PT - JOURNAL ARTICLE AU - Kazuyoshi Michiba AU - Kazuya Maeda AU - Osamu Shimomura AU - Yoshihiro Miyazaki AU - Shinji Hashimoto AU - Tatsuya Oda AU - Hiroyuki Kusuhara TI - Usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells for the prediction of intestinal drug absorption in humans AID - 10.1124/dmd.121.000796 DP - 2022 Jan 01 TA - Drug Metabolism and Disposition PG - DMD-AR-2021-000796 4099 - http://dmd.aspetjournals.org/content/early/2022/01/06/dmd.121.000796.short 4100 - http://dmd.aspetjournals.org/content/early/2022/01/06/dmd.121.000796.full AB - This study aimed to demonstrate the usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells as a novel in vitro model for clarifying the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Three-dimensional human intestinal spheroids were successfully established from surgical human jejunal specimens and expanded for a long period using L-WRN-conditioned medium, which contains Wnt3a, R-spondin 3, and noggin. The mRNA expression levels of intestinal pharmacokinetics-related genes in the human jejunal spheroid-derived differentiated intestinal epithelial cells were drastically increased over a 5-day period after seeding compared with those in human jejunal spheroids and were approximately the same as those in human jejunal tissue over a culture period of at least 13 days. Activities of typical drug-metabolizing enzymes (cytochrome P450 [CYP] 3A, CYP2C9, uridine 5'-diphospho-glucuronosyltransferase 1A, and carboxylesterase 2) and uptake/efflux transporters (peptide transporter 1/SLC15A1, P-glycoprotein, and breast cancer resistance protein) in the differentiated cells were confirmed. Furthermore, intestinal availability (Fg) values estimated from the apical-to-basolateral permeation clearance across cell monolayer showed a good correlation with the in vivo Fg values in humans for five CYP3A substrate drugs (Fg range, 0.35-0.98). In conclusion, the functions of major intestinal drug-metabolizing enzymes and transporters could be maintained in human jejunal spheroid-derived differentiated intestinal epithelial cells. This model would be useful for the quantitative evaluation of the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Significance Statement Limited information is available regarding the quantitative prediction of the impact of drug-metabolizing enzymes and transporters on the human intestinal absorption of substrates using in vitro assays with differentiated cells derived from human intestinal spheroids/organoids. We confirmed the functions of typical drug-metabolizing enzymes and transporters in human jejunal spheroid-derived differentiated intestinal epithelial cells and demonstrated that Fg values estimated from apical-to-basolateral permeation clearance across cell monolayers showed a good correlation with in vivo human Fg values for CYP3A substrate drugs.