PT - JOURNAL ARTICLE AU - Jill Barber AU - Zubida M. Al-Majdoub AU - Narciso Couto AU - Areti-Maria Vasilogianni AU - Annika Tillmann AU - Sarah Alrubia AU - Amin Rostami-Hodjegan AU - Brahim Achour TI - <strong>Label-Free but Still Constrained: Assessment of Global Proteomic Strategies for the Quantification of Hepatic Enzymes and Transporters </strong> AID - 10.1124/dmd.121.000780 DP - 2022 Jan 01 TA - Drug Metabolism and Disposition PG - DMD-AR-2021-000780 4099 - http://dmd.aspetjournals.org/content/early/2022/03/19/dmd.121.000780.short 4100 - http://dmd.aspetjournals.org/content/early/2022/03/19/dmd.121.000780.full AB - Building and refining pharmacology models require 'system' data derived from tissues and in vitro systems analysed by quantitative proteomics. Label-free global proteomics offers a wide scope of analysis, allowing simultaneous quantification of thousands of proteins per sample. The data generated from such analysis offer comprehensive protein expression profiles that can address existing gaps in models. In this study, we assessed the performance of three widely used label-free proteomic methods, 'high N' ion intensity approach (HiN), intensity-based absolute quantification (iBAQ) and total protein approach (TPA), in relation to the quantification of enzymes and transporters in 27 human liver microsomal samples. Global correlations between the three methods were highly significant (R2 &gt; 0.70, p &lt; 0.001, n = 2232 proteins). Absolute abundances of 57 pharmacokinetic targets measured by standard-based label-free methods (HiN and iBAQ) showed good agreement, while the TPA overestimated abundances by 2-3 fold. Relative abundance distribution of enzymes was similar for the three methods, while differences were observed with TPA in the case of transporters. Variability (CV) was similar across the methods, with consistent between-sample relative quantification regardless of methodology. The back-calculated amount of protein in the samples based on each method was compared with the nominal protein amount analysed in the proteomic workflow, revealing overall agreement with data from the HiN method with bovine serum albumin as standard. The findings herein present a critique of label-free proteomic data relevant to pharmacokinetics and evaluate the possibility of retrospective analysis of historic datasets. Significance Statement This study provides useful insights for using label-free methods to generate abundance data applicable for populating pharmacokinetic models. The data demonstrated overall correlation between intensity-based label-free proteomic methods (HiN, iBAQ and TPA), while iBAQ and TPA overestimated the total amount of protein in the sample. The extent of overestimation can provide a means of normalization to support absolute quantification. Importantly, between-sample relative quantification was consistent (similar variability) across methods.