Supplemental Data

Title:

Predicting Regional Respiratory Tissue and Systemic Concentrations of Orally Inhaled Drugs through a Novel PBPK Model

Authors:

Mayur K. Ladumor and Jashvant D. Unadkat

Affiliation:

Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA (M.K.L., J.D.U.)

Journal Title:
Drug Metabolism and Disposition

Manuscript Number:

DMD-AR-2021-000789

Supplemental Method

Drug Deposition Model. The regional dose exposure for each respiratory tract region was calculated by multiplying the regional deposition efficiency (DE, dimensionless; sometimes referred to as deposition fraction, DF) with the overall OI dose (Eq. 1)

$$
\begin{equation*}
\text { Dose }_{\text {region }}=\mathrm{DE}_{\text {region }} \times \text { OI dose } \tag{1}
\end{equation*}
$$

During both the inhalation (inh) and exhalation (exh) cycles, each region acts as a filter ($\mathrm{N}=7$ for the OI route) of the drug particles/droplets that flow through the region. The total and regional DE in the extrathoracic (ET2, oral passage), bronchial (BB), bronchiolar (bb), and alveolar (AL) regions were calculated by adding the $D E$ in each filter during inh and exh cycle (Eqs. 2-7).

$$
\begin{align*}
& \mathrm{DE}_{\mathrm{ET} 2}=\mathrm{DE}_{1, \text { inh }}+\mathrm{DE}_{7, \mathrm{exh}} \tag{2}\\
& \mathrm{DE}_{\mathrm{BB}}=\mathrm{DE}_{2, \text { inh }}+\mathrm{DE}_{6, \text { exh }} \tag{3}\\
& \mathrm{DE}_{\mathrm{bb}}=\mathrm{DE}_{3, \text { inh }}+\mathrm{DE}_{5, \mathrm{exh}} \tag{4}\\
& \mathrm{DE}_{\mathrm{AL}}=\mathrm{DE}_{4, \text { inh }} \text { and exh } \tag{5}\\
& \mathrm{DE}_{\text {total }}=\mathrm{DE}_{\mathrm{ET} 2}+\mathrm{DE}_{\mathrm{BB}}+\mathrm{DE}_{\mathrm{bb}}+\mathrm{DE}_{\mathrm{AL}} \tag{6}\\
& \mathrm{f}_{\text {exhaled }}=1-\mathrm{DE}_{\text {total }} \tag{7}
\end{align*}
$$

where $f_{\text {exhaled }}$ is fraction exhaled.
The DE of each filter was calculated using the ICRP 66 deposition model (Eq. 8) as follows.

$$
\begin{equation*}
D E_{j}=D E_{j-1} \cdot \eta_{j} \cdot \xi_{j} \cdot\left(\frac{1}{\eta_{j-1}}-1\right), \text { for } j=1 \text { to } 7 \tag{8}
\end{equation*}
$$

where, j denotes the number of filters connected in series. η_{j} is the total filtration efficiency (dimensionless) of the $j^{\text {th }}$ filter, i.e. the fraction of drug particles that enter and are deposited in the filter. ξ_{j} is a dimensionless factor that accounts for the different air volumes that pass through the filter.

The η_{j} for each filter was calculated using Eq. 9 as described below.

$$
\begin{equation*}
\eta_{\mathrm{j}}=\left(\eta_{\mathrm{ae}, \mathrm{j}}^{2}+\eta_{\mathrm{th}, \mathrm{j}}^{2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where, $\eta_{\text {ae, },}$ and $\eta_{\text {th, }}$ denote the aerodynamic (accounting for impaction and gravitational settling) and thermodynamic (accounting for particle diffusion by Brownian motion) filtration efficiencies (dimensionless), respectively and calculated as indicated in Tables S1 and S2.
ξ_{j} for each filter was calculated using Eq. 10 as described below.

$$
\begin{equation*}
\xi_{j}=\frac{\phi_{\mathrm{j}}}{\phi_{\mathrm{j}-1}} \tag{10}
\end{equation*}
$$

where ϕ_{j} is the volumetric fraction (dimensionless) calculated by the cumulative volume of the preceding filters as indicated in Table S3.
To determine DE for the first filter $\left(\mathrm{DE}_{1}\right)$, prefiltration efficiency $\left(\eta_{0}\right)$ at an imaginary prefilter (this filter reflects the potential loss of particles/droplets before entering the mouth) was calculated using Eq. 11.

$$
\begin{equation*}
\eta_{0}=\left(1-\eta_{\mathrm{I}}\right) \tag{11}
\end{equation*}
$$

where η_{I} is defined as inhalability (Eq. 12), defined as the fraction of drug particles in ambient air that enter the mouth before inhalation.

$$
\begin{equation*}
\eta_{I}=1-0.5\left(1-\left[7.6 \times 10^{-4} d_{a e}^{2.8}+1\right]^{-1}\right)+1.0 \times 10^{-5} U^{2.75} \exp \left(0.055 \cdot d_{\mathrm{ae}}\right) \tag{12}
\end{equation*}
$$

where d_{ae} stands for aerodynamic diameter ($\mu \mathrm{m}$), which is defined as the "diameter of unit density ($1 \mathrm{~g} / \mathrm{mL}$) sphere that has same terminal settling velocity in air as the particle of interest", and U denotes windspeed (m / s), which is defined as the rate at which air enters the respiratory tract via the mouth passage.

In order to calculate $\eta_{\text {th }}$, thermodynamic diameter $\left(\mathrm{d}_{\mathrm{th}}(\mu \mathrm{m})\right.$ is defined as "diameter of a spherical particle that has the same diffusion coefficient (D; Eq. 15) in air as the particle of interest") was determined using Eq. 13.

$$
\begin{equation*}
\mathrm{d}_{\mathrm{th}}=\mathrm{d}_{\mathrm{ae}} \cdot \sqrt{\frac{\chi \cdot \rho_{0}}{\rho} \cdot \frac{\mathrm{C}\left(\mathrm{~d}_{\mathrm{ae}}\right)}{\mathrm{C}\left(\mathrm{~d}_{\mathrm{th}}\right)}} \tag{13}
\end{equation*}
$$

where, ρ_{0} and ρ are the unit density ($1 \mathrm{~g} / \mathrm{mL}$) and drug density (g / mL), respectively; χ is the particle shape factor (dimensionless); $\mathrm{C}\left(\mathrm{d}_{\mathrm{ae}}\right)$ or $\mathrm{C}\left(\mathrm{d}_{\mathrm{th}}\right)$ is dimensionless slip correction factor for d_{ae} and d_{th} (Eq. 12), which is defined as "particle slip caused by the relative velocity of gas molecules at the particle surface".

$$
\begin{equation*}
C(d)=1+\frac{\lambda}{d} \cdot\left[2.514+0.800 \exp \left(-0.55 \cdot \frac{d}{\lambda}\right)\right] \tag{14}
\end{equation*}
$$

where, $\lambda(\mu \mathrm{m})$ is a mean free path of the air molecules at $37^{\circ} \mathrm{C}, 100 \%$ relative humidity and 76 cm Hg atmospheric pressure. d is a diameter (d_{ae} or d_{th}). Convergence of Eq. 13 and 14 was achieved by using the initial setting such as $d_{t h}=d_{a e} \cdot \sqrt{\chi / \rho}$.

$$
\begin{equation*}
\mathrm{D}=\frac{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T} \cdot \mathrm{C}\left(\mathrm{~d}_{\mathrm{th}}\right)}{3 \cdot \pi \cdot \mu_{\mathrm{air}} \cdot \mathrm{~d}_{\mathrm{th}}} \tag{15}
\end{equation*}
$$

where, k_{B} is the Boltzmann constant, T is the absolute body temperature in Kelvin and μ_{air} is the viscosity of air.

The hygroscopic growth of aerosol was integrated using Eq. 16 and 17, and the resulting new values of $d_{a e, j}$ and D_{j} in each regional filter j were substituted for the $d_{a e}$ and D in Tables S1 and S2.

$$
\begin{align*}
& d_{\mathrm{ae}, \mathrm{j}}=\mathrm{d}_{\mathrm{ae}, \infty}-\left(\mathrm{d}_{\mathrm{ae}, \infty}-\mathrm{d}_{\mathrm{ae}, 0}\right) \cdot\left(\exp \left[\frac{-\left(10 \cdot \mathrm{t}_{\mathrm{r}, \mathrm{j}}\right)^{0.55}}{\mathrm{~d}_{\mathrm{ae}, 0}}\right]\right)^{0.6} \tag{16}\\
& \mathrm{D}_{\mathrm{j}}=\mathrm{D}_{0}-\left(\frac{\mathrm{d}_{\mathrm{ae}, \mathrm{j}}-\mathrm{d}_{\mathrm{ae}, 0}}{\mathrm{~d}_{\mathrm{ae}, \infty}-\mathrm{d}_{\mathrm{ae}}}\right) \cdot\left(\mathrm{D}_{0}-\mathrm{D}_{\infty}\right) \tag{17}
\end{align*}
$$

where $t_{r, j}$ is the residence time in regional filter j (Eqs. 20-23); $d_{a e, 0}$ and D_{0} are the initial values of $d_{a e}$ and $D ; d_{a e, \infty}$ and $D \infty$ are the equilibrium values of $d_{a e}$ and D, respectively, as determined by hygroscopic growth factor ($\mathrm{f}_{\text {hyg }}$, this is generally between $2-4$-fold at equilibrium) using Eq. 16 and 17.

$$
\begin{gather*}
\mathrm{d}_{\mathrm{ae}, \infty}=\mathrm{d}_{\mathrm{ae}, 0} \cdot \mathrm{f}_{\mathrm{hyg}} \tag{18}\\
\mathrm{D}_{\infty}=\mathrm{D}_{0} / \mathrm{f}_{\mathrm{hyg}} \tag{19}
\end{gather*}
$$

Residence time in second (s) for ET2, BB, bb and AL was calculated using Eqs. 20-23 considering the regional (n) dead space volume ($\mathrm{V}_{\mathrm{D}, \mathrm{n}}$), tidal or inhalation volume (V), volumetric or inhalation flow rate (Q) and functional residual capacity (FRC).

$$
\begin{align*}
& \mathrm{t}_{\mathrm{r}, \mathrm{ET} 2}=0.1 \tag{20}\\
& \mathrm{t}_{\mathrm{r}, \mathrm{BB}}=\frac{\mathrm{V}_{\mathrm{D}, \mathrm{BB}}}{\mathrm{Q}} \cdot\left(1+\frac{0.5 \cdot \mathrm{~V}}{\mathrm{FRC}}\right) \tag{21}\\
& \mathrm{t}_{\mathrm{r}, \mathrm{bb}}=\frac{\mathrm{V}_{\mathrm{D}, \mathrm{bb}}}{\mathrm{Q}} \cdot\left(1+\frac{0.5 \cdot \mathrm{~V}}{\mathrm{FRC}}\right) \tag{22}\\
& \mathrm{t}_{\mathrm{r}, \mathrm{AL}}=\frac{\mathrm{V}-\mathrm{V}_{\mathrm{D}, \mathrm{ET}}-\left[\mathrm{V}_{\mathrm{D}, \mathrm{BB}}+\mathrm{V}_{\mathrm{D}, \mathrm{bb}}\right] \cdot\left(1+\frac{\mathrm{V}}{\mathrm{FRC}}\right)}{\mathrm{Q}} \tag{23}
\end{align*}
$$

Drug Absorption Model. The mass balance equations for the regional respiratory absorption, lymphatic and systemic model are shown below.

ELF or Airway Liquid Compartment. The mass balance in the ELF compartment can be described using the following differential equation Eq. 24 and 25.

$$
\begin{equation*}
\frac{\mathrm{d} A_{\mathrm{ud}, \mathrm{n}}}{\mathrm{dt}}=\mathrm{k}_{\mathrm{t}, \mathrm{n}+1} \cdot \mathrm{~A}_{\mathrm{ud}, \mathrm{n}+1}-\mathrm{k}_{\mathrm{t}, \mathrm{n}} \cdot \mathrm{~A}_{\mathrm{un}, \mathrm{n}}-\mathrm{K}_{\mathrm{dis}, \mathrm{n}} \cdot \mathrm{~A}_{\mathrm{ud}, \mathrm{n}} \cdot\left(\mathrm{C}_{\mathrm{s}, \mathrm{n}}-\mathrm{Cu}_{\mathrm{dis}, \mathrm{n}}\right) \tag{24}
\end{equation*}
$$

$$
\begin{align*}
\frac{d C_{\text {dis }, n}}{d t}= & \frac{1}{V_{F, n}} \cdot\left[k_{t, n+1} \cdot A_{d i s, n+1} \cdot V_{F, n}-k_{t, n} \cdot A_{d i s, n} \cdot V_{F, n}+K_{d i s, n} \cdot A_{u d, n} \cdot\left(C_{S, n}-C u_{d i s, n}\right)-\right. \\
& k_{d e g, n} \cdot C u_{d i s, n} \cdot V_{F, n}-P S_{n} \cdot\left(C u_{d i s, n} \cdot f u_{F, n}-C u_{E, n} \cdot f u_{E, n}\right)-C L_{i n f, F-E} \cdot C u_{d i s, n}+ \\
& \left.C L_{e f f, E-F} \cdot C u_{E, n}\right] \tag{25}
\end{align*}
$$

where $\mathrm{A}_{\mathrm{ud}, \mathrm{n}}$ is the undissolved drug amount in the $\mathrm{n}^{\text {th }}$ ELF compartment of the respiratory tract; $\mathrm{k}_{\mathrm{t}, \mathrm{n}}$ represent the transit rate constants in the $\mathrm{n}^{\text {th }}$ compartment; $\mathrm{K}_{\mathrm{di}, \mathrm{n}}$ represents the dissolution rate constant of the undissolved drug amount in the $\mathrm{n}^{\text {th }}$ compartment (Eq. 26); $C_{s, n}$ is drug solubility in the $n^{\text {th }}$ compartment; $V_{F, n}$ represent the ELF volume of the $n^{\text {th }}$ compartment; $\mathrm{Cu}_{\text {dis, } \mathrm{n}}$ denotes the unbound dissolved drug concentration in the $\mathrm{n}^{\text {th }}$ ELF compartment; subscript F, E and n denote ELF compartment, epithelial compartment and region of the respiratory compartment, respectively; $\mathrm{k}_{\text {deg,n }}$ is the first-order degradation rate constant in the $\mathrm{n}^{\text {th }}$ ELF compartment; fui denote fraction of unionized drug; PS, permeabilitysurface area product; CLinff-E-E , active influx transporter-mediated drug clearance from ELF to epithelial direction; CLeff,E-F, active efflux transporter-mediated drug clearance from epithelial to ELF direction.

Dissolution rate constant. $\mathrm{K}_{\text {dis, } \mathrm{n}}$ or z -factor was determined by Hintz - Johnson model (Hintz and Johnson, 1989) as shown in Eq. 26.

$$
\begin{equation*}
\mathrm{K}_{\mathrm{dis}, \mathrm{n}}=\frac{3 \cdot \mathrm{D}}{\rho \cdot \mathrm{r} \cdot \mathrm{~h}} \tag{26}
\end{equation*}
$$

where r is the particle radius ($r=d_{e} / 2$; d_{e} is equivalent volume diameter and was calculated from $d_{\text {ae }}$ (Eq. 27)); h is the diffusion layer thickness ($h=r$ if $r<30 \mu \mathrm{~m}$, otherwise $\mathrm{h}=30 \mu \mathrm{~m}$); D was calculated using Eq. 15 considering the viscosity of simulated lung lining fluid.

$$
\begin{equation*}
d_{e}=d_{a e} \cdot \sqrt{\frac{\chi \cdot \rho_{0}}{\rho} \cdot \frac{C\left(d_{a e}\right)}{C\left(d_{e}\right)}} \tag{27}
\end{equation*}
$$

where d_{e} was converged as described in Eq. 13 and 14 and $C\left(d_{e}\right)$ was calculated according to Eq. 14.

Fraction of unionized drug. fui values for the ELF, epithelial, subepithelial, and blood compartments of the regional respiratory tract were determined by the HendersonHasselbalch equation (Po and Senozan, 2001) using pH value of the regional compartment and drug acid dissociation constant (pK_{a}) data (Eqs. 28-33).

$$
\begin{align*}
& \text { fui }=1 \text { for neutral drug } \tag{28}\\
& \text { fui }=1 /\left[1+\left(10^{\mathrm{pH}-\mathrm{pK}}\right)\right] \text { for monoprotic acid drug } \tag{29}\\
& \text { fui }=1 /\left[1+\left(10^{\mathrm{pH}-\mathrm{pK}} \mathrm{a}_{1}\right.\right. \tag{30}
\end{align*}+10^{\left.\left.2 \cdot \mathrm{pH}^{-p \mathrm{pK}_{\mathrm{a} 1}-\mathrm{pK}_{\mathrm{a} 2}}\right)\right] \text { for diprotic acid }\left(\mathrm{pK}_{\mathrm{a} 1}<\mathrm{pK}_{\mathrm{a} 2}\right)} .
$$

$$
\begin{align*}
& \text { fui }=1 /\left[1+\left(10^{p K_{\mathrm{a}}-\mathrm{pH}}\right)\right] \text { for monoprotic base drug } \tag{31}\\
& \text { fui }=1 /\left[1+\left(10^{\mathrm{pK} \mathrm{a}_{2}-\mathrm{pH}}+10^{\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}-2 \cdot \mathrm{pH}}\right)\right] \text { for diprotic base }\left(\mathrm{pK}_{\mathrm{a} 1}<\mathrm{pK}_{\mathrm{a} 2}\right) \tag{32}\\
& \text { fui }=1 /\left[1+\left(10^{\mathrm{pK}_{\mathrm{a}, \text { base }}-\mathrm{pH}}+10^{\mathrm{pH}-\mathrm{pK}_{\mathrm{a}, \text { acid }}}\right)\right] \text { for zwitterion drug } \tag{33}
\end{align*}
$$

Fraction of unbound drug. If experimental fu values are not available, fu for the epithelial and subepithelial compartments of the regional respiratory tract was calculated using the fraction unbound in plasma (fu plasma), the tissue to plasma partition coefficient $\left(\mathrm{Kp}_{\text {tissue-pls }}\right.$; Eq. 35) and the interstitial to plasma partition coefficient ($K_{\text {int-pls }}$; Eqs. 36 and 38) (Schmitt et al., 2008). Lung includes the $B B, b b$ and $A L$ regions. The tissue composition of the ET2 region was assumed to be the same as lung, so the Kp of the ET2 region was identical to the lung tissue.

$$
\begin{align*}
& f u_{\mathrm{F}, \mathrm{n}}=1 \tag{34}\\
& \mathrm{fu}_{\mathrm{E}, \mathrm{n}}=\mathrm{fu} \mathrm{plasma} / \mathrm{Kp}_{\text {tissue-pls }} \tag{35}\\
& \mathrm{fu}_{\mathrm{S}, \mathrm{n}}=\mathrm{fu}_{\text {plasma }} / \mathrm{Kp}_{\text {int-pls }} \tag{36}\\
& f u_{\mathrm{B}, \mathrm{n}}=\mathrm{fu}_{\text {plasma }} / \mathrm{BP} \tag{37}\\
& \mathrm{Kp}_{\text {int-pls }}=\left(\mathrm{f}_{\text {water,int }}+\text { protein ratio } \cdot\left(1 /\left(\mathrm{fu}_{\text {plasma }}-\mathrm{f}_{\text {water,plasma }}\right)\right)\right) \cdot f \mathrm{u}_{\text {plasma }} \tag{38}
\end{align*}
$$

Membrane permeability. Apical epithelial membrane permeability or the permeability surface area product (PS) between ELF and epithelial compartment was calculated for each region using the apparent permeability ($\mathrm{P}_{\mathrm{app}, \text { calu-3 }}$) obtained from the in vitro bronchial epithelial calu3 model and the surface area (SA) of each respiratory tract region (Eq. 39). To calculate regional $P_{\text {app }}(E q .40), P_{\text {app, calu-3 }}$ was then corrected by regional membrane thickness scalar (RT) through thickness, $h_{\text {mem }}$, of the epithelial compartments of BB region and other regions of the respiratory tract (Eq. 41). For the purpose of making the model more general, we used the linear regression model (Eq. 42, $R^{2}=0.93$) for $P_{a p p, ~ c a l u-3 ~}$ developed by Brillault and colleagues (Brillault et al., 2010). This model (Eq. 42) is based on in vitro $P_{\text {app, calu-3 }}$ of fluoroquinolones compounds in the presence of a P-glycoprotein (P-gp) inhibitor such as valspodar (PSC-833) and the partition coefficients between octanol and a pH 7.4 buffered solution (logD).

$$
\begin{align*}
& \mathrm{PS}_{\mathrm{n}}=\mathrm{P}_{\mathrm{app}, \mathrm{n}} \cdot \mathrm{SA}_{\mathrm{n}} \tag{39}\\
& \mathrm{P}_{\mathrm{app}, \mathrm{n}}=\mathrm{RT}_{\mathrm{n}} \cdot \mathrm{P}_{\mathrm{app}, \mathrm{calu}-3} \tag{40}\\
& \mathrm{RT}_{\mathrm{n}}=\frac{\mathrm{h}_{\mathrm{mem}, \mathrm{BB}}}{\mathrm{~h}_{\mathrm{mem}, \mathrm{n}}} \tag{41}\\
& \mathrm{P}_{\mathrm{app}, \text { calu-3 }}\left(10^{-6} \mathrm{~cm} / \mathrm{s}\right)=6.1 \cdot \operatorname{logD}+7.5 \tag{42}
\end{align*}
$$

Epithelial or Intracellular Compartment. The mass balance in the epithelial compartment can be described using the following differential Eq. 43.

$$
\begin{align*}
\frac{d C_{E, n}}{d t}= & \frac{1}{V_{E, n}} \cdot\left[P S_{n} \cdot\left(C u_{d i s, n} \cdot f u_{F, n}-C u_{E, n} \cdot f u_{E, n}\right)+C L_{i n f, F-E} \cdot C u_{d i s, n}-C L_{e f f, E-F} \cdot C u_{E, n}-P S_{n} \cdot\right. \\
& \left(C u_{E, n} \cdot f u_{E, n}-C u_{S, n} \cdot f u_{S, n}\right)+C L_{i n f f, S-E} \cdot C u_{S, n}-C L_{e f f, E-S} \cdot C u_{E, n}-C L_{i n t, m e t, n} \\
& \left.C u_{E, n}-\left(k_{o n, n} \cdot C u_{E, n} \cdot F A-k_{o f f, n} \cdot C_{c o n j, E, n}\right) \cdot V_{E, n}\right] \tag{43}
\end{align*}
$$

where V, Cu, and Q_{B} denote the volume, unbound drug concentration and blood flow of the tissue, respectively. PS and fui are permeability surface area product and fraction of unionized drug, respectively. $\mathrm{CL}_{\text {int,met }}$ is intrinsic clearance of drug mediated by metabolism. $k_{\text {on }}$ and $k_{\text {off }}$ are the second order association and first order dissociation rate constants for tissue retention, respectively. Subscript E, S and n denote epithelial compartment, subepithelial compartment and region of the respiratory compartment, respectively. $\mathrm{CL}_{\text {inf,F-E, }}$, active influx transporter-mediated drug clearance from ELF to epithelial direction; CLeffe EF , active efflux transporter-mediated drug clearance from epithelial to ELF direction; CLinf, S E, active influx transporter-mediated drug clearance from subepithelial to epithelial direction; CLeff,E-s, active efflux transporter-mediated drug clearance from epithelial to subepithelial direction; FA, fatty acid concentration.

Subepithelial or Interstitial Compartment. The mass balance in subepithelial compartment can be described using the following differential Eq. 44.

$$
\begin{align*}
\frac{d C_{S, n}}{d t}= & \frac{1}{V_{S, n}} \cdot\left[P S_{n} \cdot\left(C u_{E, n} \cdot f u_{E, n}-C u_{S, n} \cdot f u_{S, n}\right)-P S_{n} \cdot\left(C u_{S, n} \cdot f u i_{S, n}-C u_{B, n} \cdot f u i_{B, n}\right)-\right. \\
& \left.C L_{i n f, E-S} \cdot C u_{S, n}+C L_{e f f, S-E} \cdot C u_{E, n}+Q_{L, n} \cdot C u_{S, n}\right] \tag{44}
\end{align*}
$$

where $\mathrm{V}, \mathrm{Cu}, \mathrm{Q}_{\mathrm{B}}$ and Q_{L} denote the volume, unbound drug concentration, blood flow and lymph flow of the tissue, respectively. PS and fui are permeability surface area product and fraction of unionized drug, respectively. Subscript E, S and n denote epithelial compartment, subepithelial compartment and region of the respiratory compartment, respectively; $\mathrm{CL}_{\mathrm{inf}, \mathrm{E}-\mathrm{S} \text {, }}$ active influx transporter-mediated drug clearance from epithelial to subepithelial direction; CLeff,S-E, active efflux transporter-mediated drug clearance from subepithelial to epithelial direction.

Blood or Vascular Compartment. The mass balance in the blood compartment of ET2, BB and bb regions can be described using the following differential Eq. 45.
$\frac{d C_{B, n}}{d t}=\frac{1}{V_{B, n}} \cdot\left[P S_{n} \cdot\left(C_{S, n} \cdot f u_{S, n}-C u_{B, n} \cdot f u_{B, n}\right)+Q_{B, n} \cdot C_{a b, n}-\left(Q_{B, n}-Q_{L, n}\right) \cdot C_{B, n}\right]$
The mass balance in the blood compartment of AL region can be described using the following differential Eq. 46.

$$
\begin{align*}
\frac{d C_{B, A L}}{\mathrm{dt}}= & \frac{1}{\mathrm{~V}_{\mathrm{B}, \mathrm{AL}}} \cdot\left[\mathrm{PS}_{\mathrm{AL}} \cdot\left(\mathrm{Cu}_{\mathrm{S}, \mathrm{AL}} \cdot \mathrm{fui}_{\mathrm{S}, \mathrm{AL}}-\mathrm{Cu}_{\mathrm{B}, \mathrm{AL}} \cdot \mathrm{fui}_{\mathrm{B}, \mathrm{AL}}\right)+\mathrm{Q}_{\mathrm{B}, A L} \cdot \mathrm{C}_{\mathrm{vb}}-\left(\mathrm{Q}_{\mathrm{B}, \mathrm{AL}}-\mathrm{Q}_{\mathrm{L}, \mathrm{AL}}\right) \cdot\right. \\
& \left.C_{B, A L}\right] \tag{46}
\end{align*}
$$

where $\mathrm{V}, \mathrm{Cu}, \mathrm{Q}_{\mathrm{B}}$ and Q_{L} denote the volume, unbound drug concentration, blood flow and lymph flow of the tissue, respectively. PS and fui are permeability surface area product and fraction of unionized drug, respectively. Subscript S and B denote subepithelial compartment and blood compartment, respectively.

Lymph node compartment (LN). The mass balance in the lymph node compartment of AL region can be described using the following differential Eq. 47.

$$
\begin{equation*}
\frac{d C_{L N}}{d t}=\frac{1}{V_{L N}} \cdot\left[Q_{L, E T 2} \cdot C_{S, E T 2}+Q_{L, B B} \cdot C_{S, B B}+Q_{L, b b} \cdot C_{S, b b}+Q_{L, A L} \cdot C_{S, A L}-Q_{L, L N} \cdot C_{L N}\right] \tag{47}
\end{equation*}
$$

where V, C and $\mathrm{Q}_{\llcorner }$denote the volume, concentration and lymph flow of the tissue, respectively. $\mathrm{LN}, \mathrm{ET2}, \mathrm{BB}, \mathrm{bb}, \mathrm{AL}, \mathrm{S}$ and B denote the lymph node, extrathoracic (oral passage), bronchial, bronchiolar, alveolar, subepithelial and blood, respectively.

Whole-body PBPK model. The mass balance equations for the whole-body PBPK model are shown below (Eqs. 48-54).

Arterial blood compartment (ab).

$$
\begin{align*}
& \frac{d C_{a b}}{d t}=\frac{1}{V_{a b}} \cdot\left[\left(Q_{B, A L}-Q_{L, A L}\right) \cdot C_{B, A L}-Q_{B, E T 2} \cdot C_{a b}-Q_{B, B B} \cdot C_{a b}-Q_{B, b b} \cdot C_{a b}-Q_{B, a d i p o s e} \cdot C_{a b}-\right. \\
& Q_{B, \text { bone }} \cdot C_{a b}-Q_{B, \text { brain }} \cdot C_{a b}-Q_{B, \text { heart }} \cdot C_{a b}-Q_{B, \text { kidney }} \cdot C_{a b}-Q_{B, \text { muscle }} \cdot C_{a b}- \\
& Q_{B, \text { skin }} \cdot C_{a b}-\left(Q_{B, \text { liver }}-Q_{B, \text { gut }}-Q_{B, \text { spleen }}-Q_{B, \text { pancreas }}\right) \cdot C_{a b}-Q_{B, \text { gut }} \cdot C_{a b}- \\
&\left.Q_{B, \text { spleen }} \cdot C_{a b}-Q_{B, \text { pancreas }} \cdot C_{a b}\right] \tag{48}
\end{align*}
$$

where $\mathrm{V}, \mathrm{C}, \mathrm{Q}_{\mathrm{B}}$ and $\mathrm{Q}_{\llcorner }$denote the volume, concentration, blood flow and lymph flow of the tissue, respectively. ab, ET2, BB, bb, and AL denote the arterial blood, extrathoracic (oral passage), bronchial, bronchiolar, and alveolar, respectively.

Venous blood compartment (vb).

$$
\begin{align*}
\frac{d C_{v b}}{d t}=\frac{1}{V_{v b}} \cdot[(& \left.Q_{B, E T}-Q_{L, E T}\right) \cdot C_{B, E T}+\left(Q_{B B}-Q_{L, B B}\right) \cdot C_{B, B B}+\left(Q_{b b}-Q_{L, b b}\right) \cdot C_{B, b b}-Q_{B, A L} \cdot \\
& C_{\text {vb }}+Q_{L, L N} \cdot C_{L N}+Q_{B, \text { adipose }} \cdot \frac{C_{\text {adipose }}}{K p_{\text {adipose }} / B P}+Q_{B, \text { bone }} \cdot \frac{C_{\text {bone }}}{K p_{\text {bone }} / B P}+Q_{B, \text { brain }} . \\
& \frac{C_{\text {brain }}}{K p_{b r a i n} / B P}+Q_{B, \text { heart }} \cdot \frac{C_{\text {heart }}}{K p_{\text {heart }} / B P}+Q_{B, \text { kidney }} \cdot \frac{C_{\text {kidney }}}{K p_{\text {kidney }} / B P}+Q_{B, \text { muscle }} \cdot \\
& \frac{C_{\text {muscle }}}{K p_{\text {muscle }} / B P}+Q_{B, \text { skin }} \cdot \frac{C_{\text {skin }}}{K p_{\text {skin }} / B P}+Q_{B, \text { liver }} \cdot \frac{C_{\text {liver }}}{K p_{\text {liver } / B P}}-C L_{\text {renal }} \cdot f u_{B} \cdot C_{v b}+ \\
& \left.Q_{B, \text { forearm }} \cdot C_{\text {forearm }}\right] \tag{49}
\end{align*}
$$

where $\mathrm{V}, \mathrm{C}, \mathrm{Q}_{\mathrm{B}}$ and Q_{L} denote the volume, concentration, blood flow and lymph flow of the tissue, respectively. C_{vb} denotes the venous blood concentration, Kp denotes the tissue-toplasma partition coefficient of the tissue, and fu denotes the fraction unbound in blood. ET2, BB, bb, and AL denote the extrathoracic (oral passage), bronchial, bronchiolar, and alveolar, respectively.

Non-eliminating tissue.

$$
\begin{equation*}
\frac{\mathrm{dC}_{\text {tissue }}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}_{\text {tissue }}} \cdot\left[\mathrm{Q}_{\mathrm{B}, \text { tissue }} \cdot\left(\mathrm{C}_{\mathrm{ab}}-\frac{\mathrm{C}_{\text {tissue }}}{\mathrm{Kp}_{\text {tissue }} / \mathrm{BP}}\right)\right] \tag{50}
\end{equation*}
$$

where $V_{\text {tissue }}, C_{\text {tissue }}$, and $Q_{\text {B, tissue }}$ denote the volume, concentration, and blood flow of the tissue, respectively. $\mathrm{C}_{\mathrm{ab}}, \mathrm{Kp}_{\text {tissue }}$, and BP denote the arterial blood concentration, tissue-toplasma partition coefficient, and blood-to-plasma concentration ratio, respectively.

Eliminating tissue (liver).

$$
\begin{align*}
& \frac{\mathrm{dC}_{\text {liver }, \mathrm{B}}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}_{\text {liver }}} \cdot\left[\left(Q_{B, \text { liver }}-Q_{B, \text { gut }}-Q_{B, \text { spleen }}-Q_{B, \text { pancreas }}\right) \cdot C_{a b}+Q_{B, \text { gut }} \cdot \frac{C_{\text {gut }}}{K_{\text {gut }} / B P}+Q_{\text {spleen }} .\right. \\
& \frac{\mathrm{C}_{\text {spleen }}}{\mathrm{Kp}_{\text {spleen }} / \mathrm{BP}}+\mathrm{Q}_{\mathrm{B}, \text { pancreas }} \cdot \frac{\mathrm{C}_{\text {pancreas }}}{\mathrm{Kp}_{\text {pancreas }} / \mathrm{BP}}-\mathrm{Q}_{\mathrm{B}, \text { liver }} \cdot \mathrm{C}_{\text {liver, } \mathrm{B}}-\mathrm{PS} \mathrm{~S}_{\mathrm{B}-\mathrm{IS} \text { or IS-B }} . \\
& \left.\left(\mathrm{Cu}_{\text {liver,B }} \cdot \mathrm{fui}_{\text {liver,B }}-\mathrm{Cu}_{\text {liver,IS }} \cdot \mathrm{fu}_{\mathrm{liver}, \mathrm{IS}}\right)\right] \tag{51}
\end{align*}
$$

$$
\begin{align*}
& \frac{\mathrm{dC}_{\text {liver,IS }}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}_{\text {liver,IS }}} \cdot\left[\mathrm{PS}_{\mathrm{B}-\mathrm{IS} \text { or IS-B }} \cdot\left(\mathrm{Cu}_{\text {liver,B }} \cdot \text { fui }_{\text {liver,B }}-\mathrm{Cu}_{\text {liver,IS }} \cdot \mathrm{fui}_{\text {liver,IS }}\right)+\mathrm{PS}_{\text {IS-IC or IC-IS }} \cdot\right. \\
& \left(\mathrm{Cu}_{\text {liver,IC }} \cdot \text { fuil }_{\text {liver,IC }}-\mathrm{Cu}_{\text {liver,IS }} \cdot \text { fui }_{\text {liver,IS }}\right)-\mathrm{CL}_{\text {inf,IS-IC }} \cdot \mathrm{Cu}_{\text {liver,IS }}+ \\
& \left.\mathrm{CL}_{\text {eff,IC-IS }} \cdot \mathrm{Cu}_{\text {liver,IC }}\right] \tag{52}
\end{align*}
$$

$$
\begin{align*}
\frac{\mathrm{dC}_{\text {liver,IC }}}{\mathrm{dt}}= & \frac{1}{\mathrm{~V}_{\text {liver,IC }}} \cdot\left[\mathrm{PS}_{\text {IS-IC or IC-IS }} \cdot\left(\mathrm{Cu}_{\text {liver,IS }} \cdot \mathrm{fui}_{\text {liver,IS }}-\mathrm{Cu}_{\text {liver,IC }} \cdot f \mathrm{fui}_{\text {liver,IC }}\right)+C \mathrm{C}_{\text {inf,IS-IC }} \cdot\right. \\
& \left.\mathrm{Cu}_{\text {liver,IS }}-C L_{\text {eff,IC-IS }} \cdot \mathrm{Cu}_{\text {liver,IC }}-\mathrm{CL}_{\text {int,H }} \cdot \mathrm{Cu}_{\text {liver,IC }}\right] \tag{53}
\end{align*}
$$

Subscript B, IS and IC denote blood, interstitial and intracellular compartments, respectively. where V, Cu and Q_{B} denote the volume, unbound drug concentration and blood flow of the tissue, respectively. PS and fui are permeability surface area product and fraction of unionized drug, respectively. $C L_{\text {inf }}$ and $C L_{\text {eff }}$ are active influx and efflux transporter-mediated drug clearance, respectively. $\mathrm{C}_{\mathrm{ab}}, \mathrm{Kp}_{\text {tissue }}$, and BP denote the arterial blood concentration, tissue-to-plasma partition coefficient, and blood-to-plasma concentration ratio, respectively. $\mathrm{CL}_{\text {int }, \mathrm{H}}$, denotes the intrinsic hepatic drug metabolic clearance.

Forearm (peripheral sampling) compartment.

$$
\begin{align*}
\frac{\mathrm{dC}_{\text {forearm }}}{\mathrm{dt}}= & \frac{1}{\mathrm{~V}_{\text {forearm }}} \cdot\left[Q_{\mathrm{B}, \text { anastomoses }} \cdot C_{a b}+Q_{B, \text { forearm muscle }} \cdot \frac{C_{\text {forearm muscle }}}{K p_{\text {muscle }} / \mathrm{BP}}+Q_{B, \text { forearm }}\right. \text { skin }
\end{align*} .
$$

where V, C, and Q_{B} denote the volume, concentration, and blood flow of the tissue, respectively. $\mathrm{C}_{\mathrm{ab}}, \mathrm{Kp}_{\text {tissue }}$, and BP denote the arterial blood concentration, tissue-to-plasma partition coefficient, and blood-to-plasma concentration ratio, respectively.

In vitro to in vivo extrapolation (IVIVE). Drug metabolizing enzyme or transporter (DMET) mediated in vivo intrinsic clearance in reference organ such as the liver (CLint,ref organ ; in L/h unit) can be determined by in vitro intrinsic clearance (CLint,in vitro; in $\mu \mathrm{L} / \mathrm{min} / \mathrm{mg}$ subcellular fraction protein or $\mu \mathrm{L} / \mathrm{min} /$ number of cells) or by the vitro unbound Michaelis-Menten kinetics for the enzyme (maximum enzymatic reaction rate $\left(\mathrm{V}_{\mathrm{max}}\right)$) substrate affinity $\left(\mathrm{K}_{\mathrm{m}}\right)$) or transporter (maximum transport rate $\left.\left(\mathrm{J}_{\max }\right) / \mathrm{K}_{\mathrm{m}}\right)$) through IVIVE (Eqs. 55-58).

$$
\begin{align*}
& C L_{\text {int,ref organ }}=C L_{\text {int,in vitro }} \times P S F \times \text { organ weight } \times 60 \times 10^{-6} \tag{55}\\
& C L_{i n t, R T}=C L_{i n t, \text { ref organ }} \times R A_{R T} \tag{56}\\
& R A_{R T}=\frac{A_{\text {protein, } R T}}{A_{\text {protein,ref organ }}} \tag{57}\\
& A_{\text {protein,organ }}=A_{\text {protein,subcellular fraction }} \times P S F \times \text { Organ weight } \times 10^{-6} \tag{58}
\end{align*}
$$

where PSF is the physiological scaling factor (yield of the subcellular fraction from whole organ (in mg subcellular fraction protein/g organ or number of cells/g of organ)); organ weight is the subject's organ weight (in g); ref organ, RT and RA denote the reference organ (e.g. liver), respiratory tract regions (ET2, BB, bb and $A L$) and relative protein abundance, respectively; Aprotein,organ is the protein abundance of DMET per whole organ (in $\mu \mathrm{mol}$ unit); Aprotein,subcellular is the protein abundance of DMET per subcellular fraction of organ (in pmol/mg subcellular fraction protein unit); 60×10^{-6} and 10^{-6} are unit conversion factors to convert the CLint,ref organ to L / h and $\mathrm{A}_{\text {protein,organ }}$ to $\mu \mathrm{mol}$, respectively.

Supplemental Tables

Table S1. Algebraic expressions for aerodynamic filtration efficiency in the ICRP 66 deposition model (ICRP, 1995).

Aerodynamic filtration efficiency ($\eta_{\mathrm{ae}}=1-\exp \left(-\mathrm{aR}{ }^{\mathrm{P}}\right)$)					
Phase	Filter (j)	Region	a	R	P
Inhalation	1	$\mathrm{ET}_{2}{ }^{\text {¢ }}$	$1.1 \cdot 10^{-4}$	$\mathrm{dae}^{2} \cdot\left(\mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{3}\right)^{0.6} \cdot\left(\mathrm{~V} \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{2}\right)^{-0.2}$	1.4
	2	BB	$4.08 \cdot 10^{-6}$	$\mathrm{dae}^{2} \cdot \mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}^{2.3}}$	1.152
	3	bb	0.1147	$\left(0.056+t_{r, b b^{1.5}}^{1.5} \cdot d_{\text {ae }}{ }^{\text {tr,bb^0.0.25 }}\right.$	1.173
	4	AL	$0.146 \cdot \mathrm{SF}_{\mathrm{AL}} 0.98$	$\mathrm{dae}^{2} \cdot \mathrm{tr}, \mathrm{AL}$	0.6495
Exhalation	5	bb	0.1147		1.173
	6	BB	$2.04 \cdot 10^{-6}$	$\mathrm{dae}^{2} \cdot \mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{2.3}$	1.152
	7	$\mathrm{ET}_{2}{ }^{\text {s }}$	$1.1 \cdot 10^{-4}$	$\mathrm{dae}^{2} \cdot\left(\mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{3}\right)^{0.6} \cdot\left(\mathrm{~V} \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{2}\right)^{-0.2}$	1.4

a and P are constants and R is a parameter, which is drug- and system-dependent. a, P and R were obtained from ICRP 66 deposition model (ICRP, 1995). ET2, extrathoracic (oral passage); BB , bronchial; bb, bronchiolar; AL , alveolar; $\mathrm{SF}_{\mathrm{BB}}$, scale factor for trachea; $\mathrm{SF}_{\mathrm{bb}}$, scale factor for bronchiolar; $\mathrm{SF}_{\mathrm{AL}}$, scale factor for alveolar; V , tidal or inhalation volume; Q , volumetric or inhalation flow rate; $t_{r, b b}$, residence time for bronchiolar; $t_{r, A L}$, residence time for alveolar; d_{a}, aerodynamic particle diameter.
${ }^{\$}$ Aerodynamic filtration efficiency for ET2 region was calculated as $\eta_{a e}=1-1 /\left(-a R^{P}+1\right)$
Table S2. Algebraic expressions for thermodynamic filtration efficiency in the ICRP 66 deposition model (ICRP, 1995).

Thermodynamic regional deposition efficiency ($\eta_{\text {th }}=1-\exp \left(-a R^{\text {P }}\right)$)					
Phase	Filter (j)	Region	a	R	P
Inhalation	1	ET_{2}	9	$\mathrm{D} \cdot\left(\mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}}\right)^{-0.25}$	0.5
	2	BB	$22.02 \cdot \mathrm{SF}_{\mathrm{BB}}{ }^{1.24} \cdot \Psi_{\text {th }}$	$D \cdot t_{r, B B}$	0.6391
	3	bb	$-76.8+167 \cdot \mathrm{SF}_{\mathrm{bb}}{ }^{0.65}$	$D \cdot t_{r, b b}$	0.5676
	4	AL	$170+103 \cdot \mathrm{SF}_{\mathrm{AL}}{ }^{2.13}$	$D \cdot \mathrm{t}_{\mathrm{r}, \mathrm{AL}}$	0.6101
Exhalation	5	bb	$-76.8+167 \cdot \mathrm{SF}_{\mathrm{bb}}{ }^{0.65}$	$D \cdot t_{\text {r,bb }}$	0.5676
	6	BB	$22.02 \times \mathrm{SF}_{\mathrm{BB}}{ }^{1.24} \cdot \Psi_{\text {th }}$	$D \cdot t_{\text {r,BB }}$	0.6391
	7	$E T_{2}$	9	$\mathrm{D} \cdot\left(\mathrm{Q} \cdot \mathrm{SF}_{\mathrm{BB}}\right)^{-0.25}$	0.5

where a and P are constants and R is a parameter, which is drug- and system-dependent. a, P and R were obtained from ICRP 66 deposition model (ICRP, 1995). ET2, extrathoracic (oral passage); BB , bronchial; bb, bronchiolar; AL, alveolar; $\mathrm{SF}_{\mathrm{BB}}$, scale factor for trachea; $\mathrm{SF}_{\mathrm{bb}}$, scale factor for bronchiolar; $\mathrm{SF}_{\mathrm{AL}}$, scale factor for alveolar; Q , volumetric or inhalation
flow rate; $t_{r, B B}$, residence time for bronchial; $t_{r, b b}$, residence time for bronchiolar; $t_{r, A L}$, residence time for alveolar; D, diffusion coefficient; d_{th}, thermodynamic particle diameter. ${ }^{\#} \Psi_{\mathrm{th}}$ is an empirical correction factor to allow for enhancement of thermodynamic deposition caused by nonlaminar bronchial airflow and calculated $\Psi_{\text {th }}=1+100 \exp \left[-\left[\log _{10}\left(100+10 /\left(\mathrm{d}_{\text {th }} 0.9\right)\right)\right]^{2}\right]$

Table S3. Algebraic expressions for a volumetric fraction in the ICRP 66 deposition model (ICRP, 1995).

Phase	Filter (j)	Region	Volumetric fraction $\left(\phi_{\mathbf{j}}\right)$
Inhalation	1	ET_{2}	1
	2	BB	$1-\left(\mathrm{V}_{\mathrm{D}, \mathrm{ET} 2} / \mathrm{V}\right)$
	3	bb	$1-\left(\left(\mathrm{V}_{\mathrm{D}, \mathrm{ET} 2}+\mathrm{V}_{\mathrm{D}, \mathrm{BB}, \mathrm{p}}\right) / \mathrm{V}\right)$
	4	AL	$1-\left(\left(\mathrm{V}_{\mathrm{D}, \mathrm{ET} 2}+\mathrm{V}_{\mathrm{D}, \mathrm{BB}, \mathrm{p}}+\mathrm{V}_{\mathrm{D}, \mathrm{bb}, \mathrm{p}}\right) / \mathrm{V}\right)$
Exhalation	5	bb	$1-\left(\left(\mathrm{V}_{\mathrm{D}, \mathrm{ET} 2}+\mathrm{V}_{\mathrm{D}, \mathrm{BB}, \mathrm{p}}\right) / \mathrm{V}\right)$
	6	BB	$1-\left(\mathrm{V}_{\mathrm{D}, \mathrm{ET} 2} / \mathrm{V}\right)$
	7	ET_{2}	1
	7	1	

FRC, functional residual capacity; V_{D}, dead space volume; ET2, extrathoracic (oral passage); BB , bronchial; bb, bronchiolar; AL, alveolar; V , tidal or inhalation volume. $\mathrm{V}_{\mathrm{D}, \mathrm{BB}, \mathrm{p}}$ and $\mathrm{V}_{\mathrm{D}, \mathrm{bb}, \mathrm{p}}$ were calculated as $\mathrm{V}_{\mathrm{D}, \mathrm{BB}, \mathrm{p}}=\mathrm{V}_{\mathrm{D}, \mathrm{BB}} \times(1+(\mathrm{V} / \mathrm{FRC}))$ and $\mathrm{V}_{\mathrm{D}, \mathrm{bb}, \mathrm{p}}=\mathrm{V}_{\mathrm{D}, \mathrm{bb}} \times(1+$ (V/FRC)), respctively.

Table S4. Respiratory tissue-specific input parameters for the OI-PBPK model (ICRP, 1995;
Patton and Byron, 2007).

	Extra-thoracic (ET2)	Bronchial $(\mathbf{B B})$	Bronchiolar $\mathbf{(b b)}$	Alveolar (AL)
Surface area (SA, cm $\left.{ }^{2}\right)$	450	290	2400	1475000
ELF thickness (um)	15	11	6	0.07
Epithelial thickness (cm)	50	55	15	0.361
Subepithelial thickness (cm)	15	500	20	1.86
ELF volume (mL)	0.68	0.32	1.44	10.33
Epithelial volume (mL)	2.25	1.60	3.60	276
Subepithelial volume (mL)	0.68	14.50	4.80	274
Blood volume (mL)	17.73	11.43	94.57	556.5
Tissue volume (mL)	2.93	16.1	8.4	550
Density $(\mathrm{g} / \mathrm{mL})$	1	1	1	1
Blood flow rate $(\mathrm{L} / \mathrm{h})$	1.63	1.05	8.70	390.00
Respiratory transit time (h)	0.24	2.4	12	1200
Respiratory transit rate $(1 / \mathrm{h})$	4.17	0.417	0.083	0.00083
Lymph flow $(\mathrm{L} / \mathrm{h})$	0.002	0.0001	0.009	0.42
pH of ELF	6.6	6.6	6.6	6.6
pH of epithelial	6.69	6.69	6.69	6.69
pH of subepithelial	7.35	7.35	7.35	7.35
pH of blood\#	7.4	7.4	7.4	7.4

1. Volume of ELF, epithelial and subepithelial compartments of each region of the respiratory tract were calculated multiplying the SA of the compartment by the thickness of the compartment.
2. Volume of blood compartment of AL region was calculated by multiplying the total blood volume (5.3 L for adult male, ICRP Valentin) by the \% total blood volume of pulmonary tissue (10.5% for adult male, ICRP Valentin).
3. Volume of blood compartment of BB and bb regions were calculated by multiplying the total blood volume (5.3 L for adult male, ICRP Valentin) by the \% total blood volume of bronchial tissue (2% for adult male, ICRP Valentin) and $S_{B B}$ or bb $/ \mathrm{SA}_{B B+b b}$.
4. Blood flow of BB and bb regions were calculated by multiplying cardiac output ($390 \mathrm{~L} / \mathrm{h}$ for adult male, ICRP Valentin) by the \% cardiac output of bronchial tissue (2.5% for adult male, ICRP Valentin) and $\mathrm{SA}_{\mathrm{BB}}$ or bb $/ \mathrm{SA}_{\mathrm{BB}+\mathrm{bb}}$.
5. Blood flow or volume of ET2 region were calculated by multiplying blood flow or volume of BB region by the $\mathrm{SA}_{\mathrm{ET} 2} / \mathrm{SA}_{\mathrm{BB}}$ due to unavailability of data and SA of ET 2 is comparable to that of BB region.
6. Lymph flow of each region was calculated by dividing plasma flow (multiplying blood flow of each reagion by 1 - hematocrit (0.46)) by 500 (Shah et al., 2012).
*(Gaohua et al., 2015)
\#(Burton, 2001)

Table S5. Summary of system-dependent parameters for the reference adult male (Valentin, 2002)*

	Organ Volume (L)	Blood flow (\% of CO)	Blood flow $(\mathbf{L} / \mathbf{h})$
Adipose	18.2	5	19.50
Bone	10.5	5	19.50
Brain	1.45	12	46.80
Gut*	1.21	15	58.50
Heart	0.33	4	15.60
Kidney	0.31	19	74.10
Liver	1.8	25.5	99.45
Hepatic artery		6.5	25.35
Muscle	29	17	68.25
Skin	3.3	5	19.50
Spleen	0.15	3	11.70
Pancreas	0.14	1	3.90
Lymph nodes	0.274^{\S}	1.7	6.63
Blood	5.3		

*Reference values for adult male: 35 years of age, 73 kg of body weight, 176 cm of height and $390 \mathrm{~L} / \mathrm{h}$ of cardiac output (CO). ** Gut combines oesophagus, stomach, small and large intestine volumes and flows; gut contents were not included in the gut volume.
\$(Shah et al., 2012)

Table S6. Summary of input parameters for the morphine OI-PBPK model.

Parameter	Value/method/model	Reference
Physicochemical and blood binding		
MW (g/mol)	285.34	(Emoto et al., 2017)
Log $\mathrm{P}_{\text {o:w }}$	0.77	(Emoto et al., 2017)
pKa1, pKa2	9.63, 7.93	(Emoto et al., 2017)
Compound type	Ampholyte	
B/P	1.08	(Emoto et al., 2017)
fu	0.62	(Emoto et al., 2017)
Distribution		
Model	Full PBPK	(Emoto et al., 2017)
Method	Rodgers et al Method 2	(Emoto et al., 2017)
Organ/tissue Kp Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen Pancreas Kp scalar	$\begin{aligned} & 1.079 \\ & 2.092 \\ & 1.517 \\ & 7.228 \\ & 7.737 \\ & 4.187 \\ & 12.417 \\ & 1.970 \\ & 6.597 \\ & 3.521 \\ & 7.273 \\ & 4.771 \\ & 1 \end{aligned}$	(Emoto et al., 2017)
Elimination		
CLL ${ }_{\text {R }}$ in L/h	8	(Emoto et al., 2017)
Organ/tissue Pathway: 6MG Enzyme $\mathrm{V}_{\text {max }}$ (pmol/min/mg protein) $\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})$ $\mathrm{fu}_{\text {mic }}$ $\mathrm{V}_{\text {max }}(\mu \mathrm{mol} / \mathrm{h})$ Pathway: 3MG	Liver UGT2B7 1917 115.8 1 6625.15	(Emoto et al., 2017)


```Enzyme \(\mathrm{V}_{\text {max }}\) (pmol/min/mg protein) \(\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})\) \(\mathrm{fu}_{\text {mic }}\) \(\mathrm{V}_{\text {max }}(\mu \mathrm{mol} / \mathrm{h})\)```	$\begin{aligned} & \hline \text { UGT2B7 } \\ & 9250 \\ & 115.8 \\ & 1 \\ & 31968 \end{aligned}$	
Transport		
Organ/Tissue   CLpD,in vitro ( $\mathrm{mL} / \mathrm{min} / 10^{6}$ cells)   CLpD,organ (L/h)   furc   fuis   Organ/Tissue   Transporter   Location   Function   $\mathrm{J}_{\text {max }}$ (pmol/min $/ 10^{6}$ cells)   $\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})$   fuinc   RAF/REF   $\mathrm{J}_{\text {max }}$ ( $\mu \mathrm{mol} / \mathrm{h}$ )   Liver: PSF   HPGL (hepatocellularity /g liver or $10^{6}$ cells/g liver)   Liver weight (g)	Liver 0.003 32.1 0.05 1 Liver SLC22A1 (OCT1) Sinusoidal Influx 29 3.4 1 5.1 1584.4 99 1800	(Emoto et al., 2017)   Eq. 35   Eq. 36   Eq. 55   (Barter et al., 2007)   Table S5
Liver: UGT2B7   AuGT2B7 (pmol/mg microsomal protein)   A ugT2B7 ( $\mu \mathrm{mol} /$ liver tissue)   Liver: OCT1   A ${ }_{\text {OCT1 }}$ (pmol/mg membrane protein)   A oct1 ( $\mu \mathrm{mol} /$ liver tissue)   Liver: PSF   MMPGL (mg microsomal protein/g liver)   MMePGL ( mg membrane protein/g liver)   Lung: UGT2B7   Augt2b7 $\left(\mathrm{pmol} / \mathrm{mg}\right.$ microsomal protein) ${ }^{1}$	75.2 4.3 4.45 0.30 32 37 0.15	(Ladumor et al. 2019) Eq. 58   Eq. 58   (Barter et al., 2007)   (Prasad et al., 2014)


$\mathrm{A}_{\text {ugt2b7 }}$ ( $\mu \mathrm{mol} / \mathrm{lung}$ tissue)	$\begin{aligned} & \text { BB:9E-6 } \\ & \text { bb: 5E-6 } \\ & \text { AL: } 3 \mathrm{E}-4 \end{aligned}$	Eq. 58
Lung: OCT1		
Аост1 $^{\text {( }} \mathrm{pmol} / \mathrm{mg}$ membrane protein) ${ }^{2}$	0.22	(Wang et al. 2015)
Aoct1 ( $\mu \mathrm{mol} / \mathrm{lung}$ tissue)	BB:1E-5	Eq. 58
	bb: 7E-6	
	AL: 5E-4	
Lung: PSF		
MMPGLu (mg microsomal protein/g lung)	3.8	(Pacifici et al., 1988)
MMePGLu (mg membrane protein/g lung) ${ }^{3}$	3.8	(Pacifici et al., 1988)

MW, molecular weight; Log $\mathrm{P}_{\mathrm{o}: \text { w, }} \mathrm{n}$-octanol/water partition coefficient; $\mathrm{pK}_{\mathrm{a}}$, acid dissociation constant; B/P, blood/plasma ratio; fu, fraction of unbound drug in the plasma; HSA, human serum albumin; $\mathrm{K}_{\mathrm{p}}$, tissue to plasma partition coefficient; $\mathrm{V}_{\text {max }}$, maximum enzymatic reaction rate; $J_{\text {max }}$, maximum transport rate; $\mathrm{K}_{\mathrm{m}}$, substrate affinity or Michaelis-Menten constant; fumic, fraction of unbound drug in the vitro microsomal incubation; fuinc, fraction of unbound drug in the vitro incubation; fuıc, fraction of unbound drug in the intracellular compartment; fuis, fraction of unbound drug in the interstitial compartment; CLPD, in vitro, in vitro passive diffusion clearance; $C_{\text {PD,organ }}$, in vivo whole organ passive diffusion clearance; $C_{R}$, renal clearance; RAF/REF, relative activity factor/relative expression factor; PSF, physiological scaling factor (yield of the subcellular fraction from whole organ (in mg subcellular fraction protein/g organ)); $A_{\text {DMET }}$ is the protein abundance of drug metabolizing enzymes and transporters (DMET); UGT, uridine 5'-diphospho-glucuronosyltransferase; OCT, organic cation transporter; MMPGL, mg microsomal protein per gram of human liver; MMePGL, mg total membrane protein per gram of human liver; MMPGLu, mg microsomal protein per gram of human lung; MMePGLu, mg total membrane protein per gram of human lung; HPGL, hepatocellularity per gram of human liver.

1. UGT2B7 protein abundance per subcellular fraction was calculated by multiplying the liver subcellular protein abundance by the ratio of lung (BB, bb, and AL) to liver tissue mRNA expression (Somers et al., 2007).
2. OCT1 protein abundance per subcellular fraction was calculated by multiplying the liver subcellular protein abundance by the ratio of lung (BB, bb, and AL) to liver tissue transporter plasma membrane expression (Ohtsuki et al., 2012; Sakamoto et al, 2013).
3. MMePGLu was assumed similar to the MMPGLu.

Table S7. Summary of input parameters for the nicotine OI-PBPK model.

Parameter	Value/method/model	
Physicochemical and blood binding		
MW (g/mol)	162.2	(Kovar et al., 2020)
Log Po:w	1.6	(Kovar et al., 2020)
pKa1, pKa2	$8.1,3.3$	(Kovar et al., 2020)
Compound type	Diprotic base	
B/P	1.03	(Kovar et al., 2020)
fu	0.951	(Kovar et al., 2020)
Distribution		


Model	Full PBPK	(Kovar et al., 2020)
Method	Rodger et al.	(Kovar et al., 2020)
Organ/tissue Kp   Adipose   Bone   Brain   Gut   Heart   Kidney   Liver   Lung   Muscle   Skin   Spleen   Pancreas   Kp scalar	0.74 1.27 1.89 2.90 2.24 4.15 3.96 3.25 3.05 $1.1^{*}$ 2.86 2.46 1	(Kovar et al., 2020)
Elimination		
Organ/tissue: Liver   Enzyme   $\mathrm{k}_{\text {cat }}(1 / \mathrm{min})$ (smokers)   $\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})$   $\mathrm{fu}_{\text {mic }}$   $\mathrm{V}_{\text {max }}(\mu \mathrm{mol} / \mathrm{h})$   Enzyme   $\mathrm{k}_{\text {cat }}(1 / \mathrm{min})$ (smokers)   $\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})$   fumic   $\mathrm{V}_{\text {max }}(\mu \mathrm{mol} / \mathrm{h})$   Unspecified hepatic CL ( $1 / \mathrm{min}$ )   Unspecified hepatic CL (L/min)	CYP2A6 10.5 29.4 1 979.8 CYP2B6 16 820 1 884.7 0.3 32.4	(Kovar et al., 2020)   Eq. 55
$\mathrm{CL}_{\mathrm{R}}$ in L/h	3.58	
Liver: CYP2A6   AcyP2A6 (pmol/mg microsomal protein)   AcyP2A6 ( $\mu \mathrm{mol} /$ liver tissue)   Liver: CYP2B6	$\begin{aligned} & 27 \\ & 1.56 \end{aligned}$	Eq. 58


$\mathrm{A}_{\text {CYP2B6 }}$ (pmol/mg microsomal protein)	16	
AcyP2B6 ( $\mu \mathrm{mol} /$ /iver tissue)	0.92	Eq. 58
Liver: PSF		
MMPGL (mg microsomal protein/g liver)	32	(Barter et al., 2007)
Liver weight (g)	1800	Table S5
Lung: CYP2A6		
$\mathrm{A}_{\text {CYP2AG }}\left(\mathrm{pmol} / \mathrm{mg}\right.$ microsomal protein) ${ }^{1}$	0.11	
Acyp2at $^{\text {( }}$ mol/liver tissue)	BB:7E-6	Eq. 58
	bb: 4E-6	
	AL: 2E-4	
Lung: CYP2B6		
A $_{\text {CYP2B6 }}$ (pmol/mg microsomal protein) ${ }^{1}$	0.16	
Acyp2B6 $^{\text {( }} \mu \mathrm{mol} / \mathrm{lung}$ tissue)	BB:1E-5	Eq. 58
	bb: 5E-6	
	AL: 3E-4	
Lung: PSF		
MMPGLu (mg microsomal protein/g lung)	3.8	(Pacifici et al., 1988)

MW, molecular weight; Log $\mathrm{P}_{\mathrm{o}: \mathrm{w}}, \mathrm{n}$-octanol/water partition coefficient; $\mathrm{pK}_{\mathrm{a}}$, acid dissociation constant; B/P, blood/plasma ratio; fu, fraction of unbound drug in the plasma; HSA, human serum albumin; $\mathrm{K}_{\mathrm{p}}$, tissue to plasma partition coefficient; $\mathrm{k}_{\text {cat }}$, catalytic activity; $\mathrm{V}_{\text {max }}$, maximum enzymatic reaction rate; $\mathrm{K}_{\mathrm{m}}$, Michaelis-Menten constant; fumic, fraction of unbound drug in the in vitro microsomal incubation; $C_{R}$, renal clearance; PSF, physiological scaling factor (yield of the subcellular fraction from whole organ (in mg subcellular fraction protein/g organ)); ADME is the protein abundance of drug metabolizing enzymes (DME); CYP, cytochromes P450; MMPGL, mg microsomal protein per gram of human liver; MMPGLu, mg microsomal protein per gram of human lung.
*Huang and Isoherranen, 2020.

1. CYP2A6 and CYP2B6 protein abundance per subcellular fraction were calculated by multiplying the liver subcellular protein abundance by the ratio of lung ( $B B, b b$, and $A L$ ) to liver tissue mRNA expression (Somers et al., 2007).

Table S8. Input and output for predicting the DE of morphine (administered via a nebulizer) in each region of the respiratory tract using the ICRP 66 deposition model.

Input for the ICRP 66 deposition model		
Parameters	Values	References
Drug parameters		
MMAD $(\mu \mathrm{m})$	2.95	(Schuster et al., 1997)
GSD (dimensionless)	0	
Type	Monodisperse	Default (ICRP, 1995)
$\rho(\mathrm{g} / \mathrm{mL})$	3	


X (dimensionless)   $\eta_{I}$ (dimensionless)   $\mathrm{f}_{\text {hyg }}$ (dimensionless)   $\mathrm{DF}_{\text {scalar }}$ (dimensionless)	$\begin{aligned} & \hline 1.5 \\ & 1 \\ & 3 \\ & 1 \end{aligned}$	Default (ICRP, 1995)   Model predicted   Assumed   Default	
Breathing parameters   Breathing route   Activity type   Q (mL/s)   $\mathrm{V}(\mathrm{mL})$   $\mathrm{U}(\mathrm{m} / \mathrm{s})$	$\begin{aligned} & \text { Mouth } \\ & \text { Sitting } \\ & 1208.33 \\ & 500 \\ & 1 \end{aligned}$	(Dershwitz et al., 2000)   (Dershwitz et al., 2000)   (Klumpp and Bertelli, 2017)	
Systems parameters   FRC (mL)   $V_{D, E T}(m L)$   $V_{D, B B}(m L)$   $V_{\mathrm{D}, \mathrm{bb}}(\mathrm{mL})$   $\mathrm{V}_{\mathrm{D}, \text { total }}(\mathrm{mL})$   $\mathrm{SF}_{\mathrm{BB}}$ (dimensionless)   $\mathrm{SF}_{\text {bb }}$ (dimensionless)   SFAL $_{\text {AL }}$ (dimensionless)	3301 50 49 47 146 1 1 1	Adult male (ICRP, 1995)   Adult male (ICRP, 1995)	
Output of the ICRP 66 deposition model			
Region	DE	DE with $\mathrm{f}_{\text {hyg }}$	In vivo DE
ET2   BB   bb   TB (BB+bb)   AL   Total   Exhaled   TB (central)/AL (peripheral)	$\begin{aligned} & 19.2 \\ & 16.0 \\ & 7.1 \\ & 23.2 \\ & 10.4 \\ & 52.8 \\ & 47.2 \\ & 2.22 \end{aligned}$	$\begin{aligned} & \hline 33.0 \\ & 19.5 \\ & 8.1 \\ & 27.6 \\ & 12.3 \\ & 72.9 \\ & 27.1 \\ & 2.24 \end{aligned}$	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \end{aligned}$ NA NA NA NA NA

MMAD, mass median aerodynamic diameter; GSD, geometric standard deviation of aerodynamic diameter; Q , volumetric or inhalation flow rate; V , tidal or inhalation volume; DE, deposition efficiency (\%); ET2, extrathoracic (oral passage); BB, bronchial; bb, bronchiolar; TB, tracheobronchial; AL, alveolar; fhyg, hygroscopic growth factor; $\mathrm{DF}_{\text {scalar, }}$ empirical scaling factor to scale regional deposition fraction; $\rho$, drug density; $x$, shape factor; $\eta_{\mathrm{I}}$, inhalibility.

Table S9. Input and output for predicting the DE of nicotine (administered via cigarette smoking) in each region of the respiratory tract using the ICRP 66 deposition model.

Input for the ICRP 66	ion model			
Parameters	Values	References		
Drug parameters   MMAD ( $\mu \mathrm{m}$ )   GSD (dimensionless)   Type   $\rho(\mathrm{g} / \mathrm{mL})$   X (dimensionless)   $\eta_{I}$ (dimensionless)   $\mathrm{f}_{\text {hyg }}$ (dimensionless)   DF ${ }_{\text {scalar }}$ (dimensionless)	0.4   0   Monodisperse   3   1.5   1   1.7   1.5	(Schro   Defaut   Defaut   Model   (Schro   Estima   depos	et al., 200   P, 1995)   P, 1995)   icted   et al., 200   o recover	
Breathing parameters   Breathing route   Activity type   Q (mL/s)   $V(\mathrm{~mL})$   U ( $\mathrm{m} / \mathrm{s}$ )	Mouth   Sitting   17.5   500   1	Calculated using puff volume ( 35 mL ) and puff time (2 s) (Kane et al., 2010)		
Systems parameters   FRC (mL)   $\mathrm{V}_{\mathrm{D}, \mathrm{ET}}(\mathrm{mL})$   $V_{D, B B}(m L)$   $V_{\mathrm{D}, \mathrm{bb}}(\mathrm{mL})$   $V_{\mathrm{D}, \text { total }}(\mathrm{mL})$   $\mathrm{SF}_{\mathrm{BB}}$ (dimensionless)   $\mathrm{SF}_{\mathrm{bb}}$ (dimensionless)   $\mathrm{SF}_{\mathrm{AL}}$ (dimensionless)	3301 50 49 47 146 1 1 1	Adult male (ICRP, 1995)   Adult male (ICRP, 1995)		
Output of the ICRP 66 deposition model				
Region	DE	DE   with   $\mathrm{f}_{\mathrm{hyg}}$	DE with $\mathrm{f}_{\text {hyg }}$ and $\mathrm{DF}_{\text {scalar }}$	In vivo DE
ET2   BB   bb   TB (BB + bb)   AL	$\begin{array}{\|l\|} \hline 1.0 \\ 2.0 \\ 31.3 \\ 33.3 \\ 21.4 \end{array}$	$\begin{aligned} & \hline 0.7 \\ & 1.3 \\ & 41.1 \\ & 42.4 \\ & 20.8 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 2.0 \\ & 61.7 \\ & 63.7 \\ & 31.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 42-63^{*} \\ 26-35^{*} \end{array}$


Total	55.7	64	96.0	$86-97^{\#}$
Exhaled	44.3	36	4.0	
TB (central)/AL   (peripheral)	1.55	2.04	2.04	

MMAD, mass median aerodynamic diameter; GSD, geometric standard deviation of aerodynamic diameter; Q , volumetric or inhalation flow rate; $\mathrm{V}_{\mathrm{T}}$, tidal or inhalation volume; ET2, extrathoracic (oral passage); BB, bronchial; bb, bronchiolar; TB, tracheobronchial; AL, alveolar; $f_{\text {hyg }}$, hygroscopic growth factor; $\mathrm{DF}_{\text {scalar, }}$, empirical scaling factor to scale regional deposition fraction; $\rho$, drug density; $x$, shape factor; $\eta_{1}$, inhalibility; DE, deposition efficiency in percent.
*(Broday and Robinson, 2003), \#(Hinds et al., 1983)
Table S10. Summary of input parameters for morphine and nicotine OI model.

Parameter	Morphine	Nicotine	Equations
Kpint-pls	0.74	0.93	Eq. 38
$\mathrm{Papp}, \mathrm{calu-3}^{\text {(cm/s) }}$	4.54E-06	8.62E-06	Eq. 42
$\mathrm{P}_{\text {scalar }}$	2.4	-	
Thickness factor ET2   BB   bb   AL	$\begin{aligned} & 1.10 \\ & 1.00 \\ & 3.67 \\ & 152.35 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.00 \\ & 3.67 \\ & 152.35 \end{aligned}$	Eq. 41
$\mathrm{P}_{\text {app, }}(\mathrm{cm} / \mathrm{s})$   ET2   BB   bb   AL	$\begin{gathered} 4.99 \mathrm{E}-06 \\ 4.54 \mathrm{E}-06 \\ 1.66 \mathrm{E}-05 \\ 6.92 \mathrm{E}-04 \end{gathered}$	$\begin{array}{\|l} 9.48 \mathrm{E}-06 \\ 8.62 \mathrm{E}-06 \\ 3.16 \mathrm{E}-05 \\ 1.31 \mathrm{E}-03 \end{array}$	Eq. 40
$\begin{aligned} & \text { Pmem or PS (L/h) } \\ & \text { ET2 } \\ & B B \\ & B b \\ & A L \end{aligned}$	$\begin{aligned} & 1.94 \mathrm{E}-02 \\ & 1.14 \mathrm{E}-02 \\ & 3.46 \mathrm{E}-01 \\ & 8.81 \mathrm{E}+03 \end{aligned}$	$\begin{aligned} & 1.54 \mathrm{E}-02 \\ & 9.00 \mathrm{E}-03 \\ & 2.73 \mathrm{E}-01 \\ & 6.97 \mathrm{E}+03 \end{aligned}$	Eq. 39
Regions: ET2, BB, bb and AL   fuif   fuie   fuis   fui ${ }_{B}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.21 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.96 \\ & 0.15 \\ & 0.17 \end{aligned}$	Eqs. 28-33
Regions: ET2, BB, bb and AL			Eqs. 34-37


fu $_{F}$	1	1	
fu $_{E}$	0.31	0.29	
fus	0.84	0.92	
fu			

Table S11. Comparison of simulated and observed PK parameters of morphine after IV infusion (IV Inf) or oral inhalation (OI; nebulizer)

Study ID	Dosing regimen	PK parameters	Simulated	Observed	Ratio
Dershwitz et al_2000	IV Inf   Dose: 8.8 mg   Duration: 0.16 h	$\mathrm{C}_{\text {max }}$	258.0	261.1	0.99
		$\mathrm{AUC}_{\text {last }}$	66.8	66.05	0.97
Dershwitz et al_2000 (without $f_{\text {hyg }}$ )	OI (dose: 2.2 mg , no. of dose: 8; interval: 1 min )	$\mathrm{C}_{\text {max }}$	76.5	120.3	0.64
		$\mathrm{AUC}_{\text {last }}$	37.8	71.8	0.53
Dershwitz et   al_2000   (with $f_{\text {hyg }}$ )	Ol (dose: 2.2 mg , no. of dose: 8; interval: 1 min )	$\mathrm{C}_{\text {max }}$	91.8	120.3	0.76
		$\mathrm{AUC}_{\text {last }}$	46.5	71.8	0.65
Dershwitz et al_2000 (with $\mathrm{f}_{\mathrm{hyg}}$ and $\mathrm{P}_{\text {scalar }}$ )	OI (dose: 2.2 mg , no. of dose: 8; interval: 1 min)	$\mathrm{C}_{\text {max }}$	139.4	120.3	1.16
		$\mathrm{AUC}_{\text {last }}$	65.3	71.8	0.91

$f_{\text {hyg }}$, hygroscopic growth factor; $P_{\text {scalar }}$, permeability scalar, used to scale the epithelial apical permeability; $\mathrm{C}_{\text {max }}$, maximum plasma concentration; $\mathrm{AUC}_{\text {last }}$, area under the plasma concentration-time curve from 0 to the last measured time point.
Table S12. Comparison of the simulated and observed PK parameters of nicotine after IV infusion.

Study ID	Dosing regimen	PK parameters	Simulated	Observed	Ratio
Gourlay and	$\begin{array}{\|l} \hline \text { IV } \operatorname{lnf} \\ (4.38 \mathrm{mg}) \\ \hline \end{array}$	$\mathrm{C}_{\text {max }}$	28.1	28.65	0.98
Benowitz_1997		$\mathrm{AUC}_{0 \text {-last }}$	17.5	19.44	0.90
Benowitz and Jacob 1994	$\begin{aligned} & \text { IV Inf } \\ & (60 \mu \mathrm{~g} / \mathrm{kg}) \end{aligned}$	$\mathrm{C}_{\text {max }}$	27.1	24.06	1.13
		$\mathrm{AUC}_{0 \text {-last }}$	50.6	51.24	0.99

Table S13. Comparison of the simulated and observed PK parameters of nicotine after oral inhalation (cigarette smoking) when $\mathrm{f}_{\text {hyg }}$ and $\mathrm{DF}_{\text {scalar }}$ were incorporated.

Study ID	Dosing regimen*	PK parameters	Simulated	Observed	Ratio
Gourlay and Benowitz 1997	Ol (Dose: 0.22 mg ; No. of puff: 10; Puff interval: 1 min )	$\mathrm{C}_{\text {max }}$	19.9	19.18	1.04
		$\mathrm{AUC}_{0 \text {-last }}$	11.1	10.36	1.07
Fearson et al. 2017	Ol (Dose: 0.13 mg ; No. of puff: 10; Puff interval: 0.0083 h )	$\mathrm{C}_{\text {max }}$	12.2	11.95	1.02
		$\mathrm{AUC}_{0 \text {-last }}$	2.4	2.12	1.14
Fearson et al. 2017	Ol (Dose: 0.07 mg ; No. of puff: 10; Puff interval: 0.0083 h )	$\mathrm{C}_{\text {max }}$	6.6	6.29	1.04
		$\mathrm{AUC}_{0 \text {-last }}$	3.6	3.59	1.01
St. Helen et al. 2019	Ol (Dose: 0.24 mg ; No. of puff: 10; Puff interval: 0.0083 h )	$\mathrm{C}_{\text {max }}$	22.5	20.53	1.09
		$\mathrm{AUC}_{0 \text {-last }}$	25.7	23.05	1.11

*doses adopted from Kovar et al., 2020.

## Supplemental Figures



Fig. S1. Sensitivity analyses to demonstrate the impact of change in inhalation flow (a1 and a2), inhalation volume ( V ; b1 and b2), and hygroscopic growth factor ( $\mathrm{f}_{\text {hyg }}$; c1 and c 2 )) on total and regional respiratory tract deposition, as well as pharmacokinetic (PK) endpoints of drug X. ET2, extrathoracic (oral passage); BB, bronchial; bb, bronchiolar; AL, alveolar; C, central region (BB+bb); P, peripheral region (AL).
a)





b)





Fig. S2. Sensitivity analyses to demonstrate the impact of epithelial membrane transport on systemic and local epithelial concentrations of drug $Y$ in various regions of the respiratory
tract (ET2, BB, bb and AL) in the presence of a) apical influx transport (clearance: $0 \mathrm{~L} / \mathrm{h}$, purple color; $0.0001 \mathrm{~L} / \mathrm{h}$, green color; $0.0005 \mathrm{~L} / \mathrm{h}$, sky blue color); or b) apical efflux transport (clearance: $0 \mathrm{~L} / \mathrm{h}$, purple color; $50 \mathrm{~L} / \mathrm{h}$, green color; $250 \mathrm{~L} / \mathrm{h}$, sky blue color). In all the cases, low apparent passive permeability ( $4.54 \mathrm{e}-8 \mathrm{~cm} / \mathrm{s}$ ) between ELF and epithelial was unchanged. Increased influx or efflux apical epithelial membrane transport results in either increased (influx) or reduced (efflux) drug $Y$ epithelial concentrations in all the regions of the respiratory tract except for the AL region (because of the lower drug's AL deposition in the ELF compartment and large AL surface area, resulting in high passive drug permeability).


Fig. S3. Sensitivity analyses to demonstrate the impact of apical subepithelial membrane (or basal epithelial membrane) transport on systemic and local subepithelial concentrations of
drug Y in various respiratory tract compartments ( $\mathrm{ET} 2, \mathrm{BB}, \mathrm{bb}$ and AL ) in the presence of a) influx transport (clearance: $0 \mathrm{~L} / \mathrm{h}$, purple color; $50 \mathrm{~L} / \mathrm{h}$, green color; $250 \mathrm{~L} / \mathrm{h}$, sky blue color); or b) efflux transport (clearance: $0 \mathrm{~L} / \mathrm{h}$, purple color; $10 \mathrm{~L} / \mathrm{h}$, green color; $50 \mathrm{~L} / \mathrm{h}$, sky blue color). In all the cases, low apparent passive permeability ( $4.54 \mathrm{e}-8 \mathrm{~cm} / \mathrm{s}$ ) between ELF and epithelial as well as epithelial and subepithelial was unchanged. Increased influx or efflux subepithelial membrane transporter activity results in increased (influx) or reduced (efflux) drug $Y$ epithelial concentrations in all the regions of the respiratory tract.


Fig. S4. Sensitivity analyses to demonstrate the impact of epithelial metabolism on systemic and local epithelial concentrations of drug Y in various lung compartments (ET2, BB, bb and AL ) in the presence of metabolism (clearance: $0 \mathrm{~L} / \mathrm{h}$, purple color; $10 \mathrm{~L} / \mathrm{h}$, green color; 50 $\mathrm{L} / \mathrm{h}$, sky blue color). Increased drug metabolic activity in the epithelial region, decreased systemic and regional exposure of drug Y .


Fig. S5. Sensitivity analyses to demonstrate the impact of tissue retention on systemic and local epithelial concentrations of drug $Y$ in various respiratory tract compartments (ET2, BB, bb and AL ) in the presence of tissue retention (dissociation rate constant: $101 / \mathrm{h}$, purple color; $501 / \mathrm{h}$, green color; 250 1/h, sky blue color; in all these cases, the association rate constant and fatty acid concentrations were fixed to $50 \mathrm{~L} / \mathrm{mg} / \mathrm{h}$ and $10.0 \mathrm{mg} / \mathrm{L})$. Increased dissociation rate constant in the epithelial region, increased systemic and regional $\mathrm{C}_{\text {max }}$ but did not change exposure to drug Y ( $\mathrm{AUC}_{\text {last }}$ ).


Fig. S6. Sensitivity analyses to demonstrate the impact of dissolution rate (z-factor) on systemic and local epithelial concentrations of drug X in various respiratory tract compartments (ET2, BB, bb and AL) in the presence of dissolution rate (z-factor 0.01 $\mathrm{L} / \mathrm{mg} / \mathrm{h}$, purple color; $0.001 \mathrm{~L} / \mathrm{mg} / \mathrm{h}$, green color; $0.0001 \mathrm{~L} / \mathrm{mg} / \mathrm{h}$, sky blue color). Decreased in the dissolution rate of drug $X$ resulted in a decrease in both local and systemic $\mathrm{C}_{\text {max }}$ as well as AUC $_{\text {last }}$ due to slow drug release in the airway fluid.

## References:

Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A (2008) Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metabolism and Disposition 36:2405-9.
Brillault J, De Castro WV, and Couet W (2010) Relative contributions of active mediated transport and passive diffusion of fluoroquinolones with various lipophilicities in a Calu-3 lung epithelial cell model. Antimicrobial Agents and Chemotherapy 54:543545.

Broday DM and Robinson $R$ (2003) Application of cloud dynamics to dosimetry of cigarette smoke particles in the lungs. Aerosol Science \& Technology 37:510-527.
Burton RF (2001) Differences in pH between interstitial fluid and arterial blood in waterbreathing and air-breathing vertebrates. Physiological and Biochemical Zoology 74:607-615.
Chen B, Namenyi J, Yeh H, Mauderly J, and Cuddihy R (1990) Physical characterization of cigarette smoke aerosol generated from a Walton smoke machine. Aerosol Science and Technology 12:364-375.
Dershwitz M, Walsh JL, Morishige RJ, Connors PM, Rubsamen RM, Shafer SL, and Rosow CE (2000) Pharmacokinetics and pharmacodynamics of inhaled versus intravenous morphine in healthy volunteers. The Journal of the American Society of Anesthesiologists 93:619-628.
Emoto C, Fukuda T, Johnson T, Neuhoff S, Sadhasivam S, and Vinks A (2017) Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT: pharmacometrics \& Systems Pharmacology 6:110-119.
Gaohua L, Wedagedera J, Small B, Almond L, Romero K, Hermann D, Hanna D, Jamei M, and Gardner I (2015) Development of a multicompartment permeability-limited lung pbpk model and its application in predicting pulmonary pharmacokinetics of antituberculosis drugs. CPT: Pharmacometrics \& Systems Pharmacology 4:605-613.
Hinds W, First M, Huber G, and Shea J (1983) A method for measuring respiratory deposition of cigarette smoke during smoking. American Industrial Hygiene Association Journal 44:113-118.
Hintz RJ and Johnson KC (1989) The effect of particle size distribution on dissolution rate and oral absorption. International Journal of Pharmaceutics 51:9-17.
ICRP (1995) ICRP publication 66: human respiratory tract model for radiological protection. Elsevier Health Sciences.
Kane DB, Asgharian B, Price OT, Rostami A, and Oldham MJ (2010) Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhalation Toxicology 22:199-209.
Klumpp J and Bertelli L (2017) KDEP: a resource for calculating particle deposition in the respiratory tract. Health Physics 113:110-121.
Kovar L, Selzer D, Britz H, Benowitz N, St. Helen G, Kohl Y, Bals R, and Lehr T (2020) Comprehensive parent-metabolite PBPK/PD modeling insights into nicotine replacement therapy strategies. Clinical Pharmacokinetics 59:1119-1134.
Ladumor MK, Thakur A, Sharma S, Rachapally A, Mishra S, Bobe P, Rao VK, Pammi P, Kangne H, Levi D, Balhara A, Ghandikota S, Joshi A, Nautiyal V, Prasad B, and Singh S (2019) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Scientific Reports 9:9709.
Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug metabolism and Disposition 40:83-92.

Pacifici GM, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro GB (1988) Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica 18:849-56.
Patton JS and Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery 6:67-74.
Po HN and Senozan N (2001) The Henderson-Hasselbalch equation: its history and limitations. Journal of Chemical Education 78:1499.
Prasad B, Evers R, Gupta A, Hop CE, Salphati L, Shukla S, Ambudkar SV, Unadkat JD (2014) Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metabolism and Disposition 42:78-88.
Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, and Terasaki T (2013) Quantitative expression of human drug transporter proteins in lung tissues: analysis of regional, gender, and interindividual differences by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical Sciences 102:3395-3406.
Schmitt W (2008). General approach for the calculation of tissue to plasma partition coefficients. Toxicology In Vitro 22:457-67.
Schroeter JD, Musante CJ, Hwang D, Burton R, Guilmette R, and Martonen TB (2001) Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Science \& Technology 34:137-143.
Schuster J, Rubsamen R, Lloyd P, and Lloyd J (1997) The AERx ${ }^{\text {TM }}$ aerosol delivery system. Pharmaceutical Research 14:354-357.
Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. Journal of Pharmacokinetics and Pharmacodynamics 39:67-86.
Somers GI, Lindsay N, Lowdon BM, Jones AE, Freathy C, Ho S, Woodrooffe AJ, Bayliss MK, Manchee GR (2007) A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. Drug metabolism and disposition. 35:1797-805.
Valentin $J$ (2002) Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Annals of the ICRP 32:1-277.

Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, Evers R, Unadkat JD (2015) Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metabolism and Disposition 43:367-74.

