RT Journal Article SR Electronic T1 In Vitro Drug-Drug Interaction Evaluation of GalNAc Conjugated siRNAs Against CYP450 Enzymes and Transporters JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1183 OP 1194 DO 10.1124/dmd.119.087098 VO 47 IS 10 A1 Diane Ramsden A1 Jing-Tao Wu A1 Brad Zerler A1 Sajida Iqbal A1 Jim Jiang A1 Valerie Clausen A1 Krishna Aluri A1 Yongli Gu A1 Sean Dennin A1 Joohwan Kim A1 Saeho Chong YR 2019 UL http://dmd.aspetjournals.org/content/47/10/1183.abstract AB Small interfering RNAs (siRNAs) represent a new class of medicines that are smaller (∼16,000 Da) than biologic therapeutics (>150,000 Da) but much larger than small molecules (<900 Da). Current regulatory guidance on drug-drug interactions (DDIs) from the European Medicines Agency, Food and Drug Administration, and Pharmaceutical and Medical Devices Agency provides no recommendations for oligonucleotide therapeutics including siRNAs; therefore, small molecule guidance documents have historically been applied. Over ∼10 years, in vitro DDI investigations with siRNAs conjugated to a triantennary N-acetylgalactosamine [(GalNAc)-siRNA] ligand have been conducted during nonclinical drug development to elucidate the potential clinical DDI liability. GalNAc siRNAs were evaluated as substrates, inhibitors, or inducers of major cytochrome P450s (P450s) and as substrates and inhibitors of transporters. Aggregate analysis of these data demonstrates a low potential for DDI against P450s. Zero of five, 10, and seven are inducers, time-dependent inhibitors, or substrates, respectively, and nine of 12 do not inhibit any P450 isoform evaluated. Three GalNAc siRNAs inhibited CYP2C8 at supratherapeutic concentrations, and one mildly inhibited CYP2B6. The lowest Ki value of 28 µM is >3000-fold above the therapeutic clinical Cmax at steady state, and importantly no clinical inhibition was projected. Of four GalNAc siRNAs tested none were substrates for transporters and one caused inhibition of P-glycoprotein, calculated not to be clinically relevant. The pharmacological basis for DDIs, including consideration of the target and/or off-target profiles for GalNAc siRNAs, should be made as part of the overall DDI risk assessment. If modulation of the target protein does not interfere with P450s or transporters, then in vitro or clinical investigations into the DDI potential of the GalNAc siRNAs are not warranted.SIGNIFICANCE STATEMENT Recommendations for evaluating DDI potential of small molecule drugs are well established; however, guidance for novel modalities, particularly oligonucleotide-based therapeutics are lacking. Given the paucity of published data in this field, in vitro DDI investigations are often conducted. The aggregate analysis of GalNAc-siRNA data reviewed herein demonstrates that, like new biological entities, these oligonucleotide-based therapeutic drugs are unlikely to result in DDIs; therefore, it is recommended that the need for in vitro or clinical investigations similarly be determined on a case-by-case basis. Given the mechanism of siRNA action, special consideration should be made in cases where there may be a pharmacological basis for DDIs.