Drug Metabolism and Disposition DMD-AR-2022-001096 **Supplementary data** Absorption, Metabolism, and Excretion of Taselisib (GDC-0032), a Potent β-sparing PI3K Inhibitor, in Rats, Dogs, and Humans Shuguang Ma^{*, 1}, Sungjoon Cho^{*}, Srikumar Sahasranaman², Weiping Zhao, Jodie Pang, Xiao Ding, Brian Dean, Bin Wang³, Jerry Y. Hsu⁴, Joseph Ware⁵, Laurent Salphati Department of Drug Metabolism and Pharmacokinetics (SM, SC, WZ, JP, XD, BD, LS) and Department of Clinical Pharmacology (SS, JH, JW), Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080; XenoBiotic Laboratories (BW), Inc., 107 Morgan Lane, Plainsboro, NJ 08536 * Contributed equally ¹Current affiliation: Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, CA ² Current affiliation: Clinical Pharmacology, BeiGene, San Mateo, CA ³ Current affiliation: Ingredient Research, The Coca-Cola Company, Atlanta, GA ⁴ Current affiliation: Clinical Development, ArriVent Biopharma, Burlingame, CA ⁵ Current affiliation: Clinical Pharmacology, Seagen, South San Francisco, CA 1 Corresponding author: Laurent Salphati, Pharm.D., Ph.D. Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080. Phone: 650-467-1796. Email: salphati.laurent@gene.com # Supplementary Table S1. Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans. | Analyte | Observed MH+
(Chemical formula | Source | Structure | |---|---|--|--| | Taselisib | $461.2408 \atop (C_{24}H_{29}N_8O_2^+)$ | Rat: P, U, F, B
Dog: P, U, F, B
Human: P, U, F | 376
O
N
N
N
N
N
N
419 | | M1
(Oxidation to
carboxylic acid) | *493.2182
(¹⁴ CC ₂₃ H ₂₇ N ₈ O ₄ ⁺) | Rat: B | $(M+H)^{+}=493$ $(M+H)^{+}=493$ $(M+H)^{-}=493$ $(M+H)^{-}=49$ | | M2
(Glutathione
conjugation | *768.3123
(¹⁴ CC ₃₃ H ₄₄ N ₁₁ O ₈ S ⁺) | Rat: B | HO N $+ \frac{453}{-C_3H_{6'-H_2S} - C_3H_6} + \frac{453}{495 - 461} + \frac{419}{419}$ | ## Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans. | Analyte | Observed MH+
(Chemical
formula | Source | Structure | |--|--|-----------------------|---| | M3
(oxidation) | *479.2389
(¹⁴ CC ₂₃ H ₂₉ N ₈ O ₃ ⁺) | Rat: B | H ₃ N 407 449
N N N N OH
432 437 | | M4
(oxidation &
glucuronidation) | *655.2713
(¹⁴ CC ₂₉ H ₃₇ N ₈ O ₉ ⁺) | Rat: B | 479
O Gluc
H ₂ N * N
Gluc -CO
437 409
352 | | M5
(Di-oxidation) | 493.2306
(C ₂₄ H ₂₉ N ₈ O ₄ ⁺) | Rat: F, B
Human: F | 283
O
H ₂ N
212
368 | | M6
(Oxidative ring
opening) | 493.2306
(C ₂₄ H ₂₉ N ₈ O ₄ ⁺) | Rat: B
Human: F | 270 230 OH OH OH H ₂ N -H ₂ O N N N N N N N N N N N N N | ## Supplementary Table S1. Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans. | Analyte | Observed MH+
(Chemical formula | Source | Structure | |----------------------------------|--|--|--| | M7
(Oxidation &
sulfation) | *559.1958
(¹⁴ CC ₂₃ H ₂₉ N ₈ O ₆ S ⁺) | Rat: B | 479 - H ₂ O 461 O SO ₃ H - H ₂ O 437 N N N N N N N N N N N N N N N N N N N | | M8
(Oxidation) | *479.2390
(¹⁴ CC ₂₃ H ₂₉ N ₈ O ₃ ⁺) | Rat: U | O N * N * N * N * N * N * N * N * N * N | | M9
(Amide
hydrolysis) | $^*462.2248$ $(C_{24}H_{28}N_7O_3^+)$ | Rat: F, B
Dog: P, U, F,
B
Human: U, F | -NH ₃ 359
376 O N
HO 334 NNN
418 -CO ₂ 376 | | M10
(Oxidation) | $477.2370 \\ (C_{24}H_{29}N_8O_3^+)$ | Rat: P, U, F, B
Dog: P, U, F,
B
Human: U, F | 447 O N 334 -CH ₂ O 435 N N OH -NH ₃ 405 OH H ₂ N OH 360 | ## Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans. | Analyte | Observed MH+
(Chemical
formula | Source | Structure | |-------------------------------------|--|--|---| | M11
(Oxidation) | $477.2359 \\ (C_{24}H_{29}N_8O_3^+)$ | Rat: U, F, B
Dog: P, U, F, B
Human: U, F | H_2N $350 - H_2O$ $-C_2H_2$ $-N_2$ 417 363 | | M12
(Acetylation & ring opening) | $^*479.2392$ ($^{14}CC_{23}H_{29}N_8O_3^+$) | Rat: B | 394
OH H CH ₂ CO
H ₂ N | | M13 (Oxidation & glucuronidation) | *655.2710
(¹⁴ CC ₂₉ H ₃₇ N ₈ O ₉ ⁺) | Rat: U, F, B | 352
O
N
H ₂ N
-H ₂ O
391-N ₂ 419
+2H | | M14
(Methylation &
Oxidation) | $491.2526 \\ (C_{25}H_{31}N_8O_3^+)$ | Dog: P, U, F, B | 461 O N 348 449 - N N OH -CH ₂ O - NH ₃ 402 | #### Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans. | Analyte | Observed
MH+
(Chemical
formula | Source | Structure | |--------------------------------------|---|-----------------|---| | M15
(Methylation &
hydrolysis) | 476.2416
(C ₂₅ H ₃₀ N ₇ O ₃ ⁺) | Dog: P, U, F, B | 390 -NH ₃ 373 O N N N N H O N 348 434 -CO ₂ 390 | | M16
(Methylation &
oxidation) | 491.2525
(C ₂₅ H ₃₁ N ₈ O ₃ ⁺) | Dog: P, U, F, B | H ₂ N 364 449 | | M17
(Methylation) | 475.2571
(C ₂₅ H ₃₁ N ₈ O ₂ ⁺) | Dog: P, U, F, B | H ₂ N 348 433 - NN | ^{*;} m/z values of an analyte and its fragments were based on [14C] compounds. #### Supplementary Table S2. 1 H and 13 C NMR Data for GDC-0032 and M17 (δ in ppm) | 12 | | | $M17^a$ | |----------|--|---|--| | ^{13}C | ¹ H, multiplicity (<i>J</i> in Hz) | ¹³ C | ¹ H, multiplicity (<i>J</i> in Hz) | | 131.8 | 8.41, d (8.4) | 131.8 | 8.43, d (8.4) | | 121.0 | 7.37, dd (1.8,8.4) | 120.8 | 7.41, dd (1.8,8.4) | | 117.3 | | 116.2 | | | 118.1 | 7.30, d (1.8) | 118.0 | 7.36, d (1.8) | | 158.0 | | 158.3 | | | 136.4 | | 137.1 | | | 146.8 | | 148.8 | | | 131.3 | | 122.2 | | | 124.8 | 7.71, s | 128.9 | 8.19, s | | 51.5 | 4.52, m | 51.7 | 4.64, m | | 70.0 | 4.52, m | 69.5 | 4.59, m | | 123.2 | | 122.8 | | | 138.8 | 7.97, brs | 138.6 | 7.99, brs | | 127.5 | 8.27, d (0.5) | 127.3 | 8.29, d (0.5) | | 66.6 | | 66.2 | | | 177.9 | | 177.7 | | | 26.4 | 1.86, s | 26.0 | 1.87, s | | 26.4 | 1.86, s | 26.0 | 1.87, s | | 149.5 | | 146.4 | | | 160.3 | | 154.7 | | | 52.4 | 5.91, sep (6.6) | 55.4 | 5.52, sep (6.6) | | 22.7 | 1.54, d (6.6) | 21.8 | 1.62, d (6.6) | | 22.7 | 1.54, d (6.6) | 21.8 | 1.62, d (6.6) | | 13.7 | 2.36, s | 10.6 | 2.64, s | | | | 33.6 | 3.95, s | | | | | | | | 121.0
117.3
118.1
158.0
136.4
146.8
131.3
124.8
51.5
70.0
123.2
138.8
127.5
66.6
177.9
26.4
26.4
149.5
160.3
52.4
22.7
22.7 | 121.0 7.37, dd (1.8,8.4) 117.3 118.1 7.30, d (1.8) 158.0 136.4 146.8 131.3 124.8 7.71, s 51.5 4.52, m 70.0 4.52, m 123.2 138.8 7.97, brs 127.5 8.27, d (0.5) 66.6 177.9 26.4 1.86, s 26.4 1.86, s 149.5 160.3 52.4 5.91, sep (6.6) 22.7 1.54, d (6.6) | 121.0 7.37, dd (1.8,8.4) 120.8 117.3 116.2 118.1 7.30, d (1.8) 118.0 158.0 158.3 136.4 137.1 146.8 148.8 131.3 122.2 124.8 7.71, s 128.9 51.5 4.52, m 51.7 70.0 4.52, m 69.5 123.2 122.8 138.8 7.97, brs 138.6 127.5 8.27, d (0.5) 127.3 66.6 66.2 177.9 177.7 26.4 1.86, s 26.0 149.5 146.4 160.3 154.7 52.4 5.91, sep (6.6) 55.4 22.7 1.54, d (6.6) 21.8 13.7 2.36, s 10.6 | ^{a.} Measured in methanol-d₄ with ¹H at 500 MHz, and ¹³C at 125 MHz. The ¹³C NMR signals for M17 were indirect from HSQC and/or HMBC spectra. d: doublet; dd: double doublet; s: singlet; brs: broad singlet; sep: septet; m: multiplet. **Supplementary Figure S1.** Chracterization of methyltransferase involved in inavolisib metabolism in dogs. (A & B) Taselisib was incubated with dog hepatocytes in the presence of various human methyltransferase inhibitors for 3 h: Amo; amodiaquine (HNMT inhibitor), DCMB; 2,3-dichloromethylbenzylamine (TMT inhibitor), Met; 1-methyl nicotinamide (NNMT inhibitor), Sul; sulfasalazine (TPMT inhibitor), Tol; tolcapone (COMT inhibitor). (C) Recombinant NNMT was incubated with taselisib or nicotine amide for 1 hours in the presence of 5-amino-1-methylquinolin-1-ium iodide (NNMT inhibitor). *; p<0.05 compared to CTL from student t-test.