Skip to main content

Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases

  • Chapter
  • First Online:
Book cover Mitochondrial Dynamics in Cardiovascular Medicine

Abstract

Mitochondrial proton leak is the principal mechanism that incompletely couples substrate oxygen to ATP generation. This chapter briefly addresses the recent progress made in understanding the role of proton leak in the pathogenesis of cardiovascular diseases. Majority of the proton conductance is mediated by uncoupling proteins (UCPs) located in the mitochondrial inner membrane. It is evident that the proton leak and reactive oxygen species (ROS) generated from electron transport chain (ETC) in mitochondria are linked to each other. Increased ROS production has been shown to induce proton conductance, and in return, increased proton conductance suppresses ROS production, suggesting the existence of a positive feedback loop that protects the biological systems from detrimental effects of augmented oxidative stress. There is mounting evidence attributing to proton leak and uncoupling proteins a crucial role in the pathogenesis of cardiovascular disease. We can surmise the role of “uncoupling” in cardiovascular disorders as follows; First, the magnitude of the proton leak and the mechanism involved in mediating the proton leak determine whether there is a protective effect against ischemia-reperfusion (IR) injury. Second, uncoupling by UCP2 preserves vascular function in diet-induced obese mice as well as in diabetes. Third, etiology determines whether the proton conductance is altered or not during hypertension. And fourth, proton leak regulates ATP synthesis-uncoupled mitochondrial ROS generation, which determines pathological activation of endothelial cells for recruitment of inflammatory cells. Continue effort in improving our understanding in the role of proton leak in the pathogenesis of cardiovascular and metabolic diseases would lead to identification of novel therapeutic targets for treatment.

Gayani Nanayakkara, Ying Shao, Ramon Cueto, Luqiao Wang, contributed to this work equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rich PR, Marechal A. The mitochondrial respiratory chain. Essays Biochem. 2010;47:1–23.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.

    Article  CAS  PubMed  Google Scholar 

  4. Noji H, Yasuda R, Yoshida M, Kinosita Jr K. Direct observation of the rotation of F1-ATPase. Nature. 1997;386:299–302.

    Article  CAS  PubMed  Google Scholar 

  5. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955;217:409–27.

    CAS  PubMed  Google Scholar 

  6. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003;1604:77–94.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy MP. Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 1989;977:123–41.

    Article  CAS  PubMed  Google Scholar 

  8. Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD. The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol. 1998;119:325–34.

    Article  CAS  PubMed  Google Scholar 

  9. Fontaine EM, Moussa M, Devin A, Garcia J, Ghisolfi J, Rigoulet M, Leverve XM. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria. Biochim Biophys Acta. 1996;1276:181–7.

    Article  PubMed  Google Scholar 

  10. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005;392:353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker N, Vidal-Puig A, Brand MD. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Biosci Rep. 2008;28:83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000;26:435–9.

    Article  CAS  PubMed  Google Scholar 

  13. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000;275:16258–66.

    Article  CAS  PubMed  Google Scholar 

  14. Azzu V, Brand MD. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 2010;35:298–307.

    Article  CAS  PubMed  Google Scholar 

  15. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 2004;24:7779–88.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38:12–23.

    Article  CAS  PubMed  Google Scholar 

  19. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191:421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herrero A, Barja G. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr. 1997;29:241–9.

    Article  CAS  PubMed  Google Scholar 

  21. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem. 2003;86:1101–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ganote CE, Armstrong SC. Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol. 2003;35:749–59.

    Article  CAS  PubMed  Google Scholar 

  24. Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell. 2004;3:87–95.

    Article  CAS  PubMed  Google Scholar 

  25. Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53(Suppl 1):S110–8.

    Article  CAS  PubMed  Google Scholar 

  26. Brookes PS, Land JM, Clark JB, Heales SJ. Peroxynitrite and brain mitochondria: evidence for increased proton leak. J Neurochem. 1998;70:2195–202.

    Article  CAS  PubMed  Google Scholar 

  27. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002;415:96–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu X, Zuo L, Cardounel AJ, Zweier JL, He G. Characterization of in vivo tissue redox status, oxygenation, and formation of reactive oxygen species in postischemic myocardium. Antioxid Redox Signal. 2007;9:447–55.

    Article  CAS  PubMed  Google Scholar 

  29. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88:581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfleger J, He M, Abdellatif M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 2015;6:e1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hill BG, Dranka BP, Zou L, Chatham JC, Darley-Usmar VM. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem J. 2009;424:99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res. 2011;165:5–14.

    Article  CAS  PubMed  Google Scholar 

  33. Nadtochiy SM, Tompkins AJ, Brookes PS. Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J. 2006;395:611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006;72:313–21.

    Article  CAS  PubMed  Google Scholar 

  35. Minners J, van den Bos EJ, Yellon DM, Schwalb H, Opie LH, Sack MN. Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res. 2000;47:68–73.

    Article  CAS  PubMed  Google Scholar 

  36. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(Pt 2):233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  CAS  PubMed  Google Scholar 

  38. Koziel A, Sobieraj I, Jarmuszkiewicz W. Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. Am J Physiol Heart Circ Physiol. 2015;309:H147–56.

    Article  CAS  PubMed  Google Scholar 

  39. Gomez-Hernandez A, Perdomo L, de las Heras N, Beneit N, Escribano O, Otero YF, Guillen C, Diaz-Castroverde S, Gozalbo-Lopez B, Cachofeiro V, Lahera V, Benito M. Antagonistic effect of TNF-alpha and insulin on uncoupling protein 2 (UCP-2) expression and vascular damage. Cardiovasc Diabetol. 2014;13:108.

    PubMed  PubMed Central  Google Scholar 

  40. Tian XY, Wong WT, Xu A, Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y, Yao X, Huang Y. Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res. 2012;110:1211–6.

    Article  CAS  PubMed  Google Scholar 

  41. Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS, Jurczak MJ, Mannam P, Giordano F, Erzurum SC, Lee PJ. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol. 2015;35:1166–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang P, Wang M, Xue L, Xiao Y, Yu J, Wang H, Yao J, Liu H, Peng Y, Li H, Chen Y, Guan MX. A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol. 2016;36:1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eirin A, Ebrahimi B, Kwon SH, Fiala JA, Williams BJ, Woollard JR, He Q, Gupta RC, Sabbah HN, Prakash YS, Textor SC, Lerman A, Lerman LO. Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension. J Am Heart Assoc. 2016;5:e003118.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Yu T, Lee H, O’Brien DK, Sesaki H, Yoon Y. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc Res. 2015;106:272–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, Mallat Z. Protective role of uncoupling protein 2 in atherosclerosis. Circulation. 2003;107:388–90.

    Article  CAS  PubMed  Google Scholar 

  46. Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, Kim HS, Lee WJ, Koh EH, Song KH, Han SM, Kim MS, Park IS, Park JY. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res. 2005;96:1200–7.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, Duan X, Shang W, Fan HY, Tong C. Mitoguardin regulates mitochondrial fusion through mitoPLD and is required for neuronal homeostasis. Mol Cell. 2016;61:111–24.

    Article  CAS  PubMed  Google Scholar 

  48. Gambardella J, Sardu C, Sacra C, Del Giudice C, Santulli G. Quit smoking to outsmart atherogenesis: molecular mechanisms underlying clinical evidence. Atherosclerosis. 2017;257:242–5.

    Google Scholar 

  49. Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H, Yang X. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 2017;95(3):247–52.

    Google Scholar 

  50. Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004;64:198–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang MD, PhD, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cheng, J. et al. (2017). Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_20

Download citation

Publish with us

Policies and ethics