RT Journal Article SR Electronic T1 Epigenetic Regulation Is a Crucial Factor in the Repression of UGT1A1 Expression in the Human Kidney JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1738 OP 1743 DO 10.1124/dmd.113.051201 VO 41 IS 10 A1 Shingo Oda A1 Tatsuki Fukami A1 Tsuyoshi Yokoi A1 Miki Nakajima YR 2013 UL http://dmd.aspetjournals.org/content/41/10/1738.abstract AB Human uridine 5′-diphospho-glucuronosyltransferase (UGT) 1A1 catalyzes the metabolism of numerous clinically and pharmacologically important compounds, such as bilirubin and SN-38. UGT1A1 is predominantly expressed in the liver and intestine but not in the kidney. The purpose of this study was to uncover the mechanism of the tissue-specific expression of UGT1A1, focusing on its epigenetic regulation. Bisulfite sequence analysis revealed that the CpG-rich region near the UGT1A1 promoter (−85 to +40) was hypermethylated (83%) in the kidney, whereas it was hypomethylated (37%) in the liver. A chromatin immunoprecipitation assay demonstrated that histone H3 near the promoter was hypoacetylated in the kidney but hyperacetylated in the liver; this hyperacetylation was accompanied by the recruitment of hepatocyte nuclear factor (HNF) 1α to the promoter. The UGT1A1 promoter in human kidney-derived HK-2 cells that do not express UGT1A1 was fully methylated, but this promoter was relatively unmethylated in human liver-derived HuH-7 cells that express UGT1A1. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC), an inhibitor of DNA methylation, resulted in an increase of UGT1A1 mRNA expression in both cell types, but the increase was much larger in HK-2 cells than in HuH-7 cells. The transfection of an HNF1α expression plasmid into the HK-2 cells resulted in an increase of UGT1A1 mRNA only in the presence of 5-aza-dC. In summary, we found that DNA hypermethylation, along with histone hypoacetylation, interferes with the binding of HNF1α, resulting in the defective expression of UGT1A1 in the human kidney. Thus, epigenetic regulation is a crucial determinant of tissue-specific expression of UGT1A1.