RT Journal Article SR Electronic T1 Consequences of Phenytoin Exposure on Hepatic Cytochrome P450 Expression during Postnatal Liver Maturation in Mice JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1241 OP 1250 DO 10.1124/dmd.118.080861 VO 46 IS 8 A1 Piekos, Stephanie C. A1 Chen, Liming A1 Wang, Pengcheng A1 Shi, Jian A1 Yaqoob, Sharon A1 Zhu, Hao-Jie A1 Ma, Xiaochao A1 Zhong, Xiao-bo YR 2018 UL http://dmd.aspetjournals.org/content/46/8/1241.abstract AB The induction of cytochrome P450 (P450) enzymes in response to drug treatment is a significant contributing factor to drug-drug interactions, which may reduce therapeutic efficacy and/or cause toxicity. Since most studies on P450 induction are performed in adults, enzyme induction at neonatal, infant, and adolescent ages is not well understood. Previous work defined the postnatal ontogeny of drug-metabolizing P450s in human and mouse livers; however, there are limited data on the ontogeny of the induction potential of each enzyme in response to drug treatment. Induction of P450s at the neonatal age may also cause permanent alterations in P450 expression in adults. The goal of this study was to investigate the short- and long-term effects of phenytoin treatment on mRNA and protein expressions and enzyme activities of CYP2B10, 2C29, 3A11, and 3A16 at different ages during postnatal liver maturation in mice. Induction of mRNA immediately following phenytoin treatment appeared to depend on basal expression of the enzyme at a specific age. While neonatal mice showed the greatest fold changes in CYP2B10, 2C29, and 3A11 mRNA expression following treatment, the levels of induced protein expression and enzymatic activity were much lower than that of induced levels in adults. The expression of fetal CYP3A16 was repressed by phenytoin treatment. Neonatal treatment with phenytoin did not permanently induce enzyme expression in adulthood. Taken together, our data suggest that inducibility of drug-metabolizing P450s is much lower in neonatal mice than it is in adults and neonatal induction by phenytoin is not permanent.