RT Journal Article SR Electronic T1 Combined Contribution of Increased Intestinal Permeability and Inhibited Deglycosylation of Ginsenoside Rb1 in the Intestinal Tract to the Enhancement of Ginsenoside Rb1 Exposure in Diabetic Rats after Oral Administration JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1702 OP 1710 DO 10.1124/dmd.115.064881 VO 43 IS 11 A1 Can Liu A1 Mengyue Hu A1 Haifang Guo A1 Mian Zhang A1 Ji Zhang A1 Feng Li A1 Zeyu Zhong A1 Yang Chen A1 Ying Li A1 Ping Xu A1 Jia Li A1 Li Liu A1 Xiaodong Liu YR 2015 UL http://dmd.aspetjournals.org/content/43/11/1702.abstract AB Panax ginseng is becoming a promising antidiabetic herbal medication. As the main active constituents of Panax ginseng, ginsenosides are well known, poorly absorbed chemicals. However, the pharmacokinetic behavior of ginsenosides under diabetic conditions is not fully understood. This study aimed to explore the alterations and potential mechanisms of pharmacokinetic behavior of ginsenoside Rb1 in diabetic rats compared with normal rats and rats fed a high-fat diet. Systemic exposure (area under the concentration-time curve extrapolated from zero to infinity) was significantly increased in diabetic rats after oral administration of Rb1. Oral bioavailability of Rb1 was significantly higher in diabetic rats (2.25%) compared with normal rats (0.90%) and rats fed a high-fat diet (0.78%). Further studies revealed that increased Rb1 exposure in diabetic rats may be mainly attributed to increased Rb1 absorption via the intestine and inhibited Rb1 deglycosylation by the intestinal microflora. Neither metabolic enzymes nor drug transporters displayed appreciable effects on Rb1 disposition. The transport of paracellular markers (fluorescein sodium and fluorescein isothiocyanate-dextran of 4 kDa) as well as Rb1 itself across the Caco-2 monolayer cultured with diabetic serum was promoted, demonstrating that increased paracellular permeability of the Caco-2 monolayer may benefit intestinal Rb1 absorption. In addition, Rb1 exposure was decreased in diabetic rats after Rb1 intravenous administration, which may result from increased Rb1 urinary excretion. In conclusion, Rb1 oral exposure was significantly increased under diabetic conditions, which is of positive significance to clinical treatment. The potential mechanism may be associated with the combined contribution of increased gut permeability and inhibited deglycosylation of ginsenoside Rb1 by intestinal microflora.