Skip to main content

Extraneuronal Monoamine Transporter and Organic Cation Transporters 1 and 2: A Review of Transport Efficiency

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

The extraneuronal monoamine transporter (EMT) corresponds to the classical steroid-sensitivemonoamine transportmechanism that was first described as “uptake2” in rat heart with noradrenaline as substrate. The organic cation transporters OCT1 and OCT2 are related to EMT. The three carriers share basic structural and functional characteristics. Hence, EMT, OCT1 and OCT2 constitute a group referred to as non-neuronal monoamine transporters or organic cation transporters. After a brief general introduction, this review focuses on the critical analysis of substrate specificity. We calculate from the available literature and compare consensus transport efficiency (clearance) data for human and rat EMT, OCT1 and OCT2, expressed in transfected cell lines. From the plethora of inhibitors that have been tested, the casual observer likely gets the impression that these carriers indiscriminately transport very many compounds. However, our knowledge about actual substrates is rather limited. 1-Methyl-4-phenylpyridinium (MPP+) is an excellent substrate for all three carriers, with clearances typically in the range of 20-50 μl min−1 mg protein−1. The secondbest general substrate is tyramine with a transport efficiency (TE) range relative to MPP+ of 20%–70%. The TEs of OCT1 and OCT2 for dopamine, noradrenaline, adrenaline and 5-HT in general are rather low, in the range relative to MPP+ of 5%–15%. This suggests that OCT1 and OCT2 are not primarily dedicated to transport these monoamine transmitters; only EMT may play a significant role in catecholamine inactivation. Formany substrates, such as tetraethylammonium, histamine, agmatine, guanidine, cimetidine, creatinine, choline and acetylcholine, the transport efficiencies are markedly different among the carriers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H (2001) Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol 281:F454–468

    PubMed  CAS  Google Scholar 

  • Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277:22491–22496

    Article  PubMed  CAS  Google Scholar 

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971

    Article  PubMed  CAS  Google Scholar 

  • Breidert T, Spitzenberger F, Gründemann D, Schömig E (1998) Catecholamine transport by the organic cation transporter type 1 (OCT1). Br J Pharmacol 125:218–224

    Article  PubMed  CAS  Google Scholar 

  • Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chlorocholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860

    Article  PubMed  CAS  Google Scholar 

  • Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H (1996a) Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett 395:153–156

    Article  PubMed  CAS  Google Scholar 

  • Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H (1996b) Electrogenetic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604

    Article  PubMed  CAS  Google Scholar 

  • Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Humanneurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    PubMed  CAS  Google Scholar 

  • Chen R, Nelson JA (2000) Role of organic cation transporters in the renal secretion of nucleosides. Biochem Pharmacol 60:215–219

    Article  PubMed  CAS  Google Scholar 

  • Chen Z-P, Wang G, Huang Q, Sun Z-F, Zhou L-Y, Wang A-D, Panasci LC (1999) Enhanced antitumor activity of SarCNU in comparison to BCNU in an extraneuronal monoamine transporter positive human glioma xenograft model. J Neurooncol 44:7–14

    Article  PubMed  CAS  Google Scholar 

  • Dudley AJ, Bleasby K, Brown CDA(2000) The organic cation transporter OCT2 mediates the uptake of beta-adrenoceptor antagonists across the apical membrane of renal LLC-PK1 cell monolayers. Br J Pharmacol 131:71–79

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G (2001) The role of neuronal and extraneuronal plasmamembrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, McCarty R, Pacak K, Russ H, Schömig E (1996) Disprocynium24, a novel inhibitor of the extraneuronal monoamine transporter, has potent effects on the inactivation of circulating noradrenaline and adrenaline in conscious rat. Naunyn Schmiedebergs Arch Pharmacol 354:287–294

    Article  PubMed  CAS  Google Scholar 

  • Eraly SA, Nigam SK (2002) Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem Biophys Res Commun 297:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, Sitar DS (2002) The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther 303:959–968

    Article  PubMed  CAS  Google Scholar 

  • Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  PubMed  CAS  Google Scholar 

  • Gründemann D, Schömig E (2000a) Efficiency of transport of monoamine transmitters by non-neuronal transporters. Pharmacol Toxicol 87:34

    Google Scholar 

  • Gründemann D, Schömig E (2000b) Gene structures of the human non-neuronal monoamine transporters EMT and OCT2. Hum Genet 106:627–635

    Article  PubMed  Google Scholar 

  • Gründemann D, Schömig E (2003) Organic cation transporters. In: Rosenthal W, Offermanns S (eds) Encyclopedic reference of molecular pharmacology. Springer Verlag, Heidelberg Berlin New York, pp 696–701

    Google Scholar 

  • Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552

    Article  PubMed  Google Scholar 

  • Gründemann D, Babin-Ebell J, Martel F, Örding N, Schmidt A, Schömig E (1997) Primary structure and functional expression of the apical organic cation transporter fromkidney epithelial LLC-PK1 cells. J Biol Chem 272:10408–10413

    Article  PubMed  Google Scholar 

  • Gründemann D, Breidert T, Spitzenberger F, Schömig E (1998a) Molecular structure of the carrier responsible for hepatic uptake of catecholamines. In: Goldstein DS, Eisenhofer G, McCarty R (eds) Advances in pharmacology vol. 42: catecholamines: bridging basic science with clinical medicine. Academic Press, San Diego, pp 346–349

    Google Scholar 

  • Gründemann D, Köster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermüller N, Schömig E (1998b) Transport of monoamine transmitters by the organic cation transporter type 2 (OCT2). J Biol Chem 273:30915–30920

    Article  PubMed  Google Scholar 

  • Gründemann D, Schechinger B, Rappold GA, Schömig E (1998c) Molecular identification of the corticosterone-sensitive extraneuronal monoamine transporter. Nat Neurosci 1:349–351

    Article  PubMed  Google Scholar 

  • Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E (1999) Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol 56:1–10

    PubMed  Google Scholar 

  • Gründemann D, Koschker A-C, Haag C, Honold C, Zimmermann T, Schömig E (2002) Activation of the extraneuronal monoamine transporter (EMT) from rat expressed in 293 cells. Br J Pharmacol 137:910–918

    Article  PubMed  CAS  Google Scholar 

  • Gründemann D, Hahne C, Berkels R, Schömig E (2003) Agmatine is efficiently transported by non-neuronal monoamine transporters EMT and OCT2. J Pharmacol Exp Ther 304:810–817

    Article  PubMed  CAS  Google Scholar 

  • Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schömig E (2005) Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA 102:5256–5261

    Article  PubMed  CAS  Google Scholar 

  • Haag C, Berkels R, Gründemann D, Lazar A, Taubert D, Schömig E (2004) The localisation of the extraneuronal monoamine transporter (EMT) in rat brain. J Neurochem 88:291–297

    Article  PubMed  CAS  Google Scholar 

  • Harlfinger S, Fork C, Lazar A, Schömig E, Gründemann D (2005) Are Organic Cation Transporters capable of transporting prostaglandins? Naunyn Schmiedebergs Arch Pharmacol 372:125–130

    Article  PubMed  CAS  Google Scholar 

  • Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, Niwa T, Jung SH, Onozato ML, Tojo A, Endou H (2004) Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol 499:45–51

    Article  PubMed  CAS  Google Scholar 

  • Hayer M, Bönisch H, Brüss M (1999) Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet 63:473–482

    Article  PubMed  CAS  Google Scholar 

  • Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Lieb T, Conner GE, Salathe M, Wanner A (2001) Steroid sensitivity of norepinephrine uptake by human bronchial arterial and rabbit aortic smooth muscle cells. Am J Respir Cell Mol Biol 25:500–506

    PubMed  CAS  Google Scholar 

  • Horvath G, Sutto Z, Torbati A, Conner GE, Salathe M, Wanner A (2003) Norepinephrine transport by the extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L829–837

    PubMed  CAS  Google Scholar 

  • Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 98:9965–9970

    Article  PubMed  CAS  Google Scholar 

  • Inazu M, Takeda H, Matsumiya T (2003) Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J Neurochem 84:43–52

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I (2005) Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos 33:495–499

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1965) The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol 25:18–33

    CAS  Google Scholar 

  • Jonker JW, Schinkel AH (2004) Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 308:2–9

    Article  PubMed  CAS  Google Scholar 

  • Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW, Schinkel AH (2001) Reduced hepatic uptake and intestinal excretion of organic cations inmicewith a targeted disruption of the organic cation transporter 1 (oct1). Mol Cell Biol 21:5471–5477

    Article  PubMed  CAS  Google Scholar 

  • Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908

    Article  PubMed  CAS  Google Scholar 

  • Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, Kaissling B, BAchmann S, Koepsell H (2000) Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol 279:F679–F687

    CAS  Google Scholar 

  • Kekuda R, Prasad PD, Wu X, Wang H, Fei Y-J, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979

    Article  PubMed  CAS  Google Scholar 

  • Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, Keil A, Eichelbaum M, Koepsell H (2002) Identification of genetic variations of the human organic cationtransporter hOCT1 and their functional consequences. Pharmacogenetics 12:591–595

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293–298

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H (2004) Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci 25:375–381

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90

    PubMed  CAS  Google Scholar 

  • Kristufek D, Rudorfer W, Pifl C, Huck S (2002) Organic cation transporter mRNA and function in the rat superior cervical ganglion. J Physiol 543:117–134

    Article  PubMed  CAS  Google Scholar 

  • Lazar A, Gründemann D, Berkels R, Taubert D, Zimmermann T, Schömig E (2003) Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3). J Hum Genet 48:226–230

    Article  PubMed  CAS  Google Scholar 

  • Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Clark AG, Herskowitz I, Giacomini KM (2002) Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, Ermert L, Kummer W, Koepsell H (2005) Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 33:79–88

    Article  PubMed  CAS  Google Scholar 

  • Martel F, Vetter T, Russ H, Gründemann D, Azevedo I, Koepsell H, Schömig E (1996) Transport of small organic cations in the rat liver-the role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch Pharmacol 354:320–326

    PubMed  CAS  Google Scholar 

  • Mayser W, Schloss P, Betz H (1992) Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett 305:31–36

    Article  PubMed  CAS  Google Scholar 

  • Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H (1997) A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem 272:31953–31956

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Urakami Y, Saito H, Inui K-I (1999) Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta 1417:224–231

    Article  PubMed  CAS  Google Scholar 

  • Pan BF, Sweet DH, Pritchard JB, Chen R, Nelson JA (1999) A transfected cell model for the renal toxin transporter, rOCT2. Toxicol Sci 47:181–186

    Article  PubMed  CAS  Google Scholar 

  • Panasci LC, Marcantonio D, Noe AJ (1996) SarCNU (2-chloroethyl-3-sarcosinamide-1-nitrosourea): a novel analogue of chloroethylnitrosourea that is transported by the catecholamine uptake2 carrier, which mediates increased cytotoxicity. Cancer Chemother Pharmacol 37:505–508

    Article  PubMed  CAS  Google Scholar 

  • Russ H, Engel W, Schömig E (1993) Isocyanines and pseudoisocyanines as a novel class of potent noradrenalin transport inhibitors: synthesis, detection, and biological activity. J Med Chem 36:4208–4213

    Article  PubMed  CAS  Google Scholar 

  • Russ H, Staudt K, Martel F, Gliese M, Schömig E (1996) The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous systemglia. Eur J Neurosci 8:1256–1264

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Anzai N, Shin HJ, Noshiro R, Hirata T, Yokoyama H, Kanai Y, Endou H (2004) Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun 313:789–793

    Article  PubMed  CAS  Google Scholar 

  • Satriano J, Kelly CJ, Blantz RC (1999) An emerging role for agmatine. Kidney Int 56:1252–1253

    Article  PubMed  CAS  Google Scholar 

  • Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissue. Biochem Biophys Res Commun 198:637–645

    Article  PubMed  CAS  Google Scholar 

  • Schömig E, Spitzenberger F, Engelhardt M, Martel F, Örding N, Gründemann D (1998) Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett 425:79–86

    Article  PubMed  Google Scholar 

  • Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ (2003) 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 85:358–367

    PubMed  CAS  Google Scholar 

  • Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D, Kawamoto M, Johns SJ, DeYoung J, Carlson E, Ferrin TE, Herskowitz I, Giacomini KM (2003) Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A 100:5902–5907

    Article  PubMed  CAS  Google Scholar 

  • Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, Naruse T, Inui K, Takata K (2000) Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol 114:175–180

    PubMed  CAS  Google Scholar 

  • Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH (2005) Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol 67:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Sweet DH, Pritchard JB (1999) rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. Am J Physiol 277:F890–F898

    PubMed  CAS  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB (2001) Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 276:41611–41619

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Yabuuchi H, Nezu J-I, Sai Y, Oku A, Shimane M, Tsuji A (1997) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419:107–111

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275:40064–40072

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1988) The extraneuronal uptake and metabolism of catecholamines. In: Trendelenburg U, Weiner N (eds) Catecholamines I. Springer-Verlag, Heidelberg Berlin New York, pp 279–319

    Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Saito H, Inui K-I (1998) Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287:800–805

    PubMed  CAS  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, Inui K (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    Article  PubMed  CAS  Google Scholar 

  • Urakami Y, Akazawa M, Saito H, Okuda M, Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981

    Article  PubMed  CAS  Google Scholar 

  • Van Montfoort JE, Müller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ (2001) Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther 298:110–115

    PubMed  Google Scholar 

  • van Montfoort JE, Hagenbuch B, Groothuis GM, Koepsell H, Meier PJ, Meijer DK (2003) Drug uptake systems in liver and kidney. Curr Drug Metab 4:185–211

    Article  PubMed  Google Scholar 

  • Verhaagh S, Barlow DP, Zwart R (2001) The extra-neuronal monoamine transporter SLC22A3/ORCT3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev 100:127–130

    Article  PubMed  CAS  Google Scholar 

  • Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ (2003) 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 85:358–367

    PubMed  CAS  Google Scholar 

  • Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D, Kawamoto M, Johns SJ, DeYoung J, Carlson E, Ferrin TE, Herskowitz I, Giacomini KM (2003) Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A 100:5902–5907

    Article  PubMed  CAS  Google Scholar 

  • Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, Naruse T, Inui K, Takata K (2000) Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol 114:175–180

    PubMed  CAS  Google Scholar 

  • Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH (2005) Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol 67:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Sweet DH, Pritchard JB (1999) rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. Am J Physiol 277:F890–F898

    PubMed  CAS  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB (2001) Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 276:41611–41619

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Yabuuchi H, Nezu J-I, Sai Y, Oku A, Shimane M, Tsuji A (1997) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419:107–111

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275:40064–40072

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1988) The extraneuronal uptake and metabolism of catecholamines. In: Trendelenburg U, Weiner N (eds) Catecholamines I. Springer-Verlag, Heidelberg Berlin New York, pp 279–319

    Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Saito H, Inui K-I (1998) Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287:800–805

    PubMed  CAS  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, Inui K (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    Article  PubMed  CAS  Google Scholar 

  • Urakami Y, Akazawa M, Saito H, Okuda M, Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981

    Article  PubMed  CAS  Google Scholar 

  • Van Montfoort JE, Müller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ (2001) Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther 298:110–115

    PubMed  Google Scholar 

  • van Montfoort JE, Hagenbuch B, Groothuis GM, Koepsell H, Meier PJ, Meijer DK (2003) Drug uptake systems in liver and kidney. Curr Drug Metab 4:185–211

    Article  PubMed  Google Scholar 

  • Verhaagh S, Barlow DP, Zwart R (2001) The extra-neuronal monoamine transporter SLC22A3/ORCT3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev 100:127–130

    Article  PubMed  CAS  Google Scholar 

  • Vialou V, Amphoux A, Zwart R, Giros B, Gautron S (2004) Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci 24:2846–2851

    Article  PubMed  CAS  Google Scholar 

  • Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510–515

    Article  PubMed  CAS  Google Scholar 

  • Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 63:844–848

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Kekuda R, Huang W, Fei Y-J, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, Leibach FH, Ganapathy V (2000) Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol 279:F449–F458

    CAS  Google Scholar 

  • Yabuuchi H, Tamai I, Nezu J-I, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A (1999) Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther 289:768–773

    PubMed  CAS  Google Scholar 

  • Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM(1997) Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51:913–921

    PubMed  CAS  Google Scholar 

  • Zhang L, Schaner ME, Giacomini KM (1998) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther 286:354–361

    PubMed  CAS  Google Scholar 

  • Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schömig, E., Lazar, A., Gründemann, D. (2006). Extraneuronal Monoamine Transporter and Organic Cation Transporters 1 and 2: A Review of Transport Efficiency. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_8

Download citation

Publish with us

Policies and ethics