RT Journal Article SR Electronic T1 Late-occurring and Long-circulating Metabolites of GABAAα2,3 Receptor Modulator AZD7325 Involving Metabolic Cyclization and Aromatization: Relevance to MIST Analysis and Application for Patient Compliance JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 303 OP 315 DO 10.1124/dmd.117.078873 VO 46 IS 3 A1 Chungang Gu A1 Markus Artelsmair A1 Charles S. Elmore A1 Richard J. Lewis A1 Patty Davis A1 James E. Hall A1 Bruce T. Dembofsky A1 Greg Christoph A1 Mark A. Smith A1 Marc Chapdelaine A1 Maria Sunzel YR 2018 UL http://dmd.aspetjournals.org/content/46/3/303.abstract AB AZD7325 [4-amino-8-(2-fluoro-6-methoxyphenyl)-N-propylcinnoline-3-carboxamide] is a selective GABAAα2,3 receptor modulator intended for the treatment of anxiety disorders through oral administration. An interesting metabolic cyclization and aromatization pathway led to the tricyclic core of M9, i.e., 2-ethyl-7-(2-fluoro-6-methoxyphenyl)pyrimido[5,4-c]cinnolin-4(3H)-one. Further oxidative metabolism generated M10 via O-demethylation and M42 via hydroxylation. An authentic standard of M9 was synthesized to confirm the novel structure of M9 and that of M10 and M42 by liver microsomal incubation of the M9 standard. Metabolites M9, M10, and M42 were either minor or absent in plasma samples after a single dose; however, all became major metabolites in human and preclinical animal plasma after repeated doses and circulated in humans longer than 48 hours after the end of seven repeated doses. The absence of these long circulating metabolites from selected patients’ plasma samples was used to demonstrate patient noncompliance as the cause of unexpected lack of drug exposure in some patients during a Phase IIb outpatient clinical study. The observation of late-occurring and long-circulating metabolites demonstrates the need to collect plasma samples at steady state after repeated doses when conducting metabolite analysis for the safety testing of drug metabolites. All 12 major nonconjugate metabolites of AZD7325 observed in human plasma at steady state were also observed in dog, rat, and mouse plasma samples collected from 3-month safety studies and at higher exposures in the animals than humans. This eliminated concern about human specific or disproportional metabolites.