PT - JOURNAL ARTICLE AU - L. J. Francis AU - J. B. Houston AU - D. Hallifax TI - Impact of Plasma Protein Binding in Drug Clearance Prediction: A Database Analysis of Published Studies and Implications for In Vitro-In Vivo Extrapolation AID - 10.1124/dmd.120.000294 DP - 2021 Mar 01 TA - Drug Metabolism and Disposition PG - 188--201 VI - 49 IP - 3 4099 - http://dmd.aspetjournals.org/content/49/3/188.short 4100 - http://dmd.aspetjournals.org/content/49/3/188.full SO - Drug Metab Dispos2021 Mar 01; 49 AB - Plasma protein–mediated uptake (PMU) and its effect on clearance (CL) prediction have been studied in various formats; however, a comprehensive analysis of the overall impact of PMU on CL parameters from hepatocyte assays (routinely used for IVIVE) has not previously been performed. The following work collated data reflecting the effect of PMU for 26 compounds with a wide variety of physicochemical, drug, and in vivo CL properties. PMU enhanced the unbound intrinsic clearance in vitro (CLint,u in vitro) beyond that conventionally calculated using fraction unbound and was correlated with the unbound fraction of drug in vitro and in plasma (fup) and absolute unbound intrinsic clearance in vivo (CLint,u in vivo) in both rat and human hepatocytes. PMU appeared to be more important for highly bound (fup < 0.1) and high CLint,u in vivo drugs. These trends were independent of species, assay conditions, ionization, and extended clearance classification system group, although the type of plasma protein used in in vitro assays may require further investigation. Such generalized trends (spanning fup 0.0008–0.99) may suggest a generic mechanism behind PMU; however, multiple drug-dependent mechanisms are also possible. Using the identified relationship between the impact of PMU on CLint,u in vitro and fup, PMU-enhanced predictions of CLint,u in vivo were calculated for both transporter substrates and metabolically cleared drugs. PMU was accurately predicted, and incorporation of predicted PMU improved the IVIVE of hepatic CL, with an average fold error of 1.17 and >50% of compounds predicted within a 2-fold error for both rat and human data sets (n ≥ 100).SIGNIFICANCE STATEMENT Current strategies for prediction of hepatic clearance from in vitro data are recognized to be inaccurate, but they do not account for PMU. The impact of PMU on CLint,u in vitro is wide ranging and can be predicted based on fraction unbound in plasma and applied to CLint,u in vitro values obtained by standard procedures in the absence of plasma protein. Such PMU-enhanced predictions improved IVIVE, and future studies may easily incorporate this PMU relationship to provide more accurate IVIVE.