PT - JOURNAL ARTICLE AU - Jocelyn Yabut AU - Robert Houle AU - Shubing Wang AU - Andy Liaw AU - Ravi Katwaru AU - Hannah Collier AU - Lucinda Hittle AU - Xiaoyan Chu TI - <strong>Selection of an optimal in vitro model to assess P-gp inhibition: comparison of vesicular and bi-directional transcellular transport inhibition assays </strong> AID - 10.1124/dmd.121.000807 DP - 2022 Jan 01 TA - Drug Metabolism and Disposition PG - DMD-AR-2021-000807 4099 - http://dmd.aspetjournals.org/content/early/2022/04/29/dmd.121.000807.short 4100 - http://dmd.aspetjournals.org/content/early/2022/04/29/dmd.121.000807.full AB - The multidrug resistance protein 1 (MDR1) P-glycoprotein (P-gp) is a clinically important transporter. In vitro P-gp inhibition assays have been routinely conducted to predict the potential for clinical drug-drug interactions (DDIs) mediated by P-gp. However, high inter- laboratory and inter-system variability of P-gp IC50 data limits accurate prediction of DDIs using static models and decision criteria recommended by regulatory agencies. In this study, we calibrated two in vitro P-gp inhibition models: vesicular uptake of N-methyl-quinidine (NMQ) in MDR1 vesicles and bidirectional transport (BDT) of digoxin in Lilly Laboratories Cell Porcine Kidney 1 cells overexpressing MDR1 (LLC-MDR1) using a total of 48 P-gp inhibitor and non-inhibitor drugs, and digoxin DDI data from 70 clinical studies. Refined thresholds were derived using receiver operating characteristic (ROC) analysis and their predictive performance was compared with the decision frameworks proposed by regulatory agencies and selected reference. Furthermore, the impact of various IC50 calculation methods and non-specific binding of drugs on DDI prediction was evaluated. Our studies suggest that the concentration of inhibitor based on highest approved dose dissolved in 250 ml divided by IC50(I2/IC50) is sufficient to predict P-gp related intestinal DDIs. IC50 obtained from vesicular inhibition assay with a refined threshold of I2/IC50 {greater than or equal to} 25.9 provides comparable predictive power than those measured by net secretory flux and efflux ratio in LLC-MDR1 cells. We therefore recommend vesicular P-gp inhibition as our preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters than BDT assay. Significance Statement We have conducted comprehensive calibration of two in vitro P-gp inhibition models: uptake in MDR1 vesicles and bidirectional transport in LLC-MDR1 cell monolayers to predict DDIs. Our studies suggest that IC50s obtained from vesicular inhibition with a refined threshold of I2/IC50 ≥ 25.9 provide comparable predictive power than those in LLC-MDR1 cells. We therefore recommend vesicular P-gp inhibition as preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters.