib-resistant echinoderm microtubule-associated protein-like 4 (EML4)-ALK mutation, EML4-ALKL1196M. Furthermore, the PKPD relationships for these ALK inhibitors were evaluated and compared between oral administration and subcutaneous constant infusion (i.e., between different pharmacokinetic [PK] profiles). Oral and subcutaneous PK profiles of these ALK inhibitors were adequately described by a one-compartment PK model. An indirect response model extended with a modulator fit the time courses of PF06463922- and PF06471402-mediated target modulation (i.e., ALK phosphorylation) with an estimated unbound EC50,in vivo of 36 and 20 nM, respectively, for oral administration, and 100 and 69 nM, respectively, for subcutaneous infusion. A drug-disease model based on the turnover concept fit tumor growth curves inhibited by PF06463922 and PF06471402 with estimated unbound tumor stasis concentrations of 51 and 27 nM, respectively, for oral administration, and 116 and 70 nM, respectively, for subcutaneous infusion. Thus, the EC50,in vivo to EC60,in vivo estimates for ALK inhibition corresponded to the concentrations required tumor stasis in all cases, suggesting that the pharmacodynamic relationships of target modulation to antitumor efficacy were consistent among the ALK inhibitors, even when the PK profiles with different administration routes were considerably different.