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Extended methodology  
Calculating unbound interstitial fluid concentration from total tissue concentrations  
At distribution equilibrium (steady-state between blood and tissue concentration), the total tissue to 
plasma partition coefficient (Kptotal ) can be defined as the ratio of the total tissue concentration (Ctotal 

tissue,SS ) to the (total) plasma concentration (Cplasma,SS ): 

𝐾𝑝௧௢௧௔௟  =  
஼೟೚೟ೌ೗ ೟೔ೞೞೠ೐,ೄೄ

஼೛೗ೌೞ೘ೌ,ೄೄ
       Eq. S1 

Similarly, an unbound interstitial fluid to plasma partition coefficient (KpISF,u ) can be defined based on 
the unbound interstitial fluid concentration (CISF,u,SS ) and total plasma concentrations at distribution 
equilibrium:  

  𝐾𝑝ூௌி,௨  =  
஼಺ೄಷ,ೠ,ೄೄ

஼೛೗ೌೞ೘ೌ,ೄೄ
         Eq. S2 

Based on the free drug hypothesis, an equilibrium between the unbound plasma concentration 
(Cplasma,u,SS ) and the unbound interstitial fluid concentration can be assumed, giving: 

𝐶௣௟௔௦௠௔,௨,ௌௌ  =  𝐶ூௌி,௨,ௌௌ      Eq. S3 

Substituting Eq. S3 in Eq. S2 gives:  

𝐾𝑝ூௌி,௨ =
஼೛೗ೌೞ೘ೌ,ೠ,ೄೄ

஼೛೗ೌೞ೘ೌ,ೄೄ
 =  𝑓𝑢௣௟௔௦௠௔     Eq. S4 

where fuplasma is the free fraction in plasma. Using Eq. S1, Eq. S2 and Eq. S4, the unbound interstitial 
fluid concentration at distribution equilibrium can be expressed in terms of the total tissue 
concentration at distribution equilibrium as follows: 

 Re-arranging Eq. S1 and Eq. S2 in terms of Cplasma, SS  gives:  

𝐶௣௟௔௦௠௔,ௌௌ  =  
஼೟೚೟ೌ೗ ೟೔ೞೞೠ೐,ೄೄ

௄௣೟೚೟ೌ೗ 
 =  

஼಺ೄಷ,ೠ,ೄೄ

௄௣಺ೄಷ,ೠ 
       Eq. S5  

 Re-arranging Eq. S5 in terms of CISF,u,SS and substituting KpISF,u for fuplasma (Eq. S4) gives:  

𝐶ூௌி,௨,ௌௌ =  
௄௣಺ೄಷ,ೠ

௄௣೟೚೟ೌ೗
𝐶௧௢௧௔௟ ௧௜௦௦௨௘,ௌௌ  =  

௙௨೛೗ೌೞ೘ೌ

௄௣೟೚೟ೌ೗
𝐶௧௢௧௔௟ ௧௜௦௦௨௘,ௌௌ     Eq. S6 

When an instant equilibrium between interstitial and intracellular tissue compartments is assumed, 
the relative differences between total tissue and unbound interstitial fluid concentrations are constant 
as a function of time. Eq. S6 can be generalized to non-steady-state timepoints as:   

ௗ஼಺ೄಷ,ೠ

ௗ௧
 =  

௙௨೛೗ೌೞ೘ೌ

௄௣೟೚೟ೌ೗
 
ௗ஼೟೚೟ೌ೗ ೟೔ೞೞೠ೐

ௗ௧
                   Eq. S7 

Using Eq. S7 (Eq. 2 in main manuscript), PBPK total tissue profiles of perfusion limited tissues can be 
converted to unbound interstitial fluid concentration profiles by multiplying them with a factor equal 
to the ratio of fuplasma to Kptotal.  
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Extended results 
Supplementary Figures S1-9 

 

 

Figure S1: Model verification of the piperacillin model in plasma. Mean PBPK predicted (red lines) 
versus observed total plasma concentrations (blue dots). Smaller dots denote individual 
concentrations whereas larger symbols denote mean data (with or without error bars signifying 
standard deviations). The shaded red area represents a two-fold interval around the median PBPK 
predicted profile. See Table S2 for simulation settings.  
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Figure S2: Fold errors of physiologically based pharmacokinetic (PBPK) predicted concentrations versus 
time of the five beta-lactams in plasma (A), total tissue biopsy homogenates (B) and unbound 
interstitial fluid (uISF) probed by microdialysis (C). Dashed and dotted lines denote two- and threefold 
deviations from the line of unity, respectively. Smaller squares or circles represent individual 
datapoints whereas larger symbols denote mean data.  
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Figure S3: PBPK predicted concentrations of the five beta-lactams in plasma and adipose-, bone- and 
muscle tissues, using four different Kp estimation methods. All concentrations are total 
concentrations. For each antibiotic, a 1g intravenous bolus dose was simulated in 100 virtual subjects 
between 20 and 50 years old. The applied Kp estimation methods are: Poulin and Theil*: Poulin and 
Theil method with a Breshkovsky correction (Method 1 in Simcyp), Rodgers & Rowland (Method 2 in 
Simcyp), Rodgers & Rowland + ion permeability (Method 3 in Simcyp) and Schmitt: after Schmitt 
(Schmitt, 2008), using the uniform tissue composition proposed by Utsey et al. (Utsey et al., 2020). The 
shaded area signifies a twofold interval around the prediction with the original Kp estimation method 
(Rodgers and Rowland for piperacillin, ceftazidime and meropenem, and Rodgers and Rowland scaled 
by a factor 0.7 for cefazolin and cefuroxime). Corresponding tissue-to-plasma partition coefficients can 
be found in supplementary Table S1.  
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Figure S4: PBPK predicted concentrations of the five beta-lactams in plasma (unbound, orange solid 
line) and adipose tissue (total concentration (blue dashed line) and unbound interstitial fluid 
concentration (uISF, green dot-dashed line)) for different virtual populations. Standard dosage 
regimens as recommended by the European Committee on Antimicrobial Susceptibility Testing 
(EUCAST): piperacillin: 4g (bolus) q6h, cefazolin: 1g (bolus) q8h, cefuroxime: 0.75g (bolus) q8h, 
ceftazidime: 1g (bolus) q8h, meropenem: 1g (30min infusion) q8h. The shaded areas signify 5-95% 
percentiles around the mean predicted concentration. The grey line denotes the non-species specific 
resistant minimal inhibitory concentration (MIC) for each drug.  
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Figure S5: PBPK predicted concentrations of the five beta-lactams in plasma (unbound, orange solid 
line) and adipose tissue (total concentration (blue dashed line) and unbound interstitial fluid 
concentration (uISF, green dot-dashed line)) for different virtual populations. High dosage regimens as 
recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST): 
piperacillin: 4g (3h infusion) q6h, cefazolin: 2g (bolus) q8h, cefuroxime: 1.5g (bolus) q8h, ceftazidime: 
2g (bolus) q8h, meropenem: 2g (3h infusion) q8h. The shaded areas signify 5-95% percentiles around 
the mean predicted concentration. The grey line denotes the non-species specific resistant minimal 
inhibitory concentration (MIC) for each drug.  
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Figure S6: Target attainment using high dosages recommended by the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) in five different virtual populations using different 
physiologically based pharmacokinetic (PBPK) predicted concentrations as input. The mean time the 
unbound plasma concentration (orange circles) and adipose unbound interstitial fluid (uISF) 
concentration (green triangles) exceed the non-species specific resistant minimal inhibitory 
concentration breakpoint (MIC) is given as a percentage of the dosage interval, together with 5-95% 
percentiles (lines). The dashed lines represent conventional antibiotic-specific goals for target 
attainment. See supplementary Figure S5 and Table S7 for the simulated profiles and population 
characteristics, respectively.  
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Figure S7: Relative differences in target attainment for the standard dosage resulting from using 
unbound interstitial fluid (uISF) or unbound plasma concentrations as driving factor, expressed as the 
ratio of time above the minimal inhibitory concentration (fT>MIC) in plasma to the fT>MIC in uISF.  
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Figure S8: Target attainment in function of the minimal inhibitory concentration (MIC) using standard 
dosages recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 
in five different virtual populations. Target attainment is defined as the time the unbound 
concentration exceeds the MIC (fT>MIC), as percentage of the dosing interval and using the 
physiologically based pharmacokinetic (PBPK) predicted mean unbound concentrations in plasma 
(orange solid lines) and the interstitial fluid concentration in adipose tissue (uISF, green dot-dashed 
lines) as inputs (see supplementary Figure S4 for the corresponding concentration-time profiles). The 
shaded areas represent 5-95% percentiles. The horizontal dashed red lines represent the antibiotic 
specific targets while the vertical solid grey line represent the non-species specific resistant MIC.  
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Figure S9: Target attainment in function of the minimal inhibitory concentration (MIC) using high 
dosages recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 
in five different virtual populations. Target attainment is defined as the time the unbound 
concentration exceeds the MIC (fT>MIC), as percentage of the dosing interval and using the 
physiologically based pharmacokinetic (PBPK) predicted mean unbound concentrations in plasma 
(orange solid lines) and the interstitial fluid concentration in adipose tissue (uISF, green dot-dashed 
lines) as inputs (see supplementary Figure S5 for the corresponding concentration-time profiles). The 
shaded areas represent 5-95% percentiles. The horizontal dashed red lines represent the antibiotic 
specific targets while the vertical solid grey line represent the non-species specific resistant MIC.  
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Supplementary Tables S1-8 
 

Table S1: Variability in tissue-to-plasma partition coefficients (Kp) 

Drug Tissue R&R Method 
Alternative Kp method (% difference with R&R) 

P&T + R&R+ Schmitt 
Piperacillin adipose  0.133 0.151 (+14%) 0.131 (-2%) 0.259 (+95%) 
 bone 0.207 0.610 (+195%) 0.193 (-7%) 0.411 (+99%) 
 muscle 0.293 0.788 (+169%) 0.266 (-9%) 0.654 (+123%) 
Cefazolin adipose  0.064* 0.043 (-33%) 0.063 (-2%) 0.039 (-39%) 
 bone 0.130* 0.289 (+122%) 0.120 (-8%) 0.111 (-15%) 
 muscle 0.107* 0.495 (+363%) 0.087 (-19%) 0.175 (+64%) 
Cefuroxime adipose  0.117* 0.128 (+9%) 0.113 (-3%) 0.112 (-4%) 
 bone 0.190* 0.394 (+107%) 0.153 (-19%) 0.329 (+73%) 
 muscle 0.251* 0.676 (+169%) 0.179 (-29%) 0.521 (+108%) 
Ceftazidime adipose  0.136 0.172 (+26%) 0.134 (-1%) 0.144 (+6%) 
 bone 0.147 0.441 (+200%) 0.126 (-14%) 0.441 (+200%) 
 muscle 0.181 0.768 (+326%) 0.139 (-23%) 0.698 (+286%) 
Meropenem adipose  0.154 0.188 (+22%) 0.149 (-3%) 0.157 (+2%) 
 bone 0.231 0.460 (+99%) 0.184 (-20%) 0.480 (+108%) 
 muscle 0.351 0.800 (+128%) 0.259 (-26%) 0.760 (+117%) 

P&T+: Poulin & Theil method (Poulin and Theil, 2002) with a Berezhovskiy correction (Berezhkovskiy, 2004), implemented as “method 1” in 
Simcyp V20,  

R&R: Rodgers & Rowland method (Rodgers and Rowland, 2007) , implemented as “method 2” in  Simcyp V20 (input values),  

R&R +: Rodgers & Rowland + ionization method, implemented as “method 3” in Simcyp V20, 

Schmitt: Schmitt method (Schmitt, 2008), calculated using uniform tissue composition (Utsey et al., 2020),   

*: input Kp value in the model is scaled by a factor 0.7 (Hsu et al., 2014; Abduljalil et al., 2022) 
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Table S2: Model verification of the piperacillin model in plasma 

 Simulation parameter  Plasma profiles  Area under the plasma concentration-time curve (AUC) 

Study 
IV dose 
(infusion duration) N 

Age in years 
(min-max) Females 

 
AFE AAFE 

 AUC 
interval 

Observed 
(mg.min/mL) 

Predicted 
(mg.min/mL) FE 

(Landersdorfer et al., 2012) 3g (5min) SD 10 19-29 50%  0.73 1.37  N.R. N.R. N.R. N.R. 

(Bulitta et al., 2010) 4g (5min) SD 4 22-24 50%  1.02 1.43  N.R. N.R. N.R. N.R. 

(Tjandramaga et al., 1978) 6g (3min) SD 5 18-29 0%  1.07 1.31  0-inf 438 436 1.00 

(Batra et al., 1979) 4g (30min) SD 6 18-50 0%  0.79 1.31  0-6h 371 286 0.77 

(Batra et al., 1979) 6g (30min) SD 6 18-50 0%  0.76 1.33  0-6h 470 429 0.91 

(Occhipinti et al., 1997) 3g (30 min) q6h 12 23-30 0%  1.16 1.44  48-72h 968 860 0.89 

(Occhipinti et al., 1997) 4g (30min) q8h 12 23-30 0%  1.05 1.36  48-72h 979 860 0.88 

(Kim et al., 2001) 6g (60 min) q12h 12 20-43 33%  0.48 2.10  24-36h 962 434 0.45 
Overall AFE      0.85 

 
    0.84 

Overall AAFE      
 

1.44     1.19 
Abbreviations: AAFE: absolute average fold error, AFE: average fold error, FE: fold error, IV: intravenous, N: number of study subjects, simulations were done with N*10 virtual subjects, N.R.: not reported, SD: single 
dose 
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Table S3: Study selection process  

Drug – tissue pair   
 (Study reference)  Study inclusion decisiona  
Piperacillin – adipose (total)  
 (Kinzig et al., 1992) Included  
 (van Lindert et al., 1990) Not preferred, not newest  
 (Russo et al., 1982) Not preferred, not newest  
Piperacillin – bone (total)   
 (Al-Nawas et al., 2008) Excluded, unsuitable tissue data (sample time unclear)  
 (Incavo et al., 1994) Included  
 (Kato and Morimoto, 1984) Not preferred, older study & full text in Japanese  
Piperacillin – muscle (total)   
 (Kinzig et al., 1992) Included  
 (Russo et al., 1982) Not preferred, older study  
 (Daschner et al., 1982) Excluded, unsuitable tissue data (hypothermic tissue 25-35°C)  
 (Daschner et al., 1981) Excluded, unsuitable tissue data (time intervals)  
Piperacillin – adipose (uISF)   
 (Busse et al., 2021 a) Included  
 (Joukhadar et al., 2001) Not preferred, already included (Piperacillin - muscle ISF)  
 (Brunner et al., 2000) Included, substitutes missing data in bone ISF  
 (Nolting et al., 1996) Not preferred, dosing mg/kg without individual bodyweight  
Piperacillin – bone (uISF)    
 No studies found  
Piperacillin – muscle (uISF)   
 (Joukhadar et al., 2001) Included  
 (Brunner et al., 2000) Not preferred, already included (Piperacillin - muscle ISF)  
Cefazolin – adipose (total)   
 (Tchaick et al., 2017) Not preferred, population less suited (CPB)  
 (Kram et al., 2017) Excluded, unsuitable tissue data (obese)  
 (Young et al., 2015) Excluded, unsuitable tissue data (obese)  
 (Maggio et al., 2015) Excluded, unsuitable tissue data (obese)  
 (Ohge et al., 1999) Included  
Cefazolin – bone (total)   
 (Yamada et al., 2011) Included  
 (Deacon et al., 1996) Not preferred, lack of plasma data  
 (Friedman et al., 1990) Not preferred, older study  
 (Williams et al., 1983) Not preferred, older study  
 (Polk et al., 1983) Not preferred, older study  
 (Tetzlaff et al., 1978) Excluded, in children and unsuitable tissue data (infected bone)  
 (Cunha et al., 1977) Not preferred, older study  
Cefazolin – muscle (total)   
 (Dudley et al., 1984) Not preferred, population less suited (cardiac surgery)  
 (Polk et al., 1982) Not preferred, population less suited (cardiac surgery)  
 (Sinagowitz et al., 1976) Included  
Cefazolin – adipose (uISF)   
 (Palma et al., 2018) Excluded, unsuitable tissue data (obese)  
 (Himebauch et al., 2016) Excluded, study in adolescents (12-17 year)  

 
(Roberts et al., 2015) Included, substitutes missing bone data study, population less suited 

(critically ill patients) but no better alternative study available 
 

 (Brill et al., 2014) Included, most suited study  
 (Andreas et al., 2013) Not preferred, population less suited (normothermic CPB)  
 (Bhalodi et al., 2013) Excluded, unsuitable tissue data (infected tissue)  

 
(Douglas et al., 2011) Included, substitutes missing muscle data study, population less suited 

(cardiac surgery) but no better alternative study available 
 

 (Hutschala et al., 2007) Not preferred, population less suited (normothermic CPB)  
Cefazolin – bone (uISF)   
 (Andreas et al., 2015) Not preferred, unclear when second dose was administered  
Cefazolin – muscle (uISF)   
 No studies found  
Cefuroxime – adipose (total)   
 (Lovering et al., 1997) Not preferred, lack of plasma data (only blood)  
 (Alfter et al., 1995) Not preferred, plasma data not suited (time intervals)  
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 (Huizinga et al., 1989) Included  
 (Johnson, 1987) Not preferred, lack of plasma data  
 (Adam et al., 1979) Not preferred, older study and full text unavailable  
Cefuroxime – bone (total)   
 (Gergs et al., 2020) Included  
 (Gergs et al., 2014) Not preferred, older study  
 (Garazzino et al., 2011) Excluded, unsuitable tissue data (septic tissue)  
 (Vuorisalo et al., 2000) Excluded, unsuitable tissue data (sample time unclear)  
 (Katzer et al., 1997) Not preferred, older study  
 (Kaukonen et al., 1995) Not preferred, plasma data not suited (time intervals)  
 (Nungu et al., 1995) Excluded, unsuitable tissue data (sample time unclear)  
 (Alvarez Ferrero et al., 1994) Not preferred, older study  
 (Rout and Frame, 1992) Excluded, unsuitable tissue data (time intervals)  
 (Johnson, 1987) Not preferred, lack of plasma data  
 (Davies et al., 1986) Not preferred, older study  
 (Hughes et al., 1982) Not preferred, older study  
 (Leigh et al., 1982) Not preferred, older study  
 (Lovering et al., 1997) Not preferred, lack of plasma data (only blood)  
Cefuroxime – muscle (total)   

 
(Alfter et al., 1995) Not preferred, plasma data not available as with Kaukonen et al. 1995 

but less datapoints 
 

 
(Kaukonen et al., 1995) Included, no plasma data available but more datapoints than Alfter et al. 

1995 
 

 (Connors et al., 1990) Excluded, unsuitable tissue data (sample time unclear)  
Cefuroxime – adipose (uISF)   
 (Hanberg et al., 2021) Included  
 (Hanberg et al., 2020) Not preferred, older study and lack of plasma data  
 (Tøttrup et al., 2019) Not preferred, older study  
 (Skhirtladze-Dworschak et al., 2019) Not preferred, population less suited (CPB)  
 (Barbour et al., 2009) Excluded, unsuitable tissue data (obese)  
Cefuroxime – bone (uISF)   
 (Hanberg et al., 2021) Not preferred, study already included (Cefuroxime - adipose uISF)  
 (Hanberg et al., 2020) Not preferred, lack of plasma data  
 (Tøttrup et al., 2019) Included  
Cefuroxime – muscle (uISF)   
 (Hanberg et al., 2021) Not preferred, (already included (Cefuroxime - adipose uISF))  
 (Hanberg et al., 2020) Not preferred, no plasma data  
 (Skhirtladze-Dworschak et al., 2019) Not preferred, population less suited (CPB)  
 (Schwameis et al., 2017) Included  
 (Barbour et al., 2009) Not preferred, population less suited (obese)  
 (Pojar et al., 2008) Excluded, unsuitable tissue data (time intervals)  
Ceftazidime – adipose (total)   
 (Raymakers et al., 1998) Excluded, unsuitable tissue data (amputated/infected limb)  
 (Dounis et al., 1995) Not preferred, lack of plasma data  
 (Papaioannou et al., 1994) Excluded, unsuitable tissue data (time-intervals)  

 
(Frank et al., 1987) Excluded, unsuitable tissue data (time-intervals + hypothermic tissue (25-

35°C) ) 
 

 (Loebis, 1986) Included  
 (Adam et al., 1983) Not preferred, population less suited (cardiac surgery)  
Ceftazidime – bone (total)   
 (Lozano-Alonso et al., 2016) Excluded, unsuitable tissue data (amputated/infected limb)  
 (Dounis et al., 1995) Not preferred, lack of plasma data  
 (Papaioannou et al., 1994) Excluded, unsuitable tissue data (time intervals)  
 (Leigh et al., 1985) Excluded, unsuitable tissue data (time intervals)  
 (Adam et al., 1983) Not preferred, population less suited (cardiac surgery)  
 (Wittmann et al., 1981) Included  
Ceftazidime – muscle (total)   
 (Lozano-Alonso et al., 2016) Excluded, unsuitable tissue data (amputated/infected limb)  
 (Dounis et al., 1995) Not preferred, lack of plasma data  
 (Papaioannou et al., 1994) Excluded, unsuitable tissue data (time intervals)  
 (Frank et al., 1987) Excluded, unsuitable tissue data (hypothermic tissue 25-35°C)  
 (Loebis, 1986) Included  
 (Adam et al., 1983) Not preferred, population less suited (cardiac surgery)  
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Ceftazidime – adipose (uISF)   
 (Tůma et al., 2022) Excluded, unsuitable tissue data (diabetic/infected foot)  
Ceftazidime – bone (uISF)   
 No studies found  
Ceftazidime –  muscle (uISF)   
 No studies found  
Meropenem - adipose (total)   
 No studies found   
Meropenem – bone (total)   
 (Lozano-Alonso et al., 2016) Excluded, unsuitable tissue data (amputated/infected limb)  
 (Sano et al., 1993) Included  
Meropenem – muscle (total)   
 (Lozano-Alonso et al., 2016) Excluded, unsuitable tissue data (amputated/infected limb)  
 (Condon et al., 1997) Excluded, unsuitable tissue data (time intervals)  

 (Newsom et al., 1995) Included, population less suited (cardiac surgery) but no alternative 
study available 

 

Meropenem – adipose (uISF)   
 (Busse et al., 2021 b) Included  
 (Simon et al., 2020) Included, "substitutes" missing  bone uISF study  
 (Hanberg et al., 2018) Not preferred, population less suited (CPB)  
 (Varghese et al., 2015) Not preferred, population less suited (hemodiafiltration)  
 (Wittau et al., 2015) Not preferred, population less suited (obese)  
 (Roberts et al., 2009) Not preferred, population less suited (septic)  
Meropenem – bone (uISF)   
 No studies found  
Meropenem – muscle (uISF)   

 (Tomaselli et al., 2004) 
Included, population less suited (pneumonia) but no alternative studies 
available 

 

a : When multiple studies were available for a given tissue-drug pair, a single study was selected (“included”) based on the predefined criteria 
noted in the methods section of the manuscript. Studies which were eligible for inclusion but were not selected are denoted as “not 
preferred”.  
Abbreviations: CPB: cardio pulmonary bypass, uISF: unbound interstitial fluid. 



s17 
 

Table S4: Demographic data of included studies  

 Drug - matrix pair Population Type and location of 
tissue sample 

Age 
(years)a 

Bodyweight (kg)a Reported renal functiona Reference  

Piperacillin       

 Adipose (total) 

Patients undergoing colorectal surgery 
for rectal-, colon- or  sigmoid cancer, 
tubovillous adenoma or 
colostomy/ileostomy 

Nontumorous abdominal 
subcutaneous fat 

66.8 ± 12 
(29-77) 

72.3 ± 11.4 
(53-93) 

"all patients were found to have 
normal kidney function in relation 
to their age" 

(Kinzig et al., 1992) 

 Bone (total) 
Patients undergoing an elective total 
hip replacement Femoral cancellous bone  

63.4 
(44-86) (45-102) 

Excluded if CrCL <40mL/min  
or sCr >2.5mg/dl 

(Incavo et al., 1994) 

 
Skeletal muscle 
(total) 

Patients undergoing cholecystectomy 
or sphincteroplasty (biliary tract 
surgery) 

Abdominal skeletal 
muscle 

46 
(21-74) N.R. CrCL:  (51 - 106) mL/min (Russo et al., 1982) 

 Adipose (uISF) Patients undergoing elective abdominal 
surgery (non-obese cohort) 

Subcutaneous adipose 
tissue of both upper 
arms 

>18 75 
(67-84) 

CrCL: (75.1 - 106 )mL/min (Busse et al., 2021 a) 

 Adipose (uISF) Healthy control group Subcutaneous adipose 
layer of the thigh 

(25-37) 81 ± 5 "Normal kidney function tests" (Brunner et al., 2000) 

 
Skeletal muscle 
(uISF) 

Healthy control group Skeletal muscle 66 ± 3 76 ± 5 sCr: 1.06 ± 0.06 mg/dL (Joukhadar et al., 2001) 

Cefazolin       

 Adipose (total) Patients undergoing pancreatic surgery 
Subcutaneous abdominal 
adipose tissue (52-79) 

N.R., BMI: 
(16.8-27.5) kg/m² CrCL ≥ 60 ml/min (Ohge et al., 1999) 

 Bone (total) 
Patients undergoing total hip 
arthroplasty or total knee arthroplasty 

Cancellous bone from 
the femur or tibia 

74.8 ± 7.9 
55.4 ± 8.2 

(41-75) 
sCr: 0.7 ± 0.2 (all < 1.5) mg/dL (Yamada et al., 2011) 

 
Skeletal muscle 
(total) 

Patients undergoing urological 
operations 

Abdominal skeletal 
muscle which 
macroscopically looked 
well perfused 

N.R. N.R. N.R. (Sinagowitz et al., 1976) 

 Adipose (uISF) Non-obese patients undergoing Toupet 
fundoplication  

Subcutaneous abdominal 
adipose tissue 

52.7 ± 6.3 
(42-61) 

86.2 
(72-109) 

Excluded if eGFR < 60 mL/min (Brill et al., 2014) 

 Adipose (uISF) 
Patients after major trauma and low to 
moderate illness severity 

Subcutaneous tissue 
37 ± 14 
(19-65) 

87 ± 23 
(60-175) 

CrCL: 163 ±44 (50-253) mL/min,  
sCr: 19.7 (40-145)  µmol/L 

(Roberts et al., 2015) 

 Adipose  (uISF) 
Patients undergoing semi elective 
abdominal aortic aneurism open repair 
surgery 

Subcutaneous tissue of 
the upper arm 

70 
(59-81) 

88 
(80-128) 

CrCL: 98  (37-236) mL/min ,  
sCr: 88 (68-137)  µmol/L 

(Douglas et al., 2011) 

Cefuroxime       

 Adipose (total) Patients undergoing elective abdominal 
operations 

Subcutaneous adipose 
tissue of the abdomen 

42.6 
(27-66) 

71.6 ± 6.8 "All patients had normal renal 
function" 

(Huizinga et al., 1989) 



s18 
 

 Bone (total) Patients undergoing hip surgery Cancellous pelvic bone 65 ± 9.1 
N.R., BMI 27.7 ± 

3.5 kg/m² 
Excluded if sCr  > 130 µmol/L (Gergs et al., 2020) 

 
Skeletal muscle 
(total) 

Patients with hip fracture undergoing 
hemiarthroplasty 

Skeletal muscle of the 
thigh 

81 
(59-96) 

58 
(39-100) 

N.R. (Kaukonen et al., 1995) 

 Adipose (uISF) 
Patients undergoing hallux valgus or 
hallux rigidus surgery 

Subcutaneous tissue 
from non-tourniquet 
mid-lower leg 

58 
(45-67) 

72 
(56-89) 

sCr: 75 (60-90) µmol/L (Hanberg et al., 2021) 

 Bone (uISF) Patients undergoing a total knee 
replacement 

Cancellous tibia bone 68.7 
(58-76) 

99 
(73-110) 

sCr: 76 (64-99) µmol/L (Tøttrup et al., 2019) 

 
Skeletal muscle 
(uISF) 

Patients undergoing an elective knee 
arthroscopy 

Skeletal muscle of the 
thigh 

34.2 ± 13.6 
(45-67) N.R. N.R. (Schwameis et al., 2017) 

Ceftazidime       

 Adipose (total) Surgical patients ( gynecological and  
other cases) 

Fatty tissue N.R. (34-75) N.R. (Loebis, 1986) 

 Bone (total) 
Patients undergoing a total hip 
arthroplasty 

Bone from the femur or 
pelvis 58.4 ± 10.2 N.R. "Normal renal function" (Wittmann et al., 1981) 

 
Skeletal muscle 
(total) 

Surgical patients ( gynecological and  
other cases) 

Skeletal muscle N.R. (34-75) N.R. (Loebis, 1986) 

Meropenem       

 Bone (total) 

Patients undergoing orthopedic surgery 
(total hip or knee replacement, other 
joint surgery, laminectomy or joint 
aspiration) 

Bone 56.3 
(29-75) 

N.R. N.R. (Sano et al., 1993) 

 
Cardiac muscle 
(total) 

Patients undergoing cardiac valve 
surgery (aortic or mitral -stenosis, -
incompetence or -valve incompetence) 

Atrial cardiac muscle 
tissue 

65.3 
(47-75) 

69.2 
(45.5-91) 

N.R. (Newsom et al., 1995) 

 Adipose  (uISF) Non-obese control subjects 
Subcutaneous adipose 
tissue of both upper 
arms 

50 
(31-64) 

65 
(52-84) 

CrCL: 76 (53.6-136) mL/min,  
sCr: 66.4 (51.8-127) µmol/L 

(Busse et al., 2021 b) 

 Adipose (uISF) 
Non-obese patients undergoing elective 
abdominal surgery (mainly tumor 
resection) 

Subcutaneous adipose 
tissue of both upper 
arms 

49.5 ± 10 67.9 ± 8.8 sCr: 75.3 ± 18.8 µmol/L (Simon et al., 2020) 

 
Skeletal muscle 
(uISF) 

Patients with sepsis undergoing 
decortication over al lateral 
thoracotomy for pneumonia 

Healthy pectoralis major 
muscle tissue 

58.7 
(30-70) 

72.3 
(68-87) 

N.R. (Tomaselli et al., 2004) 

a: data presented as mean or median ± standard deviation (min-max) 
Abbreviations: BMI: body mass index, CrCL: creatinine clearance, eGFR: estimated glomerular filtration rate, N.R.: Not reported, sCr: serum creatinine, uISF: unbound interstitial fluid concentration 
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Table S5 Bioanalytical data of included studies 

 
Drug-Matrix 

Analysis 
method 

LLOQ tissue 
samples External calibration Sampling interval 

Reported 
time 

Data 
format Reference observed data 

Piperacillin        
 Adipose (total) HPLC-UV 0.10 µg/mL No blood contamination correction Exact Exact Figure (Kinzig et al., 1992) 
 Bone (total) HPLC-UV 0.157 µg/mL  No blood contamination correction Exact Exact Table (Incavo et al., 1994) 
 Skeletal muscle (total) Microbiologic N.R.  Blood contamination correction (3-5%) Exact Exact Table (Russo et al., 1982) 
 Adipose (uISF) HPLC-UV 0.03 mg/mL Retrodialysis calibration 30 or 60 minutes Midpoint Figure (Busse et al., 2021 a) 
 Adipose (uISF) HPLC-UV 2 µg/mL Retrodialysis calibration 20 minutes  Endpointa Figure (Brunner et al., 2000) 
 Skeletal muscle (uISF) HPLC-UV 2 µg/mL Retrodialysis calibration 20 minutes  Endpointa Figure (Joukhadar et al., 2001) 
Cefazolin        
 Adipose (total) Microbiologic 0.063 µg/mL N.R.  Exact Exact Figure (Ohge et al., 1999) 
 Bone (total) HPLC-UV N.R.  N.R.  Exact Exact Figure (Yamada et al., 2011) 
 Skeletal muscle (total) Microbiologic N.R.  Blood contamination correction (6.3%) Exact Exact Figure (Sinagowitz et al., 1976) 
 Adipose (uISF) HPLC-UV 1.0 µg/mL Retrodialysis calibration 20 minutes Midpointa Figure (Brill et al., 2014) 
 Adipose (uISF) HPLC-MS/MS N.R.  Retrodialysis calibration 20 or 30 minutes Endpointa Figure (Roberts et al., 2015) 
 Adipose  (uISF) HPLC-MS/MS N.R.  Retrodialysis calibration 30 minutes  Endpointa Figure (Douglas et al., 2011) 
Cefuroxime        
 Adipose (total) HPLC-UV 1.0 µg/g No blood contamination correction Exact Exact Figure (Huizinga et al., 1989) 
 Bone (total) HPLC-UV 0.1µg/mL N.R.  Exact Exact Figureb (Gergs et al., 2020) 
 Skeletal muscle (total) HPLC-UV 1.25 µg/mL Blood contamination correction (<30%) Exact Exact Table (Kaukonen et al., 1995) 

 Adipose (uISF) HPLC-UV 0.06 µg/mL Retrodialysis calibration 15, 30 or 60 
minutes  

Midpoint Figure (Hanberg et al., 2021) 

 Bone (uISF) HPLC 0.06 µg/mL Retrodialysis calibration 30 minutes  Midpoint Figure (Tøttrup et al., 2019) 
 Skeletal muscle (uISF) HPLC-UV 0.3 µg/mL Retrodialysis calibration 30 or 60 minutes Endpoint Figure (Schwameis et al., 2017) 
Ceftazidime        
 Adipose (total) Microbiologic N.R. Blood contamination correction Exact Exact Figure (Loebis, 1986) 
 Bone (total) Microbiologic 0.08 µg/mL "Samples  contaminated with blood were excluded" Exact Exact Tablec (Wittmann et al., 1981) 
 Skeletal muscle (total) Microbiologic N.R.  Blood contamination correction Exact Exact Figure (Loebis, 1986) 
Meropenem        
 Bone (total) Microbiologic N.R.  N.R.  Exact Exact Table (Sano et al., 1993) 
 Cardiac muscle (total) HPLC-UV 0.01 µg/mL No blood contamination correction Exact Exact Figure (Newsom et al., 1995) 
 Adipose  (uISF) HPLC-UV 0.02 µg/mL  Retrodialysis calibration 30 or 60 minutes Midpoint Figure (Busse et al., 2021 b) 
 Adipose (uISF) HPLC-UV 0.02 µg/mL  Retrodialysis calibration 30 or 60 minutes Midpoint Figure (Simon et al., 2020) 
 Skeletal muscle (uISF) HPLC N.R.  Retrodialysis calibration 20 minutes Midpoint Figure (Tomaselli et al., 2004) 

Abbreviations: HPLC: high pressure liquid chromatography, LLOQ: lower limit of quantification, MS/MS tandem mass spectrometry, , N.R.: not reported, uISF: unbound interstitial fluid concentration, UV: ultraviolet 
spectrometry 
a: not explicitly mentioned but assumed based on reported methodology and results 
b: plasma samples digitized up to 330 minutes (after that, limited contrast with zero on graph)  
c: plasma samples after 8 and 12h excluded 
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Table S6 Area under the curve (AUC) assessment for PBPK model verification 

a: observed unbound AUC in plasma obtained by multiplying reported total AUC in plasma value by the free fraction used in the PBPK simulation 
Abbreviations: AUCPlasma,u: area under the curve unbound plasma, AUCTissue: area under the curve tissue (total or unbound interstitial fluid concentration), AUCTissue/Plasma,u : penetration ratio (ratio AUCTissue to AUCPlasma,u ), 
FE: fold error, N.R.: not reported, uISF: unbound interstitial fluid concentration. 

 
 

 

Drug - Matrix 
AUC 
interval 

AUCPlasma,u  AUCTissue  AUCTissue/Plasma,u 

Reference observed data 
Observed 

(mg.min/mL) 
Predicted 

(mg.min/mL) FE  
Observed 

(mg.min/mL) 
Predicted 

(mg.min/mL) FE  Observed Predicted FE 
Piperacillin              
 Adipose (total) 0-inf 289a 254 0.88  N.R. N.R. N.R.  N.R. N.R. N.R. (Kinzig et al., 1992) 
 Adipose (uISF) 0-4h 70 216 3.10  29 209 7.32  0.43 0.97 2.25 (Brunner et al., 2000) 
 Muscle (uISF) 0-4h 506 237 0.47  264 232 0.88  0.55 0.98 1.78 (Joukhadar et al., 2001) 
Cefazolin              
 Adipose (uISF) 0-4h N.R. 108 N.R.  N.R. 106 N.R.  1.02 0.98 0.96 (Brill et al., 2014) 
 Adipose (uISF) 0-6h 46 52 1.12  33 52 1.58  0.74 1.00 1.35 (Roberts et al., 2015) 
 Adipose (uISF) 0-8h 78 132 1.71  66 132 2.01  0.85 1.00 1.17 (Douglas et al., 2011) 
Cefuroxime              
 Adipose (uISF) 0-6h 92 a 113 1.23  142 113 0.80  1.64a 1.00 0.61 (Hanberg et al., 2021) 
 Bone (uISF) 0-inf 97 110 1.14  101 110 1.09  1.03 1.00 0.97 (Tøttrup et al., 2019) 
 Muscle (uISF) 0-8h 101 99 0.98  178 99 0.56  1.79 1.00 0.56 (Schwameis et al., 2017) 
Meropenem              
 Adipose (uISF) 0-8h N.R. 87 N.R.  N.R. 86 N.R.  0.31 a 1.00 3.23 (Busse et al., 2021 b) 
 Adipose (uISF) 0-inf 88 a 94 1.07  45 94 2.12  0.49 a 1.00 2.04 (Simon et al., 2020) 
 Muscle (uISF) 0-8h 93 a 101 1.08  44 101 2.29  0.61 a 1.00 1.63 (Tomaselli et al., 2004) 
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Table S7: Characteristics of the simulated populations  

Population 
Body weight 

(kg) 

Body mass 
index 

(kg/m²) 

GFR 
(mL/min/ 
1.73m²) 

Serum 
albumin 

(g/L) 

Adipose 
blood flow 

(L/h) 
Adipose 

volume (L) 

Adipose 
perfusiona 

(h-1) 
Reference 
population 

77.1  
(52.9-105.2) 

27.2  
(19.6-35.6) 

110  
(61-171) 

44.9  
(38.0-53.0) 

20.3  
(13.7-28.4) 

26.7  
(5.4-48.5) 

1.06  
(0.40-3.07) 

High cardiac 
output 

77.1  
(52.9-105.2) 

27.2  
(19.6-35.6) 

110  
(61-171) 

44.9  
(38.0-53.0) 

40.5  
(27.4-56.7) 

26.7  
(5.4-48.5) 

2.13  
(0.80-6.15) 

Low cardiac 
output 

77.1  
(52.9-105.2) 

27.2  
(19.6-35.6) 

110  
(61-171) 

44.9 
(38.0-53.0) 

10.1  
(6.9-14.2) 

26.7  
(5.4-48.5) 

0.53  
(0.20-1.54) 

Obese 97.5  
(78.5-118.3) 

34.9  
(31.7-38.4) 

159  
(84-247) 

43.9  
(36.5-52.0) 

39.5  
(27.9-54.0) 

43.1  
(25.4-58.6) 

0.98  
(0.60-1.51) 

Morbidly 
obese 

123.2  
(100.2-155.5) 

44.6  
(40.8-49.0) 

209  
(116-316) 

43.1  
(35.9-51.2) 

54.7  
(43.9-67.3) 

63.1  
(43.3-83.8) 

0.90  
(0.63-1.24) 

Data presented as mean and 90 percentiles (5-95%) of simulated population, 
a : adipose perfusion calculated as adipose blood flow/adipose volume,   
Abbreviations: GFR: glomerular filtration rate.   
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Table S8 Selection of EUCAST minimal inhibitory concentrations (MIC) (mg/L)  

 Piperacillin Cefazolin Cefuroxime Ceftazidime Meropenem 
Non-species related (PK-PD) 16 2 8 8 8 
Enterobacteriaceae 8 4 8 4 8 
Escherichia coli 8* 4* 8* 1* 0.06* 
Pseudomonas aeruginosa 16 - - 8* 2* 
Staphyloccoccus aureus 4* 2* 4* 32* 0.5* 
Streptococcus groups A,B, C and G 0.25 0.25 0.25 0.25 0.25 
Streptococcus pneumoniae 1 - - 1 2 

MIC breakpoints (Resistant, R>) taken from The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for 
interpretation of MICs and zone diameters. Version 12.0, 2022. http://www.eucast.org”  

*: Epidemiological cut-off values (ECOFF), data from EUCAST MIC distribution website, last accessed 14/Dec/2022. http://www.eucast.org.    

PK-PD: pharmacokinetic-pharmacodynamic 
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