%0 Journal Article %A Diane Ramsden %A Elke S. Perloff %A Andrea Whitcher-Johnstone %A Thuy Ho %A Reena Patel %A Kirk D. Kozminski %A Cody L. Fullenwider %A J George Zhang %T Predictive In Vitro-In Vivo Extrapolation for Time Dependent Inhibition of CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6 Using Pooled Human Hepatocytes, Human Liver Microsomes, and a Simple Mechanistic Static Model %D 2021 %R 10.1124/dmd.121.000718 %J Drug Metabolism and Disposition %P DMD-AR-2021-000718 %X Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of co-medicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A4 leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and microsome (HLM) to predict clinically relevant DDIs was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were pre-incubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition (TDI) was detected in HLM for four moderate/strong inhibitors suggesting that some optimization of incubation conditions (i.e. lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters kinact and KI into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models (MSM), which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within 2-fold of the observed value. Significance Statement Collectively, the data demonstrate that coupling time-dependent inactivation parameters derived from pooled human hepatocytes and HLM with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical DDI risk from in vitro data. Weak and moderate inhibitors did not show TDI under standard incubation conditions using HLM and optimization of incubation conditions is warranted. Recommendations are made with respect to input parameters for IVIVE of TDI with non-CYP3A enzymes using available data from HLM and HHEPs. %U https://dmd.aspetjournals.org/content/dmd/early/2021/11/17/dmd.121.000718.full.pdf