Regular Article
Correlation between Hydrophobicity of Short-Chain Aliphatic Alcohols and Their Ability to Alter Plasma Membrane Integrity

https://doi.org/10.1006/faat.1996.2252Get rights and content

Abstract

The quantitative relationship between chemical structure and biological activity has received considerable attention in the fields of pharmacology and drug development. More recently, quantitative structure–activity relationships (QSARs) have been used for predicting chemical toxicity. It has been proposed that alcohols may elicit their toxic effects through hydrophobic interactions with the cellular membrane. The objective of this study was to evaluate the role of hydrophobicity in the loss of membrane integrity following acute exposure to short-chain aliphatic alcohols in rat liver epithelial cellsin vitro.The series of alcohols studied included methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol. The lactate dehydrogenase (LDH) assay was used to quantify membrane integrity. The logarithm of the octanol/water partition coefficient (logP) was used to quantify hydrophobicity. LDH50 values, representing alcohol concentrations yielding a 50% increase in LDH release relative to untreated controls (i.e., mild disruption of membrane integrity), and EC50 values, representing alcohol concentrations yielding 50% of the maximal release of LDH (i.e., moderate disruption of LDH release), were experimentally determined for each alcohol. The LDH50 and EC50 values were then used to derive the QSAR relationship. The aqueous alcohol concentrations yielding LDH50 or EC50 values ranged from 8.9 × 10−4m(LDH50 for octanol) to 3.5m(EC50 for methanol), and the logPof the alcohols ranged from −0.77 (methanol) to 3.00 (octanol). From these data, we have derived two QSAR equations describing the role of hydrophobicity in the release of LDH from rat liver epithelial cells following a 1-hr alcohol exposure. The QSAR equation for LDH50 values, log (1/LDH50) = 0.896 logP+ 0.117 (n= 11, SD = 0.131), was nearly identical to the QSAR equation for EC50 values, log (1/EC50) = 0.893 logP+ 0.101 (n= 11, SD = 0.133], suggesting that similar structure–activity relationships exist at both mild and moderate levels of membrane disruption. Our data indicate that an increase in LDH release was positively and linearly correlated with the hydrophobicity (r= 0.993). These data may help predict the potential biological effects of other, as yet untested, aliphatic alcohols and aliphatic alcohol-like compounds (e.g., anesthetics) on the plasma membrane.

References (0)

Cited by (0)

View full text