Skip to main content

Anthracyclines and Mitochondria

  • Chapter
  • First Online:
Book cover Advances in Mitochondrial Medicine

Abstract

Anthracyclines remain the cornerstone in the treatment of many malignancies including lymphomas, leukaemias, and sarcomas. Unfortunately, the clinical use of these potent chemotherapeutics is severely limited by the development of a progressive dose-dependent cardiomyopathy that irreversibly evolves toward congestive heart failure. The molecular mechanisms responsible for anthracycline anticancer activity as well as those underlying anthracycline-induced cardiotoxicity are incompletely understood and remain a matter of remarkable controversy. Anthracyclines have long been considered to induce cardiotoxicity by mechanisms different from those mediating their anticancer activity. In particular, anthracycline antitumor efficacy is associated with nuclear DNA intercalation, topoisomerase II inhibition and drug-DNA adducts formation, whereas the cardiotoxicity is prevalently ascribed to oxidative stress and mitochondrial dysfunction. At present, however, the view that distinct mechanisms are implied in anticancer and cardiotoxic responses to anthracycline therapy does not seem fully convincing since beneficial (anticancer) and detrimental (cardiotoxic) effects are to some extent overlapping, share the subcellular organelle targets, the molecular effectors and the pathophysiological processes (i.e. DNA strand breaks, oxidative stress, signalling pathways, mitochondrial dysfunctions, apoptosis etc.).

Here, we review the potential role of mitochondria in the molecular mechanisms underlying anthracyclines anticancer activity as well as in the pathogenesis of anthracycline-induced cardiotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdella BR, Fisher J (1985) A chemical perspective on the anthracycline antitumor antibiotics. Environ Health Perspect 64:4–18

    PubMed  CAS  Google Scholar 

  • Abdulghani J, El-Deiry WS (2010) TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14(10):1091–1108

    PubMed  CAS  Google Scholar 

  • Adachi K, Fujiura Y, Mayumi F, Nozuhara A, Sugiu Y, Sakanashi T, Hidaka T, Toshima H (1993) A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun 195(2):945–951

    PubMed  CAS  Google Scholar 

  • Akimitsu N, Adachi N, Hirai H, Hossain MS, Hamamoto H, Kobayashi M, Aratani Y, Koyama H, Sekimizu K (2003) Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIalpha. Genes Cells 8(4):393–402

    PubMed  CAS  Google Scholar 

  • Aldieri E, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D (2002) Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicol Appl Pharmacol 185(2):85–90

    PubMed  CAS  Google Scholar 

  • Armstrong GT, Liu Q, Yasui Y, Huang S, Ness KK, Leisenring W, Hudson MM, Donaldson SS, King AA, Stovall M, Krull KR, Robison LL, Packer RJ (2009) Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst 101(13):946–958

    PubMed  Google Scholar 

  • Aroui S, Brahim S, De Waard M, Breard J, Kenani A (2009a) Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett 285(1):28–38

    PubMed  CAS  Google Scholar 

  • Aroui S, Brahim S, Hamelin J, De Waard M, Breard J, Kenani A (2009b) Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis. Apoptosis 14(11):1352–1365

    PubMed  CAS  Google Scholar 

  • Aroui S, Mili D, Brahim S, De Waard M, Kenani A (2010) Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem Biophys Res Commun 396(4):908–914

    PubMed  CAS  Google Scholar 

  • Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118(6):1979–1990

    PubMed  CAS  Google Scholar 

  • Ashley N, Poulton J (2009) Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun 378(3):450–455

    PubMed  CAS  Google Scholar 

  • Azarova AM, Lyu YL, Lin CP, Tsai YC, Lau JY, Wang JC, Liu LF (2007) Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci USA 104(26):11014–11019

    PubMed  CAS  Google Scholar 

  • Baines CP (2010) The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 72:61–80

    PubMed  CAS  Google Scholar 

  • Bains OS, Karkling MJ, Grigliatti TA, Reid RE, Riggs KW (2009) Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin. Drug Metab Dispos 37(5):1107–1114

    PubMed  CAS  Google Scholar 

  • Bains OS, Grigliatti TA, Reid RE, Riggs KW (2010a) Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J Pharmacol Exp Ther 335(3):533–545

    PubMed  CAS  Google Scholar 

  • Bains OS, Karkling MJ, Lubieniecka JM, Grigliatti TA, Reid RE, Riggs KW (2010b) Naturally occurring variants of human CBR3 alter anthracycline in vitro metabolism. J Pharmacol Exp Ther 332(3):755–763

    PubMed  CAS  Google Scholar 

  • Bellarosa D, Ciucci A, Bullo A, Nardelli F, Manzini S, Maggi CA, Goso C (2001) Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. J Pharmacol Exp Ther 296(2):276–283

    PubMed  CAS  Google Scholar 

  • Bernaba BN, Chan JB, Lai CK, Fishbein MC (2010) Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol 19(5):308–311

    PubMed  CAS  Google Scholar 

  • Bertheau P, Plassa F, Espie M, Turpin E, de Roquancourt A, Marty M, Lerebours F, Beuzard Y, Janin A, de The H (2002) Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360(9336):852–854

    PubMed  CAS  Google Scholar 

  • Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25

    PubMed  CAS  Google Scholar 

  • Bianchi C, Bagnato A, Paggi MG, Floridi A (1987) Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria. Exp Mol Pathol 46(1):123–135

    PubMed  CAS  Google Scholar 

  • Binaschi M, Bigioni M, Cipollone A, Rossi C, Goso C, Maggi CA, Capranico G, Animati F (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1(2):113–130

    PubMed  CAS  Google Scholar 

  • Bouralexis S, Clayer M, Atkins GJ, Labrinidis A, Hay S, Graves S, Findlay DM, Evdokiou A (2004) Sensitivity of fresh isolates of soft tissue sarcoma, osteosarcoma and giant cell tumour cells to Apo2L/TRAIL and doxorubicin. Int J Oncol 24(5):1263–1270

    PubMed  CAS  Google Scholar 

  • Burke PJ, Koch TH (2004) Design, synthesis, and biological evaluation of doxorubicin-formaldehyde conjugates targeted to breast cancer cells. J Med Chem 47(5):1193–1206

    PubMed  CAS  Google Scholar 

  • Calvo SE, Mootha VK (2010) The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44

    PubMed  CAS  Google Scholar 

  • Cancer survivors–United States, 2007 (2011) MMWR Morb Mortal Wkly Rep 60(9):269–272

    Google Scholar 

  • Capranico G, Tinelli S, Austin CA, Fisher ML, Zunino F (1992) Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim Biophys Acta 1132(1):43–48

    PubMed  CAS  Google Scholar 

  • Carpenter AJ, Porter AC (2004) Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 15(12):5700–5711

    PubMed  CAS  Google Scholar 

  • Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, Hagerty KL, Somerfield MR, Vaughn DJ (2007) American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 25(25):3991–4008

    PubMed  CAS  Google Scholar 

  • Chaiswing L, Cole MP, St Clair DK, Ittarat W, Szweda LI, Oberley TD (2004) Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol Pathol 32(5):536–547

    PubMed  CAS  Google Scholar 

  • Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B (2009) Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 96(4):1388–1398

    PubMed  CAS  Google Scholar 

  • Chang WT, Li J, Huang HH, Liu H, Han M, Ramachandran S, Li CQ, Sharp WW, Hamann KJ, Yuan CS, Hoek TL, Shao ZH (2011) Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. J Cell Biochem 112(10):2873–2881

    PubMed  CAS  Google Scholar 

  • Chen Y, Saari JT, Kang YJ (1994) Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic Biol Med 17(6):529–536

    PubMed  CAS  Google Scholar 

  • Chen B, Peng X, Pentassuglia L, Lim CC, Sawyer DB (2007a) Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol 7(2):114–121

    PubMed  CAS  Google Scholar 

  • Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK (2007b) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7(3):147–156

    PubMed  CAS  Google Scholar 

  • Chen MH, Colan SD, Diller L (2011) Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res 108(5):619–628

    PubMed  CAS  Google Scholar 

  • Cheng H, Force T (2010a) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106(1):21–34

    PubMed  CAS  Google Scholar 

  • Cheng H, Force T (2010b) Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis 53(2):114–120

    PubMed  CAS  Google Scholar 

  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62(16):4592–4598

    PubMed  CAS  Google Scholar 

  • Chua CC, Liu X, Gao J, Hamdy RC, Chua BH (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290(6):H2606–H2613

    PubMed  CAS  Google Scholar 

  • Clementi ME, Giardina B, Di Stasio E, Mordente A, Misiti F (2003) Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res 23(3B):2445–2450

    PubMed  CAS  Google Scholar 

  • Clemmons DR (2007) Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov 6(10):821–833

    PubMed  CAS  Google Scholar 

  • Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2008) Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations. Nucleic Acids Res 36(16):e100

    PubMed  Google Scholar 

  • Cuello M, Ettenberg SA, Nau MM, Lipkowitz S (2001) Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol Oncol 81(3):380–390

    PubMed  CAS  Google Scholar 

  • Cullinane C, Phillips DR (1990) Induction of stable transcriptional blockage sites by adriamycin: GpC specificity of apparent adriamycin-DNA adducts and dependence on iron(III) ions. Biochemistry 29(23):5638–5646

    PubMed  CAS  Google Scholar 

  • Cullinane C, Cutts SM, Panousis C, Phillips DR (2000) Interstrand cross-linking by adriamycin in nuclear and mitochondrial DNA of MCF-7 cells. Nucleic Acids Res 28(4):1019–1025

    PubMed  CAS  Google Scholar 

  • Cummings J, Allan L, Willmott N, Riley R, Workman P, Smyth JF (1992) The enzymology of doxorubicin quinone reduction in tumour tissue. Biochem Pharmacol 44(11):2175–2183

    PubMed  CAS  Google Scholar 

  • Cutts SM, Nudelman A, Rephaeli A, Phillips DR (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57(2):73–81

    PubMed  CAS  Google Scholar 

  • Cutts SM, Swift LP, Pillay V, Forrest RA, Nudelman A, Rephaeli A, Phillips DR (2007) Activation of clinically used anthracyclines by the formaldehyde-releasing prodrug pivaloyloxymethyl butyrate. Mol Cancer Ther 6(4):1450–1459

    PubMed  CAS  Google Scholar 

  • Danesi R, Fogli S, Gennari A, Conte P, Del Tacca M (2002) Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin Pharmacokinet 41(6):431–444

    PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81(7):891–909

    PubMed  CAS  Google Scholar 

  • Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261(7):3060–3067

    PubMed  CAS  Google Scholar 

  • De Oliveira F, Chauvin C, Ronot X, Mousseau M, Leverve X, Fontaine E (2006) Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells. Oncogene 25(18):2646–2655

    PubMed  Google Scholar 

  • Desmedt C, Di Leo A, de Azambuja E, Larsimont D, Haibe-Kains B, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, Maerevoet M, Vindevoghel A, Rouas G, Lallemand F, Durbecq V, Cardoso F, Salgado R, Rovere R, Bontempi G, Michiels S, Buyse M, Nogaret JM, Qi Y, Symmans F, Pusztai L, D’Hondt V, Piccart-Gebhart M, Sotiriou C (2011) Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol 29(12):1578–1586

    PubMed  CAS  Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26(13):4872–4881

    PubMed  CAS  Google Scholar 

  • Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261(7):3068–3074

    PubMed  CAS  Google Scholar 

  • Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65(1):128–135

    PubMed  CAS  Google Scholar 

  • Dyer MJ, MacFarlane M, Cohen GM (2007) Barriers to effective TRAIL-targeted therapy of malignancy. J Clin Oncol 25(28):4505–4506

    PubMed  Google Scholar 

  • Eischen CM, Kottke TJ, Martins LM, Basi GS, Tung JS, Earnshaw WC, Leibson PJ, Kaufmann SH (1997) Comparison of apoptosis in wild-type and Fas-resistant cells: chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood 90(3):935–943

    PubMed  CAS  Google Scholar 

  • El Btaouri H, Morjani H, Greffe Y, Charpentier E, Martiny L (2011) Role of JNK/ATF-2 pathway in inhibition of thrombospondin-1 (TSP-1) expression and apoptosis mediated by doxorubicin and camptothecin in FTC-133 cells. Biochim Biophys Acta 1813(5):695–703

    PubMed  CAS  Google Scholar 

  • Elliott P (2006) Pathogenesis of cardiotoxicity induced by anthracyclines. Semin Oncol 33(3 suppl 8):S2-7

    PubMed  Google Scholar 

  • Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, Avkiran M, de Azambuja E, Balligand JL, Brutsaert DL, Condorelli G, Hansen A, Heymans S, Hill JA, Hirsch E, Hilfiker-Kleiner D, Janssens S, de Jong S, Neubauer G, Pieske B, Ponikowski P, Pirmohamed M, Rauchhaus M, Sawyer D, Sugden PH, Wojta J, Zannad F, Shah AM (2011) Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 13(1):1–10

    PubMed  Google Scholar 

  • Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7(10):564–575

    PubMed  Google Scholar 

  • Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23(13):2900–2902

    PubMed  CAS  Google Scholar 

  • Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427–434

    PubMed  CAS  Google Scholar 

  • Feng R, Zhai WL, Yang HY, Jin H, Zhang QX (2011) Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK. Biochem Biophys Res Commun 406(2):299–304

    PubMed  CAS  Google Scholar 

  • Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC (2005) Cardiotoxicity of cancer therapy. J Clin Oncol 23(30):7685–7696

    PubMed  CAS  Google Scholar 

  • Fogli S, Nieri P, Breschi MC (2004) The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J 18(6):664–675

    PubMed  CAS  Google Scholar 

  • Forrest GL, Gonzalez B, Tseng W, Li X, Mann J (2000) Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 60(18):5158–5164

    PubMed  CAS  Google Scholar 

  • Franco VI, Henkel JM, Miller TL, Lipshultz SE (2011) Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol Res Pract 2011:134679

    PubMed  Google Scholar 

  • Frezard F, Garnier-Suillerot A (1991) Comparison of the membrane transport of anthracycline derivatives in drug-resistant and drug-sensitive K562 cells. Eur J Biochem 196(2):483–491

    PubMed  CAS  Google Scholar 

  • Fry M, Green DE (1980) Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun 93(4):1238–1246

    PubMed  CAS  Google Scholar 

  • Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256(4):1874–1880

    PubMed  CAS  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9(6):447–464

    PubMed  CAS  Google Scholar 

  • Gambliel HA, Burke BE, Cusack BJ, Walsh GM, Zhang YL, Mushlin PS, Olson RD (2002) Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochem Biophys Res Commun 291(3):433–438

    PubMed  CAS  Google Scholar 

  • Gamen S, Anel A, Lasierra P, Alava MA, Martinez-Lorenzo MJ, Pineiro A, Naval J (1997) Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS Lett 417(3):360–364

    PubMed  CAS  Google Scholar 

  • Gariboldi MB, Ravizza R, Riganti L, Meschini S, Calcabrini A, Marra M, Arancia G, Dolfini E, Monti E (2003) Molecular determinants of intrinsic resistance to doxorubicin in human cancer cell lines. Int J Oncol 22(5):1057–1064

    PubMed  CAS  Google Scholar 

  • Garner AP, Paine MJ, Rodriguez-Crespo I, Chinje EC, Ortiz De Montellano P, Stratford IJ, Tew DG, Wolf CR (1999) Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents. Cancer Res 59(8):1929–1934

    PubMed  CAS  Google Scholar 

  • Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    PubMed  CAS  Google Scholar 

  • Ghosh J, Das J, Manna P, Sil PC (2011) The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials 32(21):4857–4866

    PubMed  CAS  Google Scholar 

  • Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26(22):3777–3784

    PubMed  Google Scholar 

  • Giantris A, Abdurrahman L, Hinkle A, Asselin B, Lipshultz SE (1998) Anthracycline-induced cardiotoxicity in children and young adults. Crit Rev Oncol Hematol 27(1):53–68

    PubMed  CAS  Google Scholar 

  • Gilliam LA, Ferreira LF, Bruton JD, Moylan JS, Westerblad H, St Clair DK, Reid MB (2009) Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. J Appl Physiol 107(6):1935–1942

    PubMed  CAS  Google Scholar 

  • Gilliam LA, Moylan JS, Ferreira LF, Reid MB (2011) TNF/TNFR1 signaling mediates doxorubicin-induced diaphragm weakness. Am J Physiol Lung Cell Mol Physiol 300(2):L225–L231

    PubMed  CAS  Google Scholar 

  • Goffart S, von Kleist-Retzow JC, Wiesner RJ (2004) Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 64(2):198–207

    PubMed  CAS  Google Scholar 

  • Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765

    PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Huart P, Brasseur R, Ruysschaert JM (1986) Mechanism of inhibition of mitochondrial enzymatic complex I-III by adriamycin derivatives. Biochim Biophys Acta 861(1):83–94

    PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM (1990) Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem 35(2–3):247–257

    PubMed  CAS  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637

    PubMed  CAS  Google Scholar 

  • Guise S, Braguer D, Carles G, Delacourte A, Briand C (2001) Hyperphosphorylation of tau is mediated by ERK activation during anticancer drug-induced apoptosis in neuroblastoma cells. J Neurosci Res 63(3):257–267

    PubMed  CAS  Google Scholar 

  • Guo L, Fan L, Pang Z, Ren J, Ren Y, Li J, Chen J, Wen Z, Jiang X (2011) TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes. J Control Release 154(1):93–102

    PubMed  CAS  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38(4):841–860

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787(11):1402–1415

    PubMed  CAS  Google Scholar 

  • Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, Ashkenazi A, Jubb AM, Mendelson DS (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28(17):2839–2846

    PubMed  CAS  Google Scholar 

  • Herman EH, Ferrans VJ, Myers CE, Van Vleet JF (1985) Comparison of the effectiveness of (+/-)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) and N-acetylcysteine in preventing chronic doxorubicin cardiotoxicity in beagles. Cancer Res 45(1):276–281

    PubMed  CAS  Google Scholar 

  • Hiraumi Y, Iwai-Kanai E, Baba S, Yui Y, Kamitsuji Y, Mizushima Y, Matsubara H, Watanabe M, Watanabe K, Toyokuni S, Nakahata T, Adachi S (2009) Granulocyte colony-stimulating factor protects cardiac mitochondria in the early phase of cardiac injury. Am J Physiol Heart Circ Physiol 296(3):H823–H832

    PubMed  CAS  Google Scholar 

  • Hoffmann F, Maser E (2007) Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev 39(1):87–144

    PubMed  CAS  Google Scholar 

  • Hoshijima M, Chien KR (2002) Mixed signals in heart failure: cancer rules. J Clin Invest 109(7):849–855

    PubMed  CAS  Google Scholar 

  • Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84(4):550–557

    PubMed  CAS  Google Scholar 

  • Humphreys RC, Halpern W (2008) Trail receptors: targets for cancer therapy. Adv Exp Med Biol 615:127–158

    PubMed  CAS  Google Scholar 

  • Innocenti F, Iyer L, Ramirez J, Green MD, Ratain MJ (2001) Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 29(5):686–692

    PubMed  CAS  Google Scholar 

  • Inoue A, Narumi K, Matsubara N, Sugawara S, Saijo Y, Satoh K, Nukiwa T (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 157(1):105–112

    PubMed  CAS  Google Scholar 

  • Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25(3):435–457

    PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    PubMed  Google Scholar 

  • Jeremias I, Stahnke K, Debatin KM (2005) CD95/Apo-1/Fas: independent cell death induced by doxorubicin in normal cultured cardiomyocytes. Cancer Immunol Immunother 54(7):655–662

    PubMed  CAS  Google Scholar 

  • Ji LL, Mitchell EW (1994) Effects of Adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol 47(5):877–885

    PubMed  CAS  Google Scholar 

  • Jin Y, Penning TM (2007) Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47:263–292

    PubMed  CAS  Google Scholar 

  • Joerger M, Huitema AD, Meenhorst PL, Schellens JH, Beijnen JH (2005) Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 55(5):488–496

    PubMed  CAS  Google Scholar 

  • Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

    PubMed  CAS  Google Scholar 

  • Jung K, Reszka R (2001) Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev 49(1–2):87–105

    PubMed  CAS  Google Scholar 

  • Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235(1–2):119–124

    PubMed  Google Scholar 

  • Kang J, Bu J, Hao Y, Chen F (2005) Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 8(3):274–279

    PubMed  CAS  Google Scholar 

  • Kato S, Burke PJ, Fenick DJ, Taatjes DJ, Bierbaum VM, Koch TH (2000) Mass spectrometric measurement of formaldehyde generated in breast cancer cells upon treatment with anthracycline antitumor drugs. Chem Res Toxicol 13(6):509–516

    PubMed  CAS  Google Scholar 

  • Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H (1990) Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther 47(2):219–231

    PubMed  CAS  Google Scholar 

  • Kelly MM, Hoel BD, Voelkel-Johnson C (2002) Doxorubicin pretreatment sensitizes prostate cancer cell lines to TRAIL induced apoptosis which correlates with the loss of c-FLIP expression. Cancer Biol Ther 1(5):520–527

    PubMed  Google Scholar 

  • Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10(3):221–237

    PubMed  CAS  Google Scholar 

  • Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    PubMed  CAS  Google Scholar 

  • Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and Fas-mediated cell death. Pharmacology 84(5):300–309

    PubMed  CAS  Google Scholar 

  • Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813(4):616–622

    PubMed  CAS  Google Scholar 

  • Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127(3):295–314

    PubMed  CAS  Google Scholar 

  • Kleinbongard P, Schulz R, Heusch G (2011) TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16(1):49–69

    PubMed  CAS  Google Scholar 

  • Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, Beauvillain JC, Bailly C (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23(42):7018–7030

    PubMed  CAS  Google Scholar 

  • Koehler BC, Urbanik T, Vick B, Boger RJ, Heeger S, Galle PR, Schuchmann M, Schulze-Bergkamen H (2009) TRAIL-induced apoptosis of hepatocellular carcinoma cells is augmented by targeted therapies. World J Gastroenterol 15(47):5924–5935

    PubMed  CAS  Google Scholar 

  • Komdeur R, Meijer C, Van Zweeden M, De Jong S, Wesseling J, Hoekstra HJ, van der Graaf WT (2004) Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells. Int J Oncol 25(3):677–684

    PubMed  CAS  Google Scholar 

  • Koster DA, Crut A, Shuman S, Bjornsti MA, Dekker NH (2010) Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142(4):519–530

    PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    PubMed  CAS  Google Scholar 

  • Kucej M, Kucejova B, Subramanian R, Chen XJ, Butow RA (2008) Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci 121(Pt 11):1861–1868

    PubMed  CAS  Google Scholar 

  • Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T (2008) Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 27(6):741–754

    PubMed  CAS  Google Scholar 

  • Kurita S, Mott JL, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Roberts LR, Fernandez-Zapico ME, Gores GJ (2011) Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells. PLoS One 6(3):e18330

    PubMed  CAS  Google Scholar 

  • L’Ecuyer T, Allebban Z, Thomas R, Vander Heide R (2004) Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. Am J Physiol Heart Circ Physiol 286(6):H2057–H2064

    PubMed  Google Scholar 

  • Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM (2004) Antioxidants and cancer therapy: a systematic review. J Clin Oncol 22(3):517–528

    PubMed  CAS  Google Scholar 

  • Lagadinou ED, Ziros PG, Tsopra OA, Dimas K, Kokkinou D, Thanopoulou E, Karakantza M, Pantazis P, Spyridonidis A, Zoumbos NC (2008) c-Jun N-terminal kinase activation failure is a new mechanism of anthracycline resistance in acute myeloid leukemia. Leukemia 22(10):1899–1908

    PubMed  CAS  Google Scholar 

  • Lal S, Mahajan A, Chen WN, Chowbay B (2010) Pharmacogenetics of target genes across doxorubicin disposition pathway: a review. Curr Drug Metab 11(1):115–128

    PubMed  CAS  Google Scholar 

  • Land EJ, Mukherjee T, Swallow AJ, Bruce JM (1983) One-electron reduction of adriamycin: properties of the semiquinone. Arch Biochem Biophys 225(1):116–121

    PubMed  CAS  Google Scholar 

  • Larsen RL, Canter CE, Naftel DC, Tressler M, Rosenthal DN, Blume ED, Mahle WT, Yung D, Morrow WR, Orav EJ, Wilkinson JD, Towbin JA, Lipshultz SE (2011) The impact of heart failure severity at time of listing for cardiac transplantation on survival in pediatric cardiomyopathy. J Heart Lung Transplant 30(7):755–760

    PubMed  Google Scholar 

  • Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7(2):108–113

    PubMed  CAS  Google Scholar 

  • Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108(19):2423–2429

    PubMed  CAS  Google Scholar 

  • Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207(4):436–444

    PubMed  CAS  Google Scholar 

  • Lebrecht D, Kirschner J, Geist A, Haberstroh J, Walker UA (2010) Respiratory chain deficiency precedes the disrupted calcium homeostasis in chronic doxorubicin cardiomyopathy. Cardiovasc Pathol 19(5):e167–e174

    PubMed  CAS  Google Scholar 

  • Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32(2):302–314

    PubMed  CAS  Google Scholar 

  • Legha SS, Wang YM, Mackay B, Ewer M, Hortobagyi GN, Benjamin RS, Ali MK (1982) Clinical and pharmacologic investigation of the effects of alpha-tocopherol on adriamycin cardiotoxicity. Ann N Y Acad Sci 393:411–418

    PubMed  CAS  Google Scholar 

  • Li T, Singal PK (2000) Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 102(17):2105–2110

    PubMed  CAS  Google Scholar 

  • Li G, Chen Y, Saari JT, Kang YJ (1997) Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 273(3 Pt 2):H1090–H1095

    PubMed  CAS  Google Scholar 

  • Li T, Danelisen I, Singal PK (2002) Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Mol Cell Biochem 232(1–2):19–26

    PubMed  CAS  Google Scholar 

  • Li S, Zhou Y, Dong Y, Ip C (2007a) Doxorubicin and selenium cooperatively induce fas signaling in the absence of Fas/Fas ligand interaction. Anticancer Res 27(5A):3075–3082

    PubMed  CAS  Google Scholar 

  • Li Y, D’Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y (2007b) An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem 282(24):17557–17562

    PubMed  CAS  Google Scholar 

  • Licata S, Saponiero A, Mordente A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13(5):414–420

    PubMed  CAS  Google Scholar 

  • Lien YC, Daosukho C, St Clair DK (2006a) TNF receptor deficiency reveals a translational control mechanism for adriamycin-induced Fas expression in cardiac tissues. Cytokine 33(4):226–230

    PubMed  CAS  Google Scholar 

  • Lien YC, Lin SM, Nithipongvanitch R, Oberley TD, Noel T, Zhao Q, Daosukho C, St Clair DK (2006b) Tumor necrosis factor receptor deficiency exacerbated Adriamycin-induced cardiomyocytes apoptosis: an insight into the Fas connection. Mol Cancer Ther 5(2):261–269

    PubMed  CAS  Google Scholar 

  • Lipshultz SE, Adams MJ (2010) Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol 28(8):1276–1281

    PubMed  Google Scholar 

  • Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, Colan SD (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23(12):2629–2636

    PubMed  CAS  Google Scholar 

  • Liu X, Chua CC, Gao J, Chen Z, Landy CL, Hamdy R, Chua BH (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286(3):H933–H939

    PubMed  CAS  Google Scholar 

  • Liu J, Mao W, Ding B, Liang CS (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295(5):H1956–H1965

    PubMed  CAS  Google Scholar 

  • Liu Z, Liu R, Qiu J, Yin P, Luo F, Su J, Li W, Chen C, Fan X, Zhang J, Zhuang G (2009) Combination of human Fas (CD95/Apo-1) ligand with adriamycin significantly enhances the efficacy of antitumor response. Cell Mol Immunol 6(3):167–174

    PubMed  CAS  Google Scholar 

  • Lopez-Royuela N, Perez-Galan P, Galan-Malo P, Yuste VJ, Anel A, Susin SA, Naval J, Marzo I (2010) Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochem Pharmacol 79(12):1746–1758

    PubMed  CAS  Google Scholar 

  • Lou H, Danelisen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288(4):H1925–H1930

    PubMed  CAS  Google Scholar 

  • Lou H, Kaur K, Sharma AK, Singal PK (2006) Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology 13(2):103–109

    PubMed  CAS  Google Scholar 

  • Low RL, Orton S, Friedman DB (2003) A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. Eur J Biochem 270(20):4173–4186

    PubMed  CAS  Google Scholar 

  • Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846

    PubMed  CAS  Google Scholar 

  • Malin D, Chen F, Schiller C, Koblinski JE, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17(15):5005–5015

    PubMed  CAS  Google Scholar 

  • Malugin A, Kopeckova P, Kopecek J (2006) HPMA copolymer-bound doxorubicin induces apoptosis in ovarian carcinoma cells by the disruption of mitochondrial function. Mol Pharm 3(3):351–361

    PubMed  CAS  Google Scholar 

  • Manna SK, Gangadharan C, Edupalli D, Raviprakash N, Navneetha T, Mahali S, Thoh M (2011) Ras puts the brake on doxorubicin-mediated cell death in p53-expressing cells. J Biol Chem 286(9):7339–7347

    PubMed  CAS  Google Scholar 

  • Marcillat O, Zhang Y, Davies KJ (1989) Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J 259(1):181–189

    PubMed  CAS  Google Scholar 

  • Mariotto AB, Rowland JH, Yabroff KR, Scoppa S, Hachey M, Ries L, Feuer EJ (2009) Long-term survivors of childhood cancers in the United States. Cancer Epidemiol Biomarkers Prev 18(4):1033–1040

    PubMed  Google Scholar 

  • Massart C, Barbet R, Genetet N, Gibassier J (2004) Doxorubicin induces Fas-mediated apoptosis in human thyroid carcinoma cells. Thyroid 14(4):263–270

    PubMed  CAS  Google Scholar 

  • Medikayala S, Piteo B, Zhao X, Edwards JG (2011) Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function. Am J Physiol Cell Physiol 300(2):C338–C348

    PubMed  CAS  Google Scholar 

  • Menna P, Recalcati S, Cairo G, Minotti G (2007) An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 7(2):80–85

    PubMed  CAS  Google Scholar 

  • Menna P, Salvatorelli E, Minotti G (2008) Cardiotoxicity of antitumor drugs. Chem Res Toxicol 21(5):978–989

    PubMed  CAS  Google Scholar 

  • Menna P, Gonzalez Paz O, Chello M, Covino E, Salvatorelli E, Minotti G (2011) Anthracycline cardiotoxicity. Expert Opin Drug Saf (in press)

    Google Scholar 

  • Mertens AC, Yasui Y, Neglia JP, Potter JD, Nesbit ME Jr, Ruccione K, Smithson WA, Robison LL (2001) Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol 19(13):3163–3172

    PubMed  CAS  Google Scholar 

  • Mihm MJ, Yu F, Weinstein DM, Reiser PJ, Bauer JA (2002) Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase. Br J Pharmacol 135(3):581–588

    PubMed  CAS  Google Scholar 

  • Minotti G, Mancuso C, Frustaci A, Mordente A, Santini SA, Calafiore AM, Liberi G, Gentiloni N (1996) Paradoxical inhibition of cardiac lipid peroxidation in cancer patients treated with doxorubicin. Pharmacologic and molecular reappraisal of anthracycline cardiotoxicity. J Clin Invest 98(3):650–661

    PubMed  CAS  Google Scholar 

  • Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G (1998) The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 12(7):541–552

    PubMed  CAS  Google Scholar 

  • Minotti G, Cairo G, Monti E (1999) Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 13(2):199–212

    PubMed  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229

    PubMed  CAS  Google Scholar 

  • Misra UK, Pizzo SV (2010) PFT-alpha inhibits antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Biochem Biophys Res Commun 391(1):272–276

    PubMed  CAS  Google Scholar 

  • Miyata S, Takemura G, Kosai K, Takahashi T, Esaki M, Li L, Kanamori H, Maruyama R, Goto K, Tsujimoto A, Takeyama T, Kawaguchi T, Ohno T, Nishigaki K, Fujiwara T, Fujiwara H, Minatoguchi S (2010) Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. Am J Pathol 176(2):687–698

    PubMed  CAS  Google Scholar 

  • Moller TR, Garwicz S, Barlow L, Falck Winther J, Glattre E, Olafsdottir G, Olsen JH, Perfekt R, Ritvanen A, Sankila R, Tulinius H (2001) Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J Clin Oncol 19(13):3173–3181

    PubMed  CAS  Google Scholar 

  • Montaigne D, Marechal X, Preau S, Baccouch R, Modine T, Fayad G, Lancel S, Neviere R (2011) Doxorubicin induces mitochondrial permeability transition and contractile dysfunction in the human myocardium. Mitochondrion 11(1):22–26

    PubMed  CAS  Google Scholar 

  • Mordente A, Meucci E, Martorana GE, Giardina B, Minotti G (2001) Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52(1–2):83–88

    PubMed  CAS  Google Scholar 

  • Mordente A, Minotti G, Martorana GE, Silvestrini A, Giardina B, Meucci E (2003) Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications. Biochem Pharmacol 66(6):989–998

    PubMed  CAS  Google Scholar 

  • Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B (2009) New developments in anthracycline-induced cardiotoxicity. Curr Med Chem 16(13):1656–1672

    PubMed  CAS  Google Scholar 

  • Morotti M, Valenzano Menada M, Venturini PL, Ferrero S (2011) Pharmacokinetic and toxicity considerations for the use of anthracyclines in ovarian cancer treatment. Expert Opin Drug Metab Toxicol 7(6):707–720

    PubMed  CAS  Google Scholar 

  • Morsi MI, Hussein AE, Mostafa M, El-Abd E, El-Moneim NA (2006) Evaluation of tumour necrosis factor-alpha, soluble P-selectin, gamma-glutamyl transferase, glutathione S-transferase-pi and alpha-fetoprotein in patients with hepatocellular carcinoma before and during chemotherapy. Br J Biomed Sci 63(2):74–78

    PubMed  CAS  Google Scholar 

  • Muhammed H, Ramasarma T, Kurup CK (1983) Inhibition of mitochondrial oxidative phosphorylation by adriamycin. Biochim Biophys Acta 722(1):43–50

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-alpha expression. BMC Pharmacol 3:16

    PubMed  Google Scholar 

  • Mukherjee A, Shehata M, Moseley P, Rakha E, Ellis I, Chan S (2010) Topo2alpha protein expression predicts response to anthracycline combination neo-adjuvant chemotherapy in locally advanced primary breast cancer. Br J Cancer 103(12):1794–1800

    PubMed  CAS  Google Scholar 

  • Myers C, Bonow R, Palmeri S, Jenkins J, Corden B, Locker G, Doroshow J, Epstein S (1983) A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol 10(1 suppl 1):53–55

    PubMed  CAS  Google Scholar 

  • Nagasawa K, Nagai K, Ohnishi N, Yokoyama T, Fujimoto S (2001) Contribution of specific transport systems to anthracycline transport in tumor and normal cells. Curr Drug Metab 2(4):355–366

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: In vivo study. Circulation 102(5):572–578

    PubMed  CAS  Google Scholar 

  • Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS, Furutani E, Perez-Sanz TM, Graveline A, Janssens SP, Picard MH, Scherrer-Crosbie M, Bloch KD (2007) Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 116(5):506–514

    PubMed  CAS  Google Scholar 

  • Nelyudova A, Aksenov N, Pospelov V, Pospelova T (2007) By blocking apoptosis, Bcl-2 in p38-dependent manner promotes cell cycle arrest and accelerated senescence after DNA damage and serum withdrawal. Cell Cycle 6(17):2171–2177

    PubMed  CAS  Google Scholar 

  • Nicolay K, de Kruijff B (1987) Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochim Biophys Acta 892(3):320–330

    PubMed  CAS  Google Scholar 

  • Nicolay K, Fok JJ, Voorhout W, Post JA, de Kruijff B (1986) Cytofluorescence detection of adriamycin-mitochondria interactions in isolated, perfused rat heart. Biochim Biophys Acta 887(1):35–41

    PubMed  CAS  Google Scholar 

  • Nithipongvanitch R, Ittarat W, Cole MP, Tangpong J, Clair DK, Oberley TD (2007a) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9(7):1001–1008

    PubMed  CAS  Google Scholar 

  • Nithipongvanitch R, Ittarat W, Velez JM, Zhao R, St Clair DK, Oberley TD (2007b) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55(6):629–639

    PubMed  CAS  Google Scholar 

  • Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350

    PubMed  CAS  Google Scholar 

  • Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355(15):1572–1582

    PubMed  CAS  Google Scholar 

  • Oliveira PJ, Wallace KB (2006) Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology 220(2–3):160–168

    PubMed  CAS  Google Scholar 

  • Oliveira PJ, Santos MS, Wallace KB (2006) Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow) 71(2):194–199

    CAS  Google Scholar 

  • Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4(13):3076–3086

    PubMed  CAS  Google Scholar 

  • Osborn MT, Chambers TC (1996) Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J Biol Chem 271(48):30950–30955

    PubMed  CAS  Google Scholar 

  • Palmeira CM, Serrano J, Kuehl DW, Wallace KB (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321(2):101–106

    PubMed  CAS  Google Scholar 

  • Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D (2002) Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J Biol Chem 277(46):44317–44326

    PubMed  CAS  Google Scholar 

  • Pawlowska J, Priebe W, Paine MJ, Wolf CR, Borowski E, Tarasiuk J (2004) The ability of new sugar-modified derivatives of antitumor anthracycline, daunorubicin, to stimulate NAD(P)H oxidation in different cellular oxidoreductase systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase. Oncol Res 14(10):469–474

    PubMed  CAS  Google Scholar 

  • Penault-Llorca F, Cayre A, Bouchet Mishellany F, Amat S, Feillel V, Le Bouedec G, Ferriere JP, De Latour M, Chollet P (2003) Induction chemotherapy for breast carcinoma: predictive markers and relation with outcome. Int J Oncol 22(6):1319–1325

    PubMed  CAS  Google Scholar 

  • Peng X, Chen B, Lim CC, Sawyer DB (2005) The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol Interv 5(3):163–171

    PubMed  CAS  Google Scholar 

  • Peng X, Pentassuglia L, Sawyer DB (2010) Emerging anticancer therapeutic targets and the cardiovascular system: is there cause for concern? Circ Res 106(6):1022–1034

    PubMed  CAS  Google Scholar 

  • Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464(2):241–250

    PubMed  CAS  Google Scholar 

  • Perego P, Corna E, De Cesare M, Gatti L, Polizzi D, Pratesi G, Supino R, Zunino F (2001) Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem 8(1):31–37

    PubMed  CAS  Google Scholar 

  • Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25(25):3808–3815

    PubMed  CAS  Google Scholar 

  • Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, Zhang SD, Parry JD, Lyon JJ, Marczylo EL, Gant TW (2010) Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5(9):e12733

    PubMed  Google Scholar 

  • Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421–433

    PubMed  CAS  Google Scholar 

  • Pratilas CA, Solit DB (2010) Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 16(13):3329–3334

    PubMed  CAS  Google Scholar 

  • Rajagopalan S, Politi PM, Sinha BK, Myers CE (1988) Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res 48(17):4766–4769

    PubMed  CAS  Google Scholar 

  • Robert J (2007) Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc Toxicol 7(2):135–139

    PubMed  CAS  Google Scholar 

  • Robert J, Gianni L (1993) Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 17:219–252

    PubMed  CAS  Google Scholar 

  • Rohan TE, Wong LJ, Wang T, Haines J, Kabat GC (2010) Do alterations in mitochondrial DNA play a role in breast carcinogenesis? J Oncol 2010:604304

    PubMed  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90(4):1507–1546

    PubMed  CAS  Google Scholar 

  • Ruiz-Ruiz C, Robledo G, Cano E, Redondo JM, Lopez-Rivas A (2003) Characterization of p53-mediated up-regulation of CD95 gene expression upon genotoxic treatment in human breast tumor cells. J Biol Chem 278(34):31667–31675

    PubMed  CAS  Google Scholar 

  • Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore AM, Mariggio MA, Mordente A, Gianni L, Minotti G (2006) Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281(16):10990–11001

    PubMed  CAS  Google Scholar 

  • Santos C, Martinez M, Lima M, Hao YJ, Simoes N, Montiel R (2008) Mitochondrial DNA mutations in cancer: a review. Curr Top Med Chem 8(15):1351–1366

    PubMed  CAS  Google Scholar 

  • Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB (2009) Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol 64(4):811–827

    PubMed  CAS  Google Scholar 

  • Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113

    PubMed  CAS  Google Scholar 

  • Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 60(8):1173–1180

    PubMed  CAS  Google Scholar 

  • Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279(35):36349–36353

    PubMed  Google Scholar 

  • Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7(3):e1001115

    PubMed  CAS  Google Scholar 

  • Serrano J, Palmeira CM, Kuehl DW, Wallace KB (1999) Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta 1411(1):201–205

    PubMed  CAS  Google Scholar 

  • Setsuta K, Seino Y, Ogawa T, Ohtsuka T, Seimiya K, Takano T (2004) Ongoing myocardial damage in chronic heart failure is related to activated tumor necrosis factor and Fas/Fas ligand system. Circ J 68(8):747–750

    PubMed  CAS  Google Scholar 

  • Sharples RA, Cullinane C, Phillips DR (2000) Adriamycin-induced inhibition of mitochondrial-encoded polypeptides as a model system for the identification of hotspots for DNA-damaging agents. Anticancer Drug Des 15(3):183–190

    PubMed  CAS  Google Scholar 

  • Shi D, Pop MS, Kulikov R, Love IM, Kung AL, Grossman SR (2009) CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc Natl Acad Sci USA 106(38):16275–16280

    PubMed  CAS  Google Scholar 

  • Shizukuda Y, Matoba S, Mian OY, Nguyen T, Hwang PM (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273(1–2):25–32

    PubMed  CAS  Google Scholar 

  • Singh TR, Shankar S, Chen X, Asim M, Srivastava RK (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63(17):5390–5400

    PubMed  CAS  Google Scholar 

  • Sinha BK, Chignell CF (1979) Binding mode of chemically activated semiquinone free radicals from quinone anticancer agents to DNA. Chem Biol Interact 28(2–3):301–308

    PubMed  CAS  Google Scholar 

  • Siveski-Iliskovic N, Hill M, Chow DA, Singal PK (1995) Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 91(1):10–15

    PubMed  CAS  Google Scholar 

  • Small GW, Somasundaram S, Moore DT, Shi YY, Orlowski RZ (2003) Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. J Pharmacol Exp Ther 307(3):861–869

    PubMed  CAS  Google Scholar 

  • Small GW, Shi YY, Higgins LS, Orlowski RZ (2007) Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res 67(9):4459–4466

    PubMed  CAS  Google Scholar 

  • Sokolove PM (1994) Interactions of adriamycin aglycones with mitochondria may mediate adriamycin cardiotoxicity. Int J Biochem 26(12):1341–1350

    PubMed  CAS  Google Scholar 

  • Solem LE, Heller LJ, Wallace KB (1996) Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol 28(5):1023–1032

    PubMed  CAS  Google Scholar 

  • Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A (2006) Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: the role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69(3):736–745

    PubMed  CAS  Google Scholar 

  • Spallarossa P, Altieri P, Barisione C, Passalacqua M, Aloi C, Fugazza G, Frassoni F, Podesta M, Canepa M, Ghigliotti G, Brunelli C (2010) p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS One 5(12):e15583

    PubMed  CAS  Google Scholar 

  • Stearns V, Singh B, Tsangaris T, Crawford JG, Novielli A, Ellis MJ, Isaacs C, Pennanen M, Tibery C, Farhad A, Slack R, Hayes DF (2003) A prospective randomized pilot study to evaluate predictors of response in serial core biopsies to single agent neoadjuvant doxorubicin or paclitaxel for patients with locally advanced breast cancer. Clin Cancer Res 9(1):124–133

    PubMed  CAS  Google Scholar 

  • Subjeck JR, Repasky EA (2011) Heat shock proteins and cancer therapy: the trail grows hotter! Oncotarget 2(6):433–434

    PubMed  Google Scholar 

  • Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879

    PubMed  CAS  Google Scholar 

  • Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZ, Linch DC (2007) Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst 99(3):206–214

    PubMed  Google Scholar 

  • Swift LP, Rephaeli A, Nudelman A, Phillips DR, Cutts SM (2006) Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res 66(9):4863–4871

    PubMed  CAS  Google Scholar 

  • Swift L, McHowat J, Sarvazyan N (2007) Anthracycline-induced phospholipase A2 inhibition. Cardiovasc Toxicol 7(2):86–91

    PubMed  CAS  Google Scholar 

  • Swift LP, Cutts SM, Nudelman A, Levovich I, Rephaeli A, Phillips DR (2008) The cardio-protecting agent and topoisomerase II catalytic inhibitor sobuzoxane enhances doxorubicin-DNA adduct mediated cytotoxicity. Cancer Chemother Pharmacol 61(5):739–749

    PubMed  CAS  Google Scholar 

  • Taatjes DJ, Koch TH (2001) Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells. Curr Med Chem 8(1):15–29

    PubMed  CAS  Google Scholar 

  • Taatjes DJ, Gaudiano G, Koch TH (1997) Production of formaldehyde and DNA-adriamycin or DNA-daunomycin adducts, initiated through redox chemistry of dithiothreitol/iron, xanthine oxidase/NADH/iron, or glutathione/iron. Chem Res Toxicol 10(9):953–961

    PubMed  CAS  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    PubMed  CAS  Google Scholar 

  • Tang Y, Olufemi L, Wang MT, Nie D (2008) Role of Rho GTPases in breast cancer. Front Biosci 13:759–776

    PubMed  CAS  Google Scholar 

  • Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139

    PubMed  CAS  Google Scholar 

  • Tao Z, Withers HG, Penefsky HS, Goodisman J, Souid AK (2006) Inhibition of cellular respiration by doxorubicin. Chem Res Toxicol 19(8):1051–1058

    PubMed  CAS  Google Scholar 

  • Thandavarayan RA, Watanabe K, Sari FR, Ma M, Lakshmanan AP, Giridharan VV, Gurusamy N, Nishida H, Konishi T, Zhang S, Muslin AJ, Kodama M, Aizawa Y (2010) Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38alpha mitogen-activated protein kinase mice. Free Radic Biol Med 49(9):1422–1431

    PubMed  CAS  Google Scholar 

  • Tikoo K, Sane MS, Gupta C (2011) Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 251(3):191–200

    PubMed  CAS  Google Scholar 

  • Tokarska-Schlattner M, Zaugg M, da Silva R, Lucchinetti E, Schaub MC, Wallimann T, Schlattner U (2005) Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol 289(1):H37–H47

    PubMed  CAS  Google Scholar 

  • Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U (2006) New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 41(3):389–405

    PubMed  CAS  Google Scholar 

  • Tokarska-Schlattner M, Lucchinetti E, Zaugg M, Kay L, Gratia S, Guzun R, Saks V, Schlattner U (2010) Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes. Am J Physiol Regul Integr Comp Physiol 298(4):R1075–R1088

    PubMed  CAS  Google Scholar 

  • Toyoda E, Kagaya S, Cowell IG, Kurosawa A, Kamoshita K, Nishikawa K, Iiizumi S, Koyama H, Austin CA, Adachi N (2008) NK314, a topoisomerase II inhibitor that specifically targets the alpha isoform. J Biol Chem 283(35):23711–23720

    PubMed  CAS  Google Scholar 

  • Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL, Lipshultz SE (2011) Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol 32(3):342–353

    PubMed  Google Scholar 

  • Trapp BD, Andrews SB, Wong A, O’Connell M, Griffin JW (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol 18(1):47–60

    PubMed  CAS  Google Scholar 

  • Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, Sneller V, Gallant G, Kanzler S (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102(3):506–512

    PubMed  CAS  Google Scholar 

  • Ugarenko M, Nudelman A, Rephaeli A, Kimura K, Phillips DR, Cutts SM (2010) ABT-737 overcomes Bcl-2 mediated resistance to doxorubicin-DNA adducts. Biochem Pharmacol 79(3):339–349

    PubMed  CAS  Google Scholar 

  • Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ, Berleth ES (2003) Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother 52(7):463–472

    PubMed  CAS  Google Scholar 

  • Vaculova A, Kaminskyy V, Jalalvand E, Surova O, Zhivotovsky B (2010) Doxorubicin and etoposide sensitize small cell lung carcinoma cells expressing caspase-8 to TRAIL. Mol Cancer 9:87

    PubMed  Google Scholar 

  • van Dalen EC, van der Pal HJ, Kok WE, Caron HN, Kremer LC (2006) Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 42(18):3191–3198

    PubMed  Google Scholar 

  • van Dalen EC, Raphael MF, Caron HN, Kremer LC (2011) Treatment including anthracyclines versus treatment not including anthracyclines for childhood cancer. Cochrane Database Syst Rev (1):CD006647

    Google Scholar 

  • Van Vleet JF, Ferrans VJ, Weirich WE (1980) Cardiac disease induced by chronic adriamycin administration in dogs and an evaluation of vitamin E and selenium as cardioprotectants. Am J Pathol 99(1):13–42

    PubMed  Google Scholar 

  • Varanyuwatana P, Halestrap AP (2011) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion (in press)

    Google Scholar 

  • Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 36(38):11293–11297

    PubMed  CAS  Google Scholar 

  • Velez JM, Miriyala S, Nithipongvanitch R, Noel T, Plabplueng CD, Oberley T, Jungsuwadee P, Van Remmen H, Vore M, St Clair DK (2011) p53 Regulates oxidative stress-mediated retrograde signaling: a novel mechanism for chemotherapy-induced cardiac injury. PLoS One 6(3):e18005

    PubMed  CAS  Google Scholar 

  • Venkatakrishnan CD, Tewari AK, Moldovan L, Cardounel AJ, Zweier JL, Kuppusamy P, Ilangovan G (2006) Heat shock protects cardiac cells from doxorubicin-induced toxicity by activating p38 MAPK and phosphorylation of small heat shock protein 27. Am J Physiol Heart Circ Physiol 291(6):H2680–H2691

    PubMed  CAS  Google Scholar 

  • Venkatesan B, Prabhu SD, Venkatachalam K, Mummidi S, Valente AJ, Clark RA, Delafontaine P, Chandrasekar B (2010) WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell Signal 22(5):809–820

    PubMed  CAS  Google Scholar 

  • Voelkel-Johnson C, King DL, Norris JS (2002) Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Ther 9(2):164–172

    PubMed  CAS  Google Scholar 

  • Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91(5):710–717

    Google Scholar 

  • Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93(3):105–115

    PubMed  CAS  Google Scholar 

  • Wallace KB (2007) Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 7(2):101–107

    PubMed  CAS  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    PubMed  CAS  Google Scholar 

  • Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    PubMed  CAS  Google Scholar 

  • Wang AH, Gao YG, Liaw YC, Li YK (1991) Formaldehyde cross-links daunorubicin and DNA efficiently: HPLC and X-ray diffraction studies. Biochemistry 30(16):3812–3815

    PubMed  CAS  Google Scholar 

  • Wang Y, Lyu YL, Wang JC (2002) Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci USA 99(19):12114–12119

    PubMed  CAS  Google Scholar 

  • Wang M, Markel T, Crisostomo P, Herring C, Meldrum KK, Lillemoe KD, Meldrum DR (2007) Deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta. Am J Physiol Heart Circ Physiol 292(4):H1694–H1699

    PubMed  CAS  Google Scholar 

  • Wang JX, Li Q, Li PF (2009) Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1. Cancer Res 69(2):492–500

    PubMed  CAS  Google Scholar 

  • Wang S, Ren W, Liu J, Lahat G, Torres K, Lopez G, Lazar AJ, Hayes-Jordan A, Liu K, Bankson J, Hazle JD, Lev D (2010) TRAIL and doxorubicin combination induces proapoptotic and antiangiogenic effects in soft tissue sarcoma in vivo. Clin Cancer Res 16(9):2591–2604

    PubMed  CAS  Google Scholar 

  • Weinstein DM, Mihm MJ, Bauer JA (2000) Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 294(1):396–401

    PubMed  CAS  Google Scholar 

  • Welsh SJ, Koh MY, Powis G (2006) The hypoxic inducible stress response as a target for cancer drug discovery. Semin Oncol 33(4):486–497

    PubMed  CAS  Google Scholar 

  • Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97(5):1378–1387

    PubMed  CAS  Google Scholar 

  • Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16(6):1701–1708

    PubMed  CAS  Google Scholar 

  • Wildiers H, Highley MS, de Bruijn EA, van Oosterom AT (2003) Pharmacology of anticancer drugs in the elderly population. Clin Pharmacokinet 42(14):1213–1242

    PubMed  CAS  Google Scholar 

  • Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3(2):156–161

    PubMed  CAS  Google Scholar 

  • Wu S, Ko YS, Teng MS, Ko YL, Hsu LA, Hsueh C, Chou YY, Liew CC, Lee YS (2002a) Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell Cardiol 34(12):1595–1607

    PubMed  CAS  Google Scholar 

  • Wu XX, Kakehi Y, Mizutani Y, Kamoto T, Kinoshita H, Isogawa Y, Terachi T, Ogawa O (2002b) Doxorubicin enhances TRAIL-induced apoptosis in prostate cancer. Int J Oncol 20(5):949–954

    PubMed  CAS  Google Scholar 

  • Wu XX, Kakehi Y, Mizutani Y, Nishiyama H, Kamoto T, Megumi Y, Ito N, Ogawa O (2003) Enhancement of TRAIL/Apo2L-mediated apoptosis by adriamycin through inducing DR4 and DR5 in renal cell carcinoma cells. Int J Cancer 104(4):409–417

    PubMed  CAS  Google Scholar 

  • Wu XX, Jin XH, Zeng Y, El Hamed AM, Kakehi Y (2007) Low concentrations of doxorubicin sensitizes human solid cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor (R) 2-mediated apoptosis by inducing TRAIL-R2 expression. Cancer Sci 98(12):1969–1976

    PubMed  CAS  Google Scholar 

  • Xiong Y, Liu X, Lee CP, Chua BH, Ho YS (2006) Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med 41(1):46–55

    PubMed  CAS  Google Scholar 

  • Xu LH, Deng CS, Zhu YQ, Liu SQ, Liu DZ (2003) Synergistic antitumor effect of TRAIL and doxorubicin on colon cancer cell line SW480. World J Gastroenterol 9(6):1241–1245

    PubMed  CAS  Google Scholar 

  • Xu L, Qu X, Luo Y, Zhang Y, Liu J, Qu J, Zhang L, Liu Y (2011) Epirubicin enhances TRAIL-induced apoptosis in gastric cancer cells by promoting death receptor clustering in lipid rafts. Mol Med Rep 4(3):407–411

    CAS  Google Scholar 

  • Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J, Nakamura N, Mitsui Y, Tomoike H (2000) Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin. J Mol Cell Cardiol 32(6):881–889

    PubMed  CAS  Google Scholar 

  • Yang A, Wilson NS, Ashkenazi A (2010) Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 22(6):837–844

    PubMed  CAS  Google Scholar 

  • Yano S, Matsuyama H, Hirata H, Inoue R, Matsumoto H, Ohmi C, Miura K, Shirai M, Iizuka N, Naito K (2006) Identification of genes linked to gefitinib treatment in prostate cancer cell lines with or without resistance to androgen: a clue to application of gefitinib to hormone-resistant prostate cancer. Oncol Rep 15(6):1453–1460

    PubMed  CAS  Google Scholar 

  • Yee SB, Pritsos CA (1997) Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys 347(2):235–241

    PubMed  CAS  Google Scholar 

  • Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98(5):1253–1260

    PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Kawada M, Ikeda D, Ishizuka M (2005) Involvement of doxorubicin-induced Fas expression in the antitumor effect of doxorubicin on Lewis lung carcinoma in vivo. Int Immunopharmacol 5(2):281–288

    PubMed  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    PubMed  CAS  Google Scholar 

  • Yu R, Shtil AA, Tan TH, Roninson IB, Kong AN (1996) Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett 107(1):73–81

    PubMed  CAS  Google Scholar 

  • Zantl N, Weirich G, Zall H, Seiffert BM, Fischer SF, Kirschnek S, Hartmann C, Fritsch RM, Gillissen B, Daniel PT, Hacker G (2007) Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 26(49):7038–7048

    PubMed  CAS  Google Scholar 

  • Zaragoza MV, Brandon MC, Diegoli M, Arbustini E, Wallace DC (2011) Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet 19(2):200–207

    PubMed  CAS  Google Scholar 

  • Zeman SM, Phillips DR, Crothers DM (1998) Characterization of covalent adriamycin-DNA adducts. Proc Natl Acad Sci USA 95(20):11561–11565

    PubMed  CAS  Google Scholar 

  • Zhao Y, You H, Yang Y, Wei L, Zhang X, Yao L, Fan D, Yu Q (2004) Distinctive regulation and function of PI 3 K/Akt and MAPKs in doxorubicin-induced apoptosis of human lung adenocarcinoma cells. J Cell Biochem 91(3):621–632

    PubMed  CAS  Google Scholar 

  • Zhou S, Palmeira CM, Wallace KB (2001a) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121(3):151–157

    PubMed  CAS  Google Scholar 

  • Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB (2001b) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61(2):771–777

    PubMed  CAS  Google Scholar 

  • Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I (1999) MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100(20):2100–2107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Mordente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mordente, A., Meucci, E., Silvestrini, A., Martorana, G.E., Giardina, B. (2012). Anthracyclines and Mitochondria. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_18

Download citation

Publish with us

Policies and ethics