RT Journal Article SR Electronic T1 In Vitro Characterization of the Bioconversion of Pomaglumetad Methionil, a Novel Metabotropic Glutamate 2/3 Receptor Agonist Peptide Prodrug JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 756 OP 761 DO 10.1124/dmd.114.062893 VO 43 IS 5 A1 Richard D. Moulton A1 Kenneth J. Ruterbories A1 David W. Bedwell A1 Michael A. Mohutsky YR 2015 UL http://dmd.aspetjournals.org/content/43/5/756.abstract AB To characterize the hydrolysis of the peptide prodrug pomaglumetad methionil (LY2140023; (1R,4S,5S,6S)-4-(L-methionylamino)-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide), to the active drug LY404039 [(1R,4S,5S,6S)-4-amino-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide], a series of in vitro studies were performed in various matrices, including human intestinal, liver, kidney homogenate, and human plasma. The studies were performed to determine the tissue(s) and enzyme(s) responsible for the conversion of the prodrug to the active molecule. This could enable an assessment of the risk for drug interactions, an evaluation of pharmacogenomic implications, as well as the development of a Physiologically Based Pharmacokinetic (PBPK) model for formation of the active drug. Of the matrices examined, hydrolysis of pomaglumetad methionil was observed in intestinal and kidney homogenate preparations and plasma, but not in liver homogenate. Clearance values calculated after applying standard scaling factors suggest the intestine and kidney as primary sites of hydrolysis. Studies with peptidase inhibitors were performed in an attempt to identify the enzyme(s) catalyzing the conversion. Near complete inhibition of LY404039 formation was observed in intestinal and kidney homogenate and human plasma with the selective dehydropeptidase1 (DPEP1) inhibitor cilastatin. Human recombinant DPEP1 was expressed and shown to catalyze the hydrolysis, which was completely inhibited by cilastatin. These studies demonstrate pomaglumetad methionil can be converted to LY404039 via one or multiple enzymes completely inhibited by cilastatin, likely DPEP1, in plasma, the intestine, and the kidney, with the plasma and kidney involved in the clearance of the circulating prodrug. These experiments define a strategy for the characterization of enzymes responsible for the metabolism of other peptide-like compounds.