Drug Metabolism and Disposition

DMD-AR-2022-001096

Supplementary data

Absorption, Metabolism, and Excretion of Taselisib (GDC-0032), a Potent β-sparing PI3K

Inhibitor, in Rats, Dogs, and Humans

Shuguang Ma^{*, 1}, Sungjoon Cho^{*}, Srikumar Sahasranaman², Weiping Zhao, Jodie Pang, Xiao

Ding, Brian Dean, Bin Wang³, Jerry Y. Hsu⁴, Joseph Ware⁵, Laurent Salphati

Department of Drug Metabolism and Pharmacokinetics (SM, SC, WZ, JP, XD, BD, LS) and

Department of Clinical Pharmacology (SS, JH, JW), Genentech, Inc., 1 DNA Way, South San

Francisco, CA, 94080; XenoBiotic Laboratories (BW), Inc., 107 Morgan Lane, Plainsboro, NJ

08536

* Contributed equally

¹Current affiliation: Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco,

CA

² Current affiliation: Clinical Pharmacology, BeiGene, San Mateo, CA

³ Current affiliation: Ingredient Research, The Coca-Cola Company, Atlanta, GA

⁴ Current affiliation: Clinical Development, ArriVent Biopharma, Burlingame, CA

⁵ Current affiliation: Clinical Pharmacology, Seagen, South San Francisco, CA

1

Corresponding author:

Laurent Salphati, Pharm.D., Ph.D.

Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA

94080. Phone: 650-467-1796. Email: salphati.laurent@gene.com

Supplementary Table S1. Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans.

Analyte	Observed MH+ (Chemical formula	Source	Structure
Taselisib	$461.2408 \atop (C_{24}H_{29}N_8O_2^+)$	Rat: P, U, F, B Dog: P, U, F, B Human: P, U, F	376 O N N N N N N 419
M1 (Oxidation to carboxylic acid)	*493.2182 (¹⁴ CC ₂₃ H ₂₇ N ₈ O ₄ ⁺)	Rat: B	$(M+H)^{+}=493$ $(M+H)^{+}=493$ $(M+H)^{-}=493$ $(M+H)^{-}=49$
M2 (Glutathione conjugation	*768.3123 (¹⁴ CC ₃₃ H ₄₄ N ₁₁ O ₈ S ⁺)	Rat: B	HO N $+ \frac{453}{-C_3H_{6'-H_2S} - C_3H_6} + \frac{453}{495 - 461} + \frac{419}{419}$

Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans.

Analyte	Observed MH+ (Chemical formula	Source	Structure
M3 (oxidation)	*479.2389 (¹⁴ CC ₂₃ H ₂₉ N ₈ O ₃ ⁺)	Rat: B	H ₃ N 407 449 N N N N OH 432 437
M4 (oxidation & glucuronidation)	*655.2713 (¹⁴ CC ₂₉ H ₃₇ N ₈ O ₉ ⁺)	Rat: B	479 O Gluc H ₂ N * N Gluc -CO 437 409 352
M5 (Di-oxidation)	493.2306 (C ₂₄ H ₂₉ N ₈ O ₄ ⁺)	Rat: F, B Human: F	283 O H ₂ N 212 368
M6 (Oxidative ring opening)	493.2306 (C ₂₄ H ₂₉ N ₈ O ₄ ⁺)	Rat: B Human: F	270 230 OH OH OH H ₂ N -H ₂ O N N N N N N N N N N N N N

Supplementary Table S1. Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans.

Analyte	Observed MH+ (Chemical formula	Source	Structure
M7 (Oxidation & sulfation)	*559.1958 (¹⁴ CC ₂₃ H ₂₉ N ₈ O ₆ S ⁺)	Rat: B	479 - H ₂ O 461 O SO ₃ H - H ₂ O 437 N N N N N N N N N N N N N N N N N N N
M8 (Oxidation)	*479.2390 (¹⁴ CC ₂₃ H ₂₉ N ₈ O ₃ ⁺)	Rat: U	O N * N * N * N * N * N * N * N * N * N
M9 (Amide hydrolysis)	$^*462.2248$ $(C_{24}H_{28}N_7O_3^+)$	Rat: F, B Dog: P, U, F, B Human: U, F	-NH ₃ 359 376 O N HO 334 NNN 418 -CO ₂ 376
M10 (Oxidation)	$477.2370 \\ (C_{24}H_{29}N_8O_3^+)$	Rat: P, U, F, B Dog: P, U, F, B Human: U, F	447 O N 334 -CH ₂ O 435 N N OH -NH ₃ 405 OH H ₂ N OH 360

Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans.

Analyte	Observed MH+ (Chemical formula	Source	Structure
M11 (Oxidation)	$477.2359 \\ (C_{24}H_{29}N_8O_3^+)$	Rat: U, F, B Dog: P, U, F, B Human: U, F	H_2N $350 - H_2O$ $-C_2H_2$ $-N_2$ 417 363
M12 (Acetylation & ring opening)	$^*479.2392$ ($^{14}CC_{23}H_{29}N_8O_3^+$)	Rat: B	394 OH H CH ₂ CO H ₂ N
M13 (Oxidation & glucuronidation)	*655.2710 (¹⁴ CC ₂₉ H ₃₇ N ₈ O ₉ ⁺)	Rat: U, F, B	352 O N H ₂ N -H ₂ O 391-N ₂ 419 +2H
M14 (Methylation & Oxidation)	$491.2526 \\ (C_{25}H_{31}N_8O_3^+)$	Dog: P, U, F, B	461 O N 348 449 - N N OH -CH ₂ O - NH ₃ 402

Supplementary Table S1 (continued). Summary of structures and mass fragmentation for metabolites of Taselisib in rats, dogs and humans.

Analyte	Observed MH+ (Chemical formula	Source	Structure
M15 (Methylation & hydrolysis)	476.2416 (C ₂₅ H ₃₀ N ₇ O ₃ ⁺)	Dog: P, U, F, B	390 -NH ₃ 373 O N N N N H O N 348 434 -CO ₂ 390
M16 (Methylation & oxidation)	491.2525 (C ₂₅ H ₃₁ N ₈ O ₃ ⁺)	Dog: P, U, F, B	H ₂ N 364 449
M17 (Methylation)	475.2571 (C ₂₅ H ₃₁ N ₈ O ₂ ⁺)	Dog: P, U, F, B	H ₂ N 348 433 - NN

^{*;} m/z values of an analyte and its fragments were based on [14C] compounds.

Supplementary Table S2. 1 H and 13 C NMR Data for GDC-0032 and M17 (δ in ppm)

12			$M17^a$
^{13}C	¹ H, multiplicity (<i>J</i> in Hz)	¹³ C	¹ H, multiplicity (<i>J</i> in Hz)
131.8	8.41, d (8.4)	131.8	8.43, d (8.4)
121.0	7.37, dd (1.8,8.4)	120.8	7.41, dd (1.8,8.4)
117.3		116.2	
118.1	7.30, d (1.8)	118.0	7.36, d (1.8)
158.0		158.3	
136.4		137.1	
146.8		148.8	
131.3		122.2	
124.8	7.71, s	128.9	8.19, s
51.5	4.52, m	51.7	4.64, m
70.0	4.52, m	69.5	4.59, m
123.2		122.8	
138.8	7.97, brs	138.6	7.99, brs
127.5	8.27, d (0.5)	127.3	8.29, d (0.5)
66.6		66.2	
177.9		177.7	
26.4	1.86, s	26.0	1.87, s
26.4	1.86, s	26.0	1.87, s
149.5		146.4	
160.3		154.7	
52.4	5.91, sep (6.6)	55.4	5.52, sep (6.6)
22.7	1.54, d (6.6)	21.8	1.62, d (6.6)
22.7	1.54, d (6.6)	21.8	1.62, d (6.6)
13.7	2.36, s	10.6	2.64, s
		33.6	3.95, s
	121.0 117.3 118.1 158.0 136.4 146.8 131.3 124.8 51.5 70.0 123.2 138.8 127.5 66.6 177.9 26.4 26.4 149.5 160.3 52.4 22.7 22.7	121.0 7.37, dd (1.8,8.4) 117.3 118.1 7.30, d (1.8) 158.0 136.4 146.8 131.3 124.8 7.71, s 51.5 4.52, m 70.0 4.52, m 123.2 138.8 7.97, brs 127.5 8.27, d (0.5) 66.6 177.9 26.4 1.86, s 26.4 1.86, s 149.5 160.3 52.4 5.91, sep (6.6) 22.7 1.54, d (6.6)	121.0 7.37, dd (1.8,8.4) 120.8 117.3 116.2 118.1 7.30, d (1.8) 118.0 158.0 158.3 136.4 137.1 146.8 148.8 131.3 122.2 124.8 7.71, s 128.9 51.5 4.52, m 51.7 70.0 4.52, m 69.5 123.2 122.8 138.8 7.97, brs 138.6 127.5 8.27, d (0.5) 127.3 66.6 66.2 177.9 177.7 26.4 1.86, s 26.0 149.5 146.4 160.3 154.7 52.4 5.91, sep (6.6) 55.4 22.7 1.54, d (6.6) 21.8 13.7 2.36, s 10.6

^{a.} Measured in methanol-d₄ with ¹H at 500 MHz, and ¹³C at 125 MHz. The ¹³C NMR signals for M17 were indirect from HSQC and/or HMBC spectra.

d: doublet; dd: double doublet; s: singlet; brs: broad singlet; sep: septet; m: multiplet.

Supplementary Figure S1. Chracterization of methyltransferase involved in inavolisib metabolism in dogs. (A & B) Taselisib was incubated with dog hepatocytes in the presence of various human methyltransferase inhibitors for 3 h: Amo; amodiaquine (HNMT inhibitor), DCMB; 2,3-dichloromethylbenzylamine (TMT inhibitor), Met; 1-methyl nicotinamide (NNMT inhibitor), Sul; sulfasalazine (TPMT inhibitor), Tol; tolcapone (COMT inhibitor). (C) Recombinant NNMT was incubated with taselisib or nicotine amide for 1 hours in the presence of 5-amino-1-methylquinolin-1-ium iodide (NNMT inhibitor). *; p<0.05 compared to CTL from student t-test.